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p-Envelopes of non-locally convex F -spaces

by C. M. Eoff (Fayetteville, Ark.)

Abstract. The p-envelope of an F -space is the p-convex analogue of the Fréchet
envelope. We show that if an F -space is locally bounded (i.e., a quasi-Banach space) with
separating dual, then the p-envelope coincides with the Banach envelope only if the space
is already locally convex. By contrast, we give examples of F -spaces with are not locally
bounded nor locally convex for which the p-envelope and the Fréchet envelope are the
same.

1. Introduction. For a non-locally convex F -space X (complete,
metrizable, linear topological space), the idea of a p-envelope is analogous to
that of a Fréchet envelope. Suppose X has separating dual space; recall that
the Fréchet envelope of X, denoted by X̂, is the closure of X with respect
to the Mackey topology, µ. The Mackey topology is the strongest locally
convex topology on X for which X still has dual space X∗. A countable base
for the µ-zero neighborhoods {Ṽn} can be obtained by taking the closure
in X of the absolutely convex hull of each Vn, where {Vn} is any countable
base for the zero-neighborhoods of X; this description in fact characterizes
µ [13]. In general X̂ is a Fréchet space; for a locally bounded F -space, X̂
turns out to be a Banach space—the Banach envelope. (S ⊂ X is bounded
if given any zero neighborhood U , there exists n ∈ N such that S ⊂ nU. X
is locally bounded if it has a bounded neighborhood of zero.)

Interest in the containing Fréchet space of a non-locally convex F -space
was first sparked by the pioneering work of Duren, Romberg, and Shields,
who showed that the Hardy space Hp, 0 < p < 1, could be densely imbedded
in a certain Banach space, the Bergman space Bp, and (Hp)∗ ' (Bp)∗

[4]. Somewhat later Shapiro identified the Banach envelope of Hp directly,
using his “convex-hull” characterization of the Mackey topology [13]. This
characterization of the Mackey topology provides an important intuitive
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picture, via the example `p, 0 < p < 1. The absolutely convex hull of the `p
unit ball is the `1 unit ball. Thus, the Mackey topology is the `1 topology
and the closure of `p with respect to this topology is `1; i.e., `1 is the Banach
envelope of `p. With its usual metric d((αn), 0) = ‖(αn)‖pp =

∑∞
n=0 |αn|p,

the sequence space `p, 0<p<1, is the prototypical example of a non-locally
convex, locally bounded F -space with separating dual (the maps φk((αn)) =
αk are continuous). In addition, the topology induced by d is p-convex, since
the unit ball is (absolutely) p-convex. A set C is p-convex if

∑n
i=1 aixi ∈ C

whenever xi ∈ C and
∑n
i=1 a

p
i = 1, with ai ≥ 0. C is absolutely p-convex

if
∑n
i=1 aixi ∈ C whenever xi ∈ C and

∑n
i=1 |ai|p = 1. The functional

‖(αn)‖p = (
∑∞
n=0 |αn|p)1/p is a quasinorm; i.e., it satisfies the requirements

for a norm except that the triangle inequality is weakened. For α = (αn)
and β = (βn),

‖α+ β‖p ≤M(‖α‖p + ‖β‖p)
for a constant M ≥ 1. Clearly, ‖ · ‖p satisfies

‖α+ β‖pp ≤ ‖α‖pp + ‖β‖pp ;

a quasinorm with this property is said to be p-subadditive and is called
a p-norm. In general, if an F -space, X, is locally bounded, the metric
topology can always be replaced by a quasinorm, in fact by a q-norm for
some 0 < q ≤ 1, due to a result of Aoki and Rolewicz; X is then called a
q-Banach space. (See [7] or [14] for general facts about non-locally convex
F -spaces.)

By analogy with the Fréchet envelope, let {Vn} be a countable base for
the zero neighborhoods of a non-locally convex F -space, X, with separating
dual, and let Ṽn be the absolutely p-convex hull of Vn, for some fixed p,
0 < p < 1. Let ‖ · ‖n be the Minkowski functional of Ṽn. For x, y ∈ X, the
functional ‖ · ‖n satisfies:

(i) ‖x‖n = 0 if x = 0,
(ii) ‖ax‖n = |a|‖x‖n, a ∈ C,
(iii) ‖x+ y‖pn ≤ ‖x‖pn + ‖y‖pn.

