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p-Envelopes of non-locally convex F-spaces

by C. M. EoFF (Fayetteville, Ark.)

Abstract. The p-envelope of an F-space is the p-convex analogue of the Fréchet
envelope. We show that if an F-space is locally bounded (i.e., a quasi-Banach space) with
separating dual, then the p-envelope coincides with the Banach envelope only if the space
is already locally convex. By contrast, we give examples of F-spaces with are not locally
bounded nor locally convex for which the p-envelope and the Fréchet envelope are the
same.

1. Introduction. For a non-locally convex F-space X (complete,
metrizable, linear topological space), the idea of a p-envelope is analogous to
that of a Fréchet envelope. Suppose X has separating dual space; recall that
the Fréchet envelope of X, denoted by X, is the closure of X with respect
to the Mackey topology, u. The Mackey topology is the strongest locally
convex topology on X for which X still has dual space X*. A countable base
for the p-zero neighborhoods {V,,} can be obtained by taking the closure
in X of the absolutely convex hull of each V,,, where {V,,} is any countable
base for the zero-neighborhoods of X; this description in fact characterizes
i [13]. In general X is a Fréchet space; for a locally bounded F-space, X
turns out to be a Banach space—the Banach envelope. (S C X is bounded
if given any zero neighborhood U, there exists n € N such that S C nU. X
is locally bounded if it has a bounded neighborhood of zero.)

Interest in the containing Fréchet space of a non-locally convex F-space
was first sparked by the pioneering work of Duren, Romberg, and Shields,
who showed that the Hardy space H?, 0 < p < 1, could be densely imbedded
in a certain Banach space, the Bergman space BP, and (HP)* ~ (BP)*
[4]. Somewhat later Shapiro identified the Banach envelope of H? directly,
using his “convex-hull” characterization of the Mackey topology [13]. This
characterization of the Mackey topology provides an important intuitive
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picture, via the example ¢,,0 < p < 1. The absolutely convex hull of the ¢,
unit ball is the £; unit ball. Thus, the Mackey topology is the ¢; topology
and the closure of ¢, with respect to this topology is ¢1; i.e., £; is the Banach
envelope of £,. With its usual metric d((a,),0) = [[(an)llf = >0 lanl?,
the sequence space £,,,0<p<1, is the prototypical example of a non-locally
convex, locally bounded F-space with separating dual (the maps ¢y ((a,)) =
ay are continuous). In addition, the topology induced by d is p-convex, since
the unit ball is (absolutely) p-convex. A set C'is p-convez if Y- | a;x; € C
whenever z; € C and Z?Zl af =1, with a; > 0. C is absolutely p-convex
if " a;,x; € C whenever z; € C and Y., |a;]? = 1. The functional
[(cn)llp = (3207, lan [P)H/P is a quasinorm; i.e., it satisfies the requirements
for a norm except that the triangle inequality is weakened. For a = (ay,)

and ( = (/Bn)a
lae+ Bllp < M([leellp + [18l1p)
for a constant M > 1. Clearly, || - ||, satisfies

llee+ BIIE < lledly + 118155

a quasinorm with this property is said to be p-subadditive and is called
a p-norm. In general, if an F-space, X, is locally bounded, the metric
topology can always be replaced by a quasinorm, in fact by a ¢-norm for
some 0 < ¢ < 1, due to a result of Aoki and Rolewicz; X is then called a
g-Banach space. (See [7] or [14] for general facts about non-locally convex
F-spaces.)

By analogy with the Fréchet envelope, let {V},} be a countable base for
the zero neighborhoods of a non-locally convex F-space, X, with separating
dual, and let V;, be the absolutely p-convex hull of V,,, for some fixed p,
0 <p<1. Let | - ||, be the Minkowski functional of V,,. For z,y € X, the
functional || - ||, satisfies:

(i) [|zlln = 0 if 2 =0,

(ii) [laz(ln = [all[z]ln, a € C,

(i) flz + gl < =7 + [lyl7-
From (iii) we can deduce that |z + y[l, < C(l|z|» + [lyll»). By obvious
analogy, we will refer to |- ||,, as a p-seminorm. The family {||-||,,} generates
a p-convex topology on X weaker than the original topology. We call the
closure of X under the topology induced by {|| ||} the p-envelope of X and
denote it by Xp (cf. [1]). When X is locally bounded, Xp is a p-Banach
space. Xp has the property that every continuous linear map 7': X — Y, Y
a p-Banach space, extends continuously to Xp.