From (iii) we can deduce that ‖x + y‖n ≤ C(‖x‖n + ‖y‖n). By obvious
analogy, we will refer to ‖·‖n as a p-seminorm. The family {‖·‖n} generates
a p-convex topology on X weaker than the original topology. We call the
closure of X under the topology induced by {‖ ‖n} the p-envelope of X and
denote it by X̂p (cf. [1]). When X is locally bounded, X̂p is a p-Banach
space. X̂p has the property that every continuous linear map T : X→ Y, Y
a p-Banach space, extends continuously to X̂p.

To visualize the situation, let 0 < p < q ≤ 1. The absolutely q-convex
hull of the unit ball of `p is the `q unit ball, and it follows that `q is the
q-envelope of `p. (For 0 < p < q < 1, the q-envelope of Hp was identified
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by Aleksandrov in [1] and by Coifman and Rochberg in [2].) Now for 0 <
p < q ≤ 1, `q is not isomorphic to `p; however, it can happen that X̂p is
isomorphic to X̂q for all 0 < p, q < 1 (see [7], Chapter 2). However, as we
shall prove, the p-envelope, for 0 < p < 1, can never be isomorphic to the
Fréchet (Banach) envelope of a locally bounded, non-locally convex F -space
(quasi-Banach space). We accomplish this in §2 by a modification of an
argument of Kalton ([7], Theorem 4.13).

For an F -space which is not locally bounded, the situation is much dif-
ferent. We provide a class of examples which have the property that X̂p = X̂
for 0 < p < 1. The groundwork is laid in §3; proofs are carried out in §4.
Our method of proof will yield various applications along the way.

The author gratefully acknowledges the many helpful comments and sug-
gestions of Nigel Kalton during the preparation of this paper. This material
constitutes a portion of the author’s Ph.D. thesis, written under the excellent
supervision of Professor Kalton, at the University of Missouri, Columbia,
Missouri.

2. X̂ is never isomorphic to X̂p for a quasi-Banach space X.
In this section we shall prove that X̂1 = X̂ (the Banach envelope) is never
isomorphic to X̂p, 0 < p < 1, when X is a non-locally convex quasi-Banach
space.

The Aoki–Rolewicz theorem provides every quasi-Banach space with an
equivalent p-norm for some p, 0 < p ≤ 1. Thus we lose no generality by our
formulation of the following proposition.

Proposition 2.1. Let (X, ‖ ‖X), (Y, ‖ ‖Y) be quasi-Banach spaces so
that ‖ ‖X is an r-norm and ‖ ‖Y is a q-norm for 0 < r < q ≤ 1. Let
BX = {x ∈ X : ‖x‖X < 1}. If T : X → Y is a bounded linear map so that
p-coT (BX) is a neighborhood of the origin for 0 < r ≤ p < q ≤ 1, then T is
an open map.

P r o o f (cf. [7], Theorem 4.13). For convenience, let ‖ ‖ denote the
quasinorms for both X and Y, as well as the operator quasinorm for T . No
confusion should arise from this. We assume, with no loss, that ‖T‖ = 1.

There exists δ > 0 so that if ‖y‖ < δ then y ∈ p-coT (BX). It is enough
to show that a constant M exists so that if ‖y‖ < 1, there is an x ∈
X with ‖x‖ ≤ M and ‖Tx − y‖ < 1/2. If this can be done, then we
can choose xn by induction satisfying ‖xn‖ ≤ 2−nM , n = 0, 1, . . . , with
‖T (x0 + . . .+xn)− y‖ ≤ 2−n−1. Then we would have T (

∑∞
n=0 xn) = y; the

series
∑∞
n=0 xn converges since

∑∞
n=0 ‖xn‖r <∞.

So let Vm = {
∑m
i=1 aiT (xi) :

∑m
i=1 a

p
i ≤ 1, ai ≥ 0, ‖xi‖ ≤ 1} and note

that
⋃∞
m=1 Vm = p-coT (BX). For any w ∈ V2m, w =

∑2m
i=1 aiTxi, where we
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label the ai’s so that ai−1 ≥ ai, i = 2, 3, . . . , 2m. Put w0 =
∑m
i=1 aiT (xi),

w0 ∈ Vm. Notice that ai ≤ (1/(2m))1/p for 2m ≥ i ≥ m; whereby,

‖w − w0‖q =
∥∥∥ 2m∑
i=m+1

aiTxi

∥∥∥q ≤ 2m∑
i=m+1

|ai|q‖Txi‖q

≤ m
(

1
2m

)q/p
= C1m

−α ,

with C1 = 2−q/p, α = q/p− 1 > 0.
For w ∈ V2m+n , w =

∑2m+n

i=1 aiT (xi), with
∑2m+n

i=1 api ≤ 1, put

wj =
2m+j∑
i=1

aiT (xi) ∈ V2m+j , j = 0, . . . , n ;

then wn = w. From our previous observation, we deduce that

‖w − w0‖q ≤
n∑
j=1

‖wj − wj−1‖q ≤
n∑
j=1

C1(2m+j)−α

= C12−mα
n∑
j=1

2−jα ≤ C12−mα
∞∑
j=1

2−jα = C22−mα ,

with C2 = C1(2α − 1)−1. Thus for w ∈ V2m+n

dist(w, V2m) = inf
y∈V2m

‖w − y‖ ≤ ‖w − w0‖ ≤ C1/q
2 2−mβ ,

independent of n, with β = 1/p− 1/q > 0. In particular, we can choose m0

so large that if w ∈
⋃∞
n=1 Vn, then

dist(w, V2m0 ) < δ/(4C) ,

where C is the quasinorm constant for Y. Put 2m0 = N . If ‖y‖ < 1, there
exists z ∈

⋃∞
n=1 Vn so that ‖δy − z‖ < δ/(4C). Let v ∈ VN ; we have

‖δy − v‖ ≤ C(‖δy − z‖+ ‖z − v‖) < δ/2 ,

i.e., ‖y − δ−1v‖ < 1/2. Now v =
∑N
n=1 aiTxi, for

∑N
n=1 a

p
i ≤ 1, ‖xi‖ ≤ 1;

put x = δ−1
∑N
n=1 aixi, so that we obtain

‖y − Tx‖ < 1/2 and ‖x‖ ≤ N1/rδ−1 = M .

This completes the proof.

Theorem 2.2. Let X be a locally bounded F -space which is r-normable
for 0 < r < 1. If X̂p is locally q-convex for 0 < r ≤ p < q ≤ 1, then X is
necessarily q-convex.

P r o o f. Let j : X→ X̂p be the natural inclusion map, so that p-co j(BX)
is the closed unit ball of X̂p. If X̂p can be endowed with an equivalent
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q-convex topology, it follows from Proposition 2.1 that j is an open map;
consequently, X = X̂p, so that X must be q-convex.

Corollary 2.3. Let X be a quasi-Banach space such that X̂p, 0 < p < 1,
is locally convex. Then X is locally convex ; i.e., X is a Banach space.

3. The classes Nα
+ and Nα

+(D). Let D denote the unit disc in the
complex plane, C. Recall that a function analytic in the unit disc is said to
be of bounded characteristic, or of Nevanlinna class N , if the integrals

π∫
−π

log+ |f(reiθ)| dθ

are uniformly bounded for r < 1. For each function f ∈ N , the nontangential
limit f(eiθ) exists for a.e. θ ∈ [−π, π]; if a function f ∈ N further satisfies
the condition that

lim
r→1−

π∫
−π

log+ |f(reiθ)| dθ =
π∫
−π

log+ |f(eiθ)| dθ

then f belongs to the Smirnov class N+ [3]. N+ has been studied for
many years as part of the classical Hardy space theory ([3] is a good general
reference), although it was not until the early 70’s that N. Yanagihara in-
vestigated the linear topological structure of N+ [16], [17]. He found N+ to
be an F -space, not locally convex nor locally bounded, but still possessing
a rich dual space, which he identified. Recently, McCarthy [8] has taken a
different approach to the study of N+, obtaining new results as well as giv-
ing new proofs to certain of Yanagihara’s results. The structure of N+ as a
topological algebra has been studied in [12], for example. Generalizations of
Yanagihara’s work to Cn, and even to Banach space valued functions have
been carried out by Nawrocki [10], [11].

For α ≥ 1, define Nα
+ to consist of those functions f belonging to N+

such that
π∫
−π

[log+ |f(eiθ)|]α dθ <∞ .