To visualize the situation, let 0 < p < ¢ < 1. The absolutely ¢-convex

hull of the unit ball of ¢, is the £, unit ball, and it follows that ¢, is the
g-envelope of £,. (For 0 < p < ¢ < 1, the g-envelope of HP was identified
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by Aleksandrov in [1] and by Coifman and Rochberg in [2].) Now for 0 <
p < q <1, £, is not isomorphic to ¢,; however, it can happen that Xp is
isomorphic to Xq for all 0 < p,q < 1 (see [7], Chapter 2). However, as we
shall prove, the p-envelope, for 0 < p < 1, can never be isomorphic to the
Fréchet (Banach) envelope of a locally bounded, non-locally convex F-space
(quasi-Banach space). We accomplish this in §2 by a modification of an
argument of Kalton ([7], Theorem 4.13).

For an F-space which is not locally bounded, the situation is much dif-
ferent. We provide a class of examples which have the property that X, = X
for 0 < p < 1. The groundwork is laid in §3; proofs are carried out in §4.
Our method of proof will yield various applications along the way.

The author gratefully acknowledges the many helpful comments and sug-
gestions of Nigel Kalton during the preparation of this paper. This material
constitutes a portion of the author’s Ph.D. thesis, written under the excellent
supervision of Professor Kalton, at the University of Missouri, Columbia,
Missouri.

~

2. X is never isomorphic to Xp for a quasi-Banach space X.
In this section we shall prove that X; =X (the Banach envelope) is never
isomorphic to §A§p, 0 < p < 1, when X is a non-locally convex quasi-Banach
space.

The Aoki—Rolewicz theorem provides every quasi-Banach space with an
equivalent p-norm for some p, 0 < p < 1. Thus we lose no generality by our

formulation of the following proposition.

ProposITION 2.1. Let (X,] ||x), (Y,]| |v) be quasi-Banach spaces so
that || ||x is an r-norm and || ||y is a g-norm for 0 < r < q < 1. Let
Bx ={z e X:|z|x < 1}. If T: X = Y is a bounded linear map so that
p-co T(Bx) is a neighborhood of the origin for 0 <r <p < q <1, then T is
an open map.

Proof (cf. [7], Theorem 4.13). For convenience, let || || denote the
quasinorms for both X and Y, as well as the operator quasinorm for 7. No
confusion should arise from this. We assume, with no loss, that ||| = 1.

There exists ¢ > 0 so that if ||y|| < 0 then y € p-coT'(Bx). It is enough
to show that a constant M exists so that if |ly|| < 1, there is an = €
X with ||z|| < M and || Tz — y|| < 1/2. If this can be done, then we
can choose z,, by induction satisfying ||z,| < 27"M, n = 0,1,..., with
|T(zo+...+zs) —y| <277 1. Then we would have T'(3",~ , z,) = y; the
series > " x,, converges since Y [|zn|]" < oo.

Solet Vi, = {30 a;T (i) : >imqal <1, a; >0, ||a;]] <1} and note
that (J>°_, Vi, = p-coT(Bx). For any w € Vo, w = Z?le a;Tx;, where we
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label the a;’s so that a;—1 > a;, i = 2,3,...,2m. Put wo = > i, a;T(x;),
wg € Vp,. Notice that a; < (1/(2m))Y/? for 2m > i > m; whereby,

2m q 2m
lw—woll? = || 3 aTw| < Y Jailt| 7w

i=m+1 i=m+1
1 \%/?
< m() =Cim™ ¢,
2m
with C; =279P a=¢q/p—1> 0.
m—+n m+n
For w € Vom+n, w = 25:1 a;T(x;), with Z?:l a? <1, put
om+j
w; = ZaiT(azi)GVQmﬂ-, j=0,...,n;

i=1
then w,, = w. From our previous observation, we deduce that

lw —wol| < D wy —wy 1| <Y Cr(@mH) e
j=1 j=1
=127 27 < 02Ty T2 = G2
i=1 i=1
with Cy = C1(2% — 1)71. Thus for w € Vom+n
dist(w, Vom) = inf fw —y|| < [lw — wol| < C3/727™7,

yEVQm
independent of n, with 5 =1/p—1/q > 0. In particular, we can choose my
so large that if w € |J,—, Vi, then

dist(w, Vamo) < 6/(4C),

where C' is the quasinorm constant for Y. Put 2™ = N. If ||y|| < 1, there
exists z € |J,—, Vi, so that |6y — z|| < §/(4C). Let v € Viy; we have

16y — ol < C(lloy — 2] + [z = vll) < 6/2,
ie., ||ly — 0 || < 1/2. Now v = 25:1 a;Tx;, for Zivzl al <1, ||z <1
put x =51 ij:l a;T;, so that we obtain
ly—Tz| <1/2 and |z|| < NY"6 ' =M.
This completes the proof.

THEOREM 2.2. Let X be a locally bounded F-space which is r-normable
for 0 <r < 1. If X, is locally q-convex for 0 <r < p < q <1, then X is
necessarily q-convez.

Proof. Let j: X — Xp be the natural inclusion map, so that p-¢o j(Bx)
is the closed unit ball of X,. If X, can be endowed with an equivalent
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g-convex topology, it follows from Proposition 2.1 that j is an open map;
consequently, X = X,,, so that X must be g-convex.

COROLLARY 2.3. Let X be a quasi-Banach space such that Xp, 0<p<l,
1s locally convexr. Then X is locally conver; i.e., X is a Banach space.

3. The classes N{ and N¢(D). Let I denote the unit disc in the
complex plane, C. Recall that a function analytic in the unit disc is said to
be of bounded characteristic, or of Nevanlinna class N, if the integrals

f log™ | f(re®®)| db
are uniformly bounded for r < 1. For each function f € N, the nontangential
limit f(e?) exists for a.e. 6 € [—m,7); if a function f € N further satisfies
the condition that

: + i0 _ + i0
lim. f log™ |f(re")| df = f log™ | f(e")| db

then f belongs to the Smirnov class N* [3]. NT has been studied for
many years as part of the classical Hardy space theory ([3] is a good general
reference), although it was not until the early 70’s that N. Yanagihara in-
vestigated the linear topological structure of N [16], [17]. He found N to
be an F-space, not locally convex nor locally bounded, but still possessing
a rich dual space, which he identified. Recently, McCarthy [8] has taken a
different approach to the study of N+, obtaining new results as well as giv-
ing new proofs to certain of Yanagihara’s results. The structure of N* as a
topological algebra has been studied in [12], for example. Generalizations of
Yanagihara’s work to C™, and even to Banach space valued functions have
been carried out by Nawrocki [10], [11].

For a > 1, define N to consist of those functions f belonging to N
such that

J Dog™ 17(e)1 a8 < oo
Also, define N¢(D) to be the class of functions analytic in the unit disc
which satisfy

[ Dog™* | £(2)1* dA(z) < o,

D
where dA is normalized area measure. The classes N§ and N¢(D) were
introduced by M. Stoll in [15] (with different notation), where he showed
that they are non-locally convex F-spaces under their respective metrics, in
fact, F-algebras. Also, like NT, both classes have separating dual spaces
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since point evaluations are continuous. Further results about the algebraic
structure of N and N (D) have been obtained recently by Mochizuki in [9].
The natural metric for N¢ is

e

1/a
(10 ={ 55 [ Boxt+ D as|

—Tr

and in similar fashion, for N¢ (D) the natural metric is
1/
0a(£,0) = { [ llog(1+[£(2))]* dA(2) |
D

(see [15]). These metrics are rotation-invariant (a fact which was critical to
our arguments in [5]).
For 8 > 0, Fj3 consists of those analytic functions on D such that
lim (1 —7)?log" max |f(z)] = 0.

r—1- |z|=r

For f € Fp, f(z) =Y ooy anz", and ¢ > 0, the functional || - ||, defined by

1 le =3 lan| exp(—en®/0+0))

n=0

is a seminorm on Fjg. With the topology given by the family {||-||.}c>0, Fg is
a Fréchet space [15], [16], [18]. Yanagihara showed that F} is the containing
Fréchet space for the Smirnov class [17] (see also [8]). For the general case,
Stoll identified the likely candidates for the Fréchet envelopes of N¢ and
N (D) as the spaces F/, and Fy/, [15]; we verified this conjecture in [5].
Let us recall those results from [5] which we will need in §4.

THEOREM 3.1. For a > 1, Fy, 1is the Frécht envelope of N§.
THEOREM 3.2. For a > 1, Fy, is the Frécht envelope of N¢(D).

LEMMA 3.3. Let fi(z) = explerriz(1 — riz) 73], ri, e > 0, with Taylor
expansion fr(z) =Y ., b%k)z”. Let 'V be any neighborhood of zero in N¢.
Then there exist positive constants ay,as, and az so that if

r,=1— agk_a/(a+1) and ¢ = a3(1 _ ,rk)(?)a—l)/a ’
then ay fr, € V'; moreover, (blg;k))_1 = Olexp(—nk'/(@*t)] for some n > 0.