Also, define Nα
+(D) to be the class of functions analytic in the unit disc

which satisfy ∫
D

[log+ |f(z)|]α dA(z) <∞ ,

where dA is normalized area measure. The classes Nα
+ and Nα

+(D) were
introduced by M. Stoll in [15] (with different notation), where he showed
that they are non-locally convex F -spaces under their respective metrics, in
fact, F -algebras. Also, like N+, both classes have separating dual spaces
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since point evaluations are continuous. Further results about the algebraic
structure of Nα

+ and Nα
+(D) have been obtained recently by Mochizuki in [9].

The natural metric for Nα
+ is

dα(f, 0) =
{

1
2π

π∫
−π

[log(1 + |f(eiθ)|)]α dθ
}1/α

,

and in similar fashion, for Nα
+(D) the natural metric is

%α(f, 0) =
{ ∫

D

[log(1 + |f(z)|)]α dA(z)
}1/α

(see [15]). These metrics are rotation-invariant (a fact which was critical to
our arguments in [5]).

For β > 0, Fβ consists of those analytic functions on D such that

lim
r→1−

(1− r)β log+ max
|z|=r

|f(z)| = 0 .

For f ∈ Fβ , f(z) =
∑∞
n=0 anz

n, and c > 0, the functional ‖ · ‖c defined by

‖f‖c =
∞∑
n=0

|an| exp(−cnβ/(1+β))

is a seminorm on Fβ . With the topology given by the family {‖·‖c}c>0, Fβ is
a Fréchet space [15], [16], [18]. Yanagihara showed that F1 is the containing
Fréchet space for the Smirnov class [17] (see also [8]). For the general case,
Stoll identified the likely candidates for the Fréchet envelopes of Nα

+ and
Nα

+(D) as the spaces F1/α and F2/α [15]; we verified this conjecture in [5].
Let us recall those results from [5] which we will need in §4.

Theorem 3.1. For α ≥ 1, F1/α is the Frécht envelope of Nα
+.

Theorem 3.2. For α ≥ 1, F2/α is the Frécht envelope of Nα
+(D).

Lemma 3.3. Let fk(z) = exp[ckrkz(1 − rkz)−3], rk, ck > 0, with Taylor
expansion fk(z) =

∑∞
n=0 b

(k)
n zn. Let V be any neighborhood of zero in Nα

+.
Then there exist positive constants a1, a2, and a3 so that if

rk = 1− a2k
−α/(α+1) and ck = a3(1− rk)(3α−1)/α ,

then a1fk ∈ V ; moreover , (b(k)k )−1 = O[exp(−ηk1/(α+1))] for some η > 0.

The idea behind this family of test functions is that for each k, fk is
analytic in the disc {z : |z| < 1/rk}, with 1/rk > 1, and thus belongs to
both Nα

+ and Nα
+(D), even though f(z) = exp[z(1−z)−3] belongs to neither.

(Clearly f 6∈ F2/α and Nα
+ ⊆ Nα

+(D) ⊆ F2/α; see [15].) Now for Nα
+, it is

straightforward to show that every metric neighborhood of zero contains a
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set of the form

G(r, ε) = G =
{
g ∈ Nα

+ :
π∫
−π

[log+ |rg(eiθ)|]α dθ < ε
}

for some r, ε > 0 .

For the family {fk}, there exists a constant M > 0 so that
π∫
−π

[log+ |fk(eiθ)|]α dθ ≤ cαkM(1− rk)1−3α

(see [5], Lemma 3.1). Thus for any neighborhood, V , of zero in Nα
+, there

exists G(r, ε) = G ⊆ V ; by taking ck = M−1/αε1/α(1−rk)(3α−1)/α, we force
the family {afk} to belong to G, for a = min{r−1, 1}. This will be true for
any choice of rk ↑ 1. However, to obtain necessary decay estimates on the
Taylor coefficients, we had to be rather judicious as to the choice of the rk’s
(see [5], Lemmas 3.1 and 3.2, and Theorem 4.2). The same ideas go through
for Nα

+(D) ([5], Lemmas 3.1 and 3.3, and Theorem 4.3).

Lemma 3.4. Let fk(z) = exp[ckrkz(1 − rkz)−3], rk, ck > 0, with Tay-
lor expansion fk(z) =

∑∞
n=0 b

(k)
n zn. Let V be any neighborhood of zero in

Nα
+(D). Then there exist positive constants a1, a2, and a3 so that if

rk = 1− a2k
−α/(α+2) and ck = a3(1− rk)(3α−2)/α

then a1fk ∈ V ; moreover , (b(k)k )−1 = O[exp(−η2/(α+2)
k )] for some η > 0.