The idea behind this family of test functions is that for each k, fy is
analytic in the disc {z : |z| < 1/rk}, with 1/r; > 1, and thus belongs to
both N¢ and N (D), even though f(z) = exp[z(1—2z)?] belongs to neither.
(Clearly f & Fy/q and N¢ C NP(D) C Fy,; see [15].) Now for N¢, it is
straightforward to show that every metric neighborhood of zero contains a



p-Envelopes of non-locally convexr F'-spaces 127

set of the form

G(r,e) =G = {g € NY: f [log™ |rg(e?)[]* df < 5} for some r,e > 0.

—T

For the family {f;}, there exists a constant M > 0 so that

T

J log™ [ f(e)]* b < M (1 —ry)'

—T

(see [5], Lemma 3.1). Thus for any neighborhood, V', of zero in N¢, there
exists G(r,e) = G C V; by taking ¢;, = M~/ @cl/o(1—r,)Be=1/e we force
the family {afx} to belong to G, for a = min{r~!,1}. This will be true for
any choice of rp T 1. However, to obtain necessary decay estimates on the
Taylor coefficients, we had to be rather judicious as to the choice of the ry’s
(see [5], Lemmas 3.1 and 3.2, and Theorem 4.2). The same ideas go through
for N¢(D) ([5], Lemmas 3.1 and 3.3, and Theorem 4.3).

LEMMA 3.4. Let fy(2) = explexrez(l — rp2) 73], 7, e > 0, with Tay-
lor expansion fi(z) = Y ", b2 Let V obe any neighborhood of zero in
N_ﬁ(]D)) Then there exist positive constants ay,as, and az so that if

ry=1— azk_a/(a+2) and ¢ = a3(1 _ rk)(3a—2)/a

then ay fi, € V; moreover, (b,(f:))_1 = O[exp(—ni/(aJrz))] for some n > 0.

4. X = Xp: Examples. We will show that for X = N¢ or N¢(D),a > 1,

we have X = Xp for 0 < p < 1. Our method of proof is somewhat similar to
arguments used in [16], but draws on the theory of vector-valued analytic
functions as developed in [6]. Also, certain estimates which we obtained in
[5] are critical to our proofs. Our approach has the benefit of allowing for a
characterization of multipliers from N¢ or N¢(ID) into any p-Banach space
(HP, in particular), as well as a characterization of the dual spaces of N¢
and N{(D). We will omit the proofs for results particular to N (D) since
they parallel the corresponding arguments for N¢.

First, let us briefly recall some facts about vector-valued analytic func-
tions and multipliers which we will need in the sequel. Let (X,|| ||) be a
p-Banach space. A function f : D — X is said to be analytic if f can be
expanded in a power series f(z) = >~ z,2" for z,, € X, z € D (see [6]).
Let A(X) denote the collection of functions analytic in ) and continuous on
D, quasinormed by || f]|4 = max{||f(2)|| : z € D}. Say that A = (z,,) is a
multiplier from N¢ (or N¢(D)) into A(X) if for every h € N¢ (respectively,
N (D)) with power series h(z) = " d,z", we have Ah € A(X), where
(AR)(z) = D07y xndyp2™. Since [log(1 + |f(2)])]* is subharmonic for o > 1
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it follows that for z € D, 2| = r, and f € N,

ez oo (H0) a0

similarly, if f € N§(D), then
1 2/a
relen{ (1) atro)]

(see [15]). Consequently, if fr — f in N¢ (or N¢(D)) then by a standard
normal family argument, fr — f uniformly on compact subsets of D. Thus
if fr(2) =X 00y b2 and f(2) = Yoo o bnz™ then b — by, as k — oo,
for each n = 0,1,2,... It can be deduced from ([6], Theorem 6.1) that
if g € AX), g(2) = >0y yn2", yn € X, then [jy,|| < Cn*||g|la for some
A, C > 0. Thusif gy — gin A(X), with gx(2) = > 00 yﬁlk)z”, then yﬁlk) — Yn
as k — oo foreachn =0,1,2,... It follows from the Closed Graph Theorem
that if A = (z,,) is a multiplier from N¢ (or N¥(D)) into A(X), then A is

continuous.

LEMMA 4.1. Let f € N¢ (or N¢(D)), and let fe(z) = f((z) for ( € D.
Then (f¢)cep is a bounded set in N§ (or N¢(D)).

Proof. Let f € N{ (or N¢(DD)), and let d denote either metric, d, or 4.
Recall that d is rotation-invariant; moreover, [" [log(1 + |f(re™)[)]* df is
an increasing function of r, because [log(1+ |f])]* is subharmonic [3]. Thus
d(fr,0) < d(f,0) for each r, 0 < r < 1. Let V denote a d-neighborhood
of zero and ¢ = re'® € D. Since d(f:,0) = d(f,,0) < d(f,0) and scalar
multiplication is continuous, there exists a > 0 so that af € V, whereby
afc € V for every ( € D ie., (f¢)cen is a bounded set in N¢ (or N§(D)).

LEMMA 4.2. Let f € N (or N¥(D)), and fc(z) = f(Cz) for z € D,
CeD. If z, — 20 €D, then f., — f., in N¢ (or N¢(D)).

Proof. Put F(z) = f.; F: D — N (N¢(D)). We need only show F is
continuous. For each w € D and 0 < r < 1, if 2, — 2o,

| fr(znw)| < sup{[f-(Q)] : C € ﬁ}7
it follows by bounded convergence that lim, .o d(frz,, frz,) = 0. Thus F,
is continuous for each r, 0 < r < 1, where F,.(z) = f,,. For any z € D,
z=0e"?, 0<p<1, we have
d(Fr(Z),F(Z)) = d(fTZ7 fz) = d(frg7 fg) < d(fra f) .

Since d(f,, f) — 0 as r — 17 ([15]), F, — F uniformly in z, whereby F' is
continuous.
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PROPOSITION 4.3. Let X be a p-Banach space, 0 < p < 1. A sequence
A= (zr), zx € X, is a multiplier from N, o > 1, into A(X) if and only if
1]l = Olexp(—nk'/*+1)]

for some n > 0.

Proof. Suppose A = (z;) is a multiplier from N¢ into A(X). A is
continuous, so there exists a neighborhood V' of zero so that if g € V,
g(z) = Yo% ganz", then ||Ag|| < 1. Now Ag(z) = >_7anz,2"; there
exists A > 0 so that for each g € V' (cf. [6], Theorem 6.1)

[znan|l < Cn?||Ag|l < Cn?*,
so that
[za] < Cn*ag|™t.

Using Lemma 3.3, there exist a > 0, r, T 1, and ¢ | 0 so that afy € V for
all k = 1,2,3,..., for fy(2) = exp[erriz(l — rpz)~%]. Let fi have Taylor
series ZZO:O bglk)z”; again, from Lemma 3.3, there exists 19 > 0 such that

6] = Olexp(—ok /1)
whence it follows that
k)= a
o]l < CEMB |1 = Olexp(—nk/ @+D)]

for some n, ng >n > 0.

Now suppose that (z,,) € X and ||zx|| = Olexp(—nk'/(@+1)] for some
n > 0. It was shown in [15] that if g € N9, with Taylor series >~ anz",
then the Taylor coefficients of g satisfy

la,| < Mexp[nknl/(a“)]

for some constant M > 0 and sequence n; | 0. Thus for Ag(z) =
oo o Tnanz™, it follows that

o0
14glIP < lzalllan|” < oo

n=0

From this we deduce that > o AnTpz" converges uniformly on D, whereby
Ag is continuous on D, analytic in D, i.e., Ag € A(X). A = (x,) is therefore
a multiplier from N¢ into A(X), and the proof is finished.

PROPOSITION 4.4. Let X be a p-Banach space, 0 < p < 1. A sequence
(xx) C X is a multiplier from N¢(D), o > 1, into A(X) if and only if

|2kl = Olexp(—nk?/(*+2)]

for some n > 0.
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Propositions 4.3 and 4.4 allow us to completely characterize continuous
linear maps from N¢ or N¢(D) into any p-Banach space X, 0 < p < 1. In
the sequel, let e,, denote the function e,(z) = 2", for n =0,1, ...

PrOPOSITION 4.5. Let X be a p-Banach space, 0 < p < 1. Let T be a
linear map, T : N¢ — X, a > 1, and T'(e,) = x,,. T is continuous if and
only if for every f € N, with Taylor series f(z) =Y ", anz",

Tf= i ApTp 5
n=0

moreover, ||z,| = Olexp(—nn!/(@+T)] for some n > 0.