4. X̂ = X̂p: Examples. We will show that for X̂ = Nα
+ orNα

+(D), α ≥ 1,
we have X̂ = X̂p for 0 < p ≤ 1. Our method of proof is somewhat similar to
arguments used in [16], but draws on the theory of vector-valued analytic
functions as developed in [6]. Also, certain estimates which we obtained in
[5] are critical to our proofs. Our approach has the benefit of allowing for a
characterization of multipliers from Nα

+ or Nα
+(D) into any p-Banach space

(Hp, in particular), as well as a characterization of the dual spaces of Nα
+

and Nα
+(D). We will omit the proofs for results particular to Nα

+(D) since
they parallel the corresponding arguments for Nα

+.
First, let us briefly recall some facts about vector-valued analytic func-

tions and multipliers which we will need in the sequel. Let (X, ‖ ‖) be a
p-Banach space. A function f : D → X is said to be analytic if f can be
expanded in a power series f(z) =

∑∞
n=0 xnz

n for xn ∈ X, z ∈ D (see [6]).
Let A(X) denote the collection of functions analytic in D and continuous on
D, quasinormed by ‖f‖A = max{‖f(z)‖ : z ∈ D}. Say that Λ = (xn) is a
multiplier from Nα

+ (or Nα
+(D)) into A(X) if for every h ∈ Nα

+ (respectively,
Nα

+(D)) with power series h(z) =
∑∞
n=0 dnz

n, we have Λh ∈ A(X), where
(Λh)(z) =

∑∞
n=0 xndnz

n. Since [log(1 + |f(z)|)]α is subharmonic for α ≥ 1
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it follows that for z ∈ D, |z| = r, and f ∈ Nα
+,

|f(z)| ≤ exp
{(

1 + r

1− r

)1/α

dα(f, 0)
}

;

similarly, if f ∈ Nα
+(D), then

|f(z)| ≤ exp
{(

1 + r

1− r

)2/α

%α(f, 0)
}

(see [15]). Consequently, if fk → f in Nα
+ (or Nα

+(D)) then by a standard
normal family argument, fk → f uniformly on compact subsets of D. Thus
if fk(z) =

∑∞
n=0 b

(k)
n zn and f(z) =

∑∞
n=0 bnz

n then b
(k)
n → bn as k → ∞,

for each n = 0, 1, 2, . . . It can be deduced from ([6], Theorem 6.1) that
if g ∈ A(X), g(z) =

∑∞
n=0 ynz

n, yn ∈ X, then ‖yn‖ ≤ Cnλ‖g‖A for some
λ,C > 0. Thus if gk → g in A(X), with gk(z) =

∑∞
n=0 y

(k)
n zn, then y(k)

n → yn
as k →∞ for each n = 0, 1, 2, . . . It follows from the Closed Graph Theorem
that if Λ = (xn) is a multiplier from Nα

+ (or Nα
+(D)) into A(X), then Λ is

continuous.

Lemma 4.1. Let f ∈ Nα
+ (or Nα

+(D)), and let fζ(z) = f(ζz) for ζ ∈ D.
Then (fζ)ζ∈D is a bounded set in Nα

+ (or Nα
+(D)).

P r o o f. Let f ∈ Nα
+ (orNα

+(D)), and let d denote either metric, dα or %α.
Recall that d is rotation-invariant; moreover,

∫ π
−π[log(1 + |f(reiθ)|)]α dθ is

an increasing function of r, because [log(1 + |f |)]α is subharmonic [3]. Thus
d(fr, 0) ≤ d(f, 0) for each r, 0 < r < 1. Let V denote a d-neighborhood
of zero and ζ = reiθ ∈ D. Since d(fζ , 0) = d(fr, 0) ≤ d(f, 0) and scalar
multiplication is continuous, there exists a > 0 so that af ∈ V , whereby
afζ ∈ V for every ζ ∈ D; i.e., (fζ)ζ∈D is a bounded set in Nα

+ (or Nα
+(D)).

Lemma 4.2. Let f ∈ Nα
+ (or Nα

+(D)), and fζ(z) = f(ζz) for z ∈ D,
ζ ∈ D. If zn → z0 ∈ D, then fzn → fz0 in Nα

+ (or Nα
+(D)).

P r o o f. Put F (z) = fz; F : D→ Nα
+ (Nα

+(D)). We need only show F is
continuous. For each w ∈ D and 0 < r < 1, if zn → z0,

|fr(znw)| ≤ sup{|fr(ζ)| : ζ ∈ D} ,

it follows by bounded convergence that limn→∞ d(frzn
, frz0) = 0. Thus Fr

is continuous for each r, 0 < r < 1, where Fr(z) = frz. For any z ∈ D,
z = %eiθ, 0 ≤ % ≤ 1, we have

d(Fr(z), F (z)) = d(frz, fz) = d(fr%, f%) ≤ d(fr, f) .

Since d(fr, f) → 0 as r → 1− ([15]), Fr → F uniformly in z, whereby F is
continuous.
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Proposition 4.3. Let X be a p-Banach space, 0 < p ≤ 1. A sequence
Λ = (xk), xk ∈ X, is a multiplier from Nα

+, α ≥ 1, into A(X) if and only if

‖xk‖ = O[exp(−ηk1/(α+1))]

for some η > 0.

P r o o f. Suppose Λ = (xk) is a multiplier from Nα
+ into A(X). Λ is

continuous, so there exists a neighborhood V of zero so that if g ∈ V ,
g(z) =

∑∞
n=0 anz

n, then ‖Λg‖ ≤ 1. Now Λg(z) =
∑∞
n=0 anxnz

n; there
exists λ > 0 so that for each g ∈ V (cf. [6], Theorem 6.1)

‖xnan‖ ≤ Cnλ‖Λg‖ ≤ Cnλ ,

so that

‖xn‖ ≤ Cnλ|an|−1 .

Using Lemma 3.3, there exist a > 0, rk ↑ 1, and ck ↓ 0 so that afk ∈ V for
all k = 1, 2, 3, . . . , for fk(z) = exp[ckrkz(1 − rkz)−3]. Let fk have Taylor
series

∑∞
n=0 b

(k)
n zn; again, from Lemma 3.3, there exists η0 > 0 such that

|b(k)k |
−1 = O[exp(−η0k1/(α+1))] ;

whence it follows that

‖xk‖ ≤ Ckλ|b(k)k |
−1 = O[exp(−ηk1/(α+1))] ,

for some η, η0 > η > 0.
Now suppose that (xn) ⊆ X and ‖xk‖ = O[exp(−ηk1/(α+1))] for some

η > 0. It was shown in [15] that if g ∈ Nα
+, with Taylor series

∑∞
n=0 anz

n,
then the Taylor coefficients of g satisfy

|an| ≤M exp[ηkn1/(α+1)]

for some constant M > 0 and sequence ηk ↓ 0. Thus for Λg(z) =∑∞
n=0 xnanz

n, it follows that

‖Λg‖p ≤
∞∑
n=0

‖xn‖p|an|p <∞ .

From this we deduce that
∑∞
n=0 anxnz

n converges uniformly on D, whereby
Λg is continuous on D, analytic in D, i.e., Λg ∈ A(X). Λ = (xn) is therefore
a multiplier from Nα

+ into A(X), and the proof is finished.

Proposition 4.4. Let X be a p-Banach space, 0 < p ≤ 1. A sequence
(xk) ⊆ X is a multiplier from Nα

+(D), α ≥ 1, into A(X) if and only if

‖xk‖ = O[exp(−ηk2/(α+2))]

for some η > 0.
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Propositions 4.3 and 4.4 allow us to completely characterize continuous
linear maps from Nα

+ or Nα
+(D) into any p-Banach space X, 0 < p ≤ 1. In

the sequel, let en denote the function en(z) = zn, for n = 0, 1, . . .

Proposition 4.5. Let X be a p-Banach space, 0 < p ≤ 1. Let T be a
linear map, T : Nα

+ → X, α ≥ 1, and T (en) = xn. T is continuous if and
only if for every f ∈ Nα

+, with Taylor series f(z) =
∑∞
n=0 anz

n,

Tf =
∞∑
n=0

anxn ;

moreover , ‖xn‖ = O[exp(−ηn1/(α+1))] for some η > 0.

P r o o f. Let T : Nα
+ → X be a continuous linear map. For f ∈ Nα

+,
f(z) =

∑∞
n=0 anz

n, f is the uniform limit of its Taylor series on each disc
{z : |z| ≤ r} with 0 < r < 1. Let PN (z) =

∑N
n=0 anz

n, denote the Nth
Taylor polynomial, and let Pζ,N (z) =

∑N
n=0 ζ

nanz
n, for |ζ| < 1. It follows

easily that limN→∞ dα(Pζ,N , fζ) = 0. Thus for each ζ ∈ D,

T (fζ) = lim
N→∞

T (Pζ,N ) =
∞∑
n=0

ζnanxn .

Setting F (ζ) = T (fζ), we can deduce from Lemma 4.2 that F is analytic on
D and continuous on D, i.e., f ∈ A(X). Thus (xn) is a multiplier from Nα

+

into A(X), whereby ‖xn‖ = O[exp(−ηn1/(α+1))] for some η > 0, by Propo-
sition 4.3. As in the proof of Proposition 4.3, it follows that

∑∞
n=0 anxnζ

n

converges uniformly on D, i.e., limN→∞ T (PN,ζ) = T (fζ), and the conver-
gence is uniform in ζ, ζ ∈ D. Thus, since

lim
r→1−

lim
N→∞

T (PN,r) = lim
r→1−

T (fr) = T (f) ,

we have

lim
N→∞

lim
r→1−

T (PN,r) = lim
N→∞

N∑
n=0

anxn =
∞∑
n=0

anxn = T (f) .

Next we suppose T (en) = xn, with ‖xn‖ = O[exp(−ηn1/(α+1))], for some
η > 0. From Proposition 4.3 we see that Λ = (xn) is a multiplier from Nα

+

into A(X). Recall that multipliers from Nα
+ into A(X) are continuous, so if

fk → f in Nα
+, then Λfk → Λf in A(X); i.e.,

sup
z∈D

∥∥∥ ∞∑
n=0

a(k)
n xnz

n −
∞∑
n=0

anxnz
n
∥∥∥→ 0

as k →∞; in particular, for z = 1 we have ‖Tfk − Tf‖ → 0. T is therefore
continuous.
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Proposition 4.6. Let X be a p-Banach space, 0 < p ≤ 1. Let T be a
linear map, T : Nα

+(D) → X, α ≥ 1, and T (en) = xn. T is continuous if
and only if for every f ∈ Nα

+(D) with Taylor series f(z) =
∑∞
n=0 anz

n,

Tf =
∞∑
n=0

anxn ;

moreover , ‖xn‖ = O[exp(−ηn2/(α+2))] for some η > 0.

The argument from Proposition 4.5 and its counterpart for Proposi-
tion 4.6 yield straightforward characterizations of the dual spaces of Nα

+

and Nα
+(D). For convenience, let A denote those analytic functions on D

which are also continuous on D.

Proposition 4.7 (cf. [16], Theorem 3). Let φ ∈ (Nα
+)∗. There is a

unique g ∈ A, g(z) =
∑∞
n=0 bnz

n, so that

φ(f) =
∞∑
n=0

anbn

for each f ∈ Nα
+, with Taylor series f(z) =

∑∞
n=0 anz

n. The series∑∞
n=0 anbn converges absolutely. Moreover , the Taylor coefficients of g sat-

isfy

(∗) |bn| = O[exp(−ηn1/(α+1))]

for some η > 0. Conversely , every g ∈ A whose Taylor coefficients (bn)
satisfy (∗) defines a continuous linear functional φg on Nα

+.

P r o o f. Let φ ∈ (Nα
+)∗, and let φ(en) = bn. Proposition 4.5 implies that

φ(f) =
∑∞
n=0 anbn for f ∈ Nα

+ with Taylor series
∑∞
n=0 anz

n. Moreover,
|bn| = O[exp(−ηn1/(α+1))] for some η > 0, so that g(z) =

∑∞
n=0 bnz

n

converges uniformly and absolutely on D; thus g ∈ A.
On the other hand, if g ∈ A, g(z) =

∑∞
n=0 bnz

n, with bn satisfying (∗),
we may define

φg(f) =
∞∑
n=0

anbn

for f ∈ Nα
+, f(z) =

∑∞
n=0 anz

n. Since Nα
+ ⊆ F1/α ([15]), φg is a well-defined

linear functional on Nα
+, and the series

∑∞
n=0 anbn converges absolutely.

Since (bn) satisfies (∗), Proposition 4.5 implies that φg is continuous, and
the proof is complete.

Proposition 4.8. Let φ ∈ (Nα
+(D))∗. There is a unique g ∈ A, g(z) =∑∞

n=0 bnz
n, so that

φ(f) =
∞∑
n=0

anbn
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for each f ∈ Nα
+(D), with Taylor series f(z) =

∑∞
n=0 anz

n. The series∑∞
n=0 anbn converges absolutely. Moreover , the Taylor coefficients of g sat-

isfy

(∗∗) |bn| = O[exp(−ηn2/(α+2))]

for some η > 0. Conversely , every g ∈ A whose Taylor coefficients (bn)
satisfy (∗∗) defines a continuous linear functional φg on Nα

+(D).

Propositions 4.3 and 4.4 may be used to characterize multipliers from
Nα

+ or Nα
+(D) into the Hardy spaces Hp, 0 < p. Suppose for example

that λn ⊆ C is a multiplier from Nα
+ into Hp; since convergence in Nα

+ or
Hp implies uniform convergence on compact subsets of D, it follows as a
consequence of the Closed Graph Theorem that Λ = (λn) is continuous.
Propositions 4.3 and 4.4 yield the following (cf. [16], Theorem 2):

Proposition 4.9. (i) Λ = (λn) is a multiplier from Nα
+, α ≥ 1, into Hp,

0 < p, if and only if |λn| = O[exp(−ηn1/(α+1))] for some η > 0.
(ii) Λ = (λn) is a multiplier from Nα

+(D), α ≥ 1, into Hp, 0 < p, if and
only if |λn| = O[exp(−ηn2/(α+2))] for some η > 0.

For an arbitrary F -space, X, the topology induced by the p-envelope is
stronger than that induced by the Fréchet envelope, 0 < p ≤ 1. Let X = Nα

+

or Nα
+(D), and d = dα or %α. If we can show that the X̂ topology is stronger

than the X̂p topology on X, then necessarily X̂ = X̂p. Let V be a d-ball of
radius 1/n, n = 1, 2, . . . , and let ‖ · ‖p,n be the Minkowski functional of the
p-coVn. Recall that the family {‖ · ‖p,n} induces the X̂p topology on X. For
f ∈ X, if ‖f‖p,n = 0, then since ‖f‖p,n ≥ ‖f‖1,n it must follow that f ≡ 0.
Thus each ‖ · ‖p,n is actually a p-norm on X and the completion of X with
respect to ‖ · ‖p,n is a p-Banach space. This observation will be utilized in
the proof of the following theorem.

Theorem 4.10. For 0 < p ≤ 1, the p-envelope of Nα
+, α ≥ 1, is F1/α.

P r o o f. Let ‖·‖ be any one of the p-norms ‖·‖p,n, n = 1, 2, . . . , and let Y
be the completion of Nα

+ with respect to ‖·‖. Let T be the natural inclusion
map T : Nα

+ → Y; T is continuous and linear. From Proposition 4.5 we
have Tf =

∑∞
n=0 anen for f ∈ Nα

+, f(z) =
∑∞
n=0 anz

n, and, in addition,
‖en‖ ≤M exp(−ηn1/(α+1)) for some η, M > 0. Let η1, η2 > 0 be such that
η1 + η2 = η and let q > 0 be such that p+ q = 1. (If q = 0, then the result
is simply a restatement of Theorem 3.1.) For f ∈ Nα

+, we have

‖Tf‖p ≤
∞∑
n=0

|a|p‖en‖p ≤
∞∑
n=0

|an|p[M exp(−ηn1/(α+1))]p
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=
∞∑
n=0

|an|p[M exp(−η1n1/(α+1))]p[exp(−pη2n1/(α+1))]

≤
{
M

∞∑
n=0

|an| exp(−η1n1/(α+1))
}p{ ∞∑

n=0

exp
(
−p
q
η2n

1/(α+1)

)}q
;

consequently, for a constant C > 0,

‖Tf‖ ≤ C
∞∑
n=0

|an| exp(−η1n1/(α+1)) = C‖f‖η1 .

The F1/α topology is therefore stronger than the p-envelope topology on
Nα

+, and the proof is complete.

Theorem 4.11. For 0 < p ≤ 1, the p-envelope of Nα
+(D), α ≥ 1, is F2/α.
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