Proof. Let T': N — X be a continuous linear map. For f € N¢,
f(z) =307y anz", f is the uniform limit of its Taylor series on each disc
{z:|z| <r} with0 < r < 1. Let Py(z) = Zfzo anz", denote the Nth
Taylor polynomial, and let Pr n(2) = 25:0 ("anz", for |¢| < 1. Tt follows
easily that limy_,o do (P, N, f¢) = 0. Thus for each ( € D,

T(fe) = hm TPQN ZC AnTp -

Setting F'({) = T'(f¢), we can deduce from Lemma 4.2 that F is analytic on
D and continuous on D, i.e., f € A(X). Thus (z,) is a multiplier from N¢
into A(X), whereby ||z, || = Olexp(—nn!/(@*t1)] for some 1 > 0, by Propo-
sition 4.3. As in the proof of Proposition 4.3, it follows that ZZOZO anTnpC"
converges uniformly on D, i.e., imy_ T (Pn,c) = T(f¢), and the conver-
gence is uniform in ¢, ¢ € D. Thus, since
tim lim T(Py,) = T T(f,) = T(7).
—00 r—1-

r—1-

we have

lim lim T(Py,) = hm Z AnTy = Z anx, =T(f).

Teor—1” n=0
Next we suppose T(ey,) = 2y, With ||z,,|| = Oexp(—nn!/(@+1)], for some
n > 0. From Proposition 4.3 we see that A = (z,,) is a multiplier from N¢

into A(X). Recall that multipliers from N¢ into A(X) are continuous, so if
fr — fin N, then Af;, — Af in A(X); i.e

SupHZ (k)azn — iana:nz"H —0
n=0

zeD

as k — oo; in particular, for z = 1 we have ||T'fr — T f|| — 0. T is therefore
continuous.
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PROPOSITION 4.6. Let X be a p-Banach space, 0 < p < 1. Let T be a
linear map, T : N¢(D) — X, o > 1, and T(e,) = x,. T is continuous if
and only if for every f € N¥(D) with Taylor series f(z) =Y " an2z"™,

Tf= Z AnTp 5
n=0

moreover, ||z,|| = Olexp(—nn?/“+2)] for some n > 0.

The argument from Proposition 4.5 and its counterpart for Proposi-
tion 4.6 yield straightforward characterizations of the dual spaces of N¢
and N{ (D). For convenience, let A denote those analytic functions on D
which are also continuous on D.

PROPOSITION 4.7 (cf. [16], Theorem 3). Let ¢ € (N$)*. There is a
unique g € A, g(z) =Y 0 qbnz", so that

o(f) = Z anbn
n=0

for each f € N, with Taylor series f(z) = Y..—,an2". The series
ZZOZO anby, converges absolutely. Moreover, the Taylor coefficients of g sat-
isfy

(%) |b| = Olexp(—nn'/ ()]

for some n > 0. Conversely, every g € A whose Taylor coefficients (by,)
satisfy (x) defines a continuous linear functional ¢, on N§.

Proof. Let ¢ € (N$)*, and let ¢(e,) = by,. Proposition 4.5 implies that
O(f) = D07 o anby for f € N with Taylor series Y.~ anz". Moreover,
lbn| = Olexp(—nn!/(@+)] for some n > 0, so that g(z) = > )7 bp2"
converges uniformly and absolutely on D; thus g € A.

On the other hand, if g € A, g(z) = > oo, bn2", with b, satisfying (x),
we may define

@bg(f) = Z by,
n=0

for f € N¢, f(z) = Y07 o anz". Since N¢ C Fy/, ([15]), ¢4 is a well-defined
linear functional on N, and the series >0 o anby converges absolutely.
Since (by,) satisfies (), Proposition 4.5 implies that ¢, is continuous, and
the proof is complete.

PROPOSITION 4.8. Let ¢ € (N{(ID))*. There is a unique g € A, g(z) =
>0 o bnz", so that

¢(f) = anbn
n=0



132 C. M. Eoff

for each f € N¢(D), with Taylor series f(z) = > qanz". The series
Yoo o anby converges absolutely. Moreover, the Taylor coefficients of g sat-

isfy
() |bn] = Olexp(—nn®/ (*F2))]

for some n > 0. Conversely, every g € A whose Taylor coefficients (by,)
satisfy (+x) defines a continuous linear functional ¢4 on N§ (D).

Propositions 4.3 and 4.4 may be used to characterize multipliers from
N¢ or N¥(D) into the Hardy spaces HP, 0 < p. Suppose for example
that A, € C is a multiplier from N into HP; since convergence in N or
HP implies uniform convergence on compact subsets of D, it follows as a
consequence of the Closed Graph Theorem that A = (\,) is continuous.
Propositions 4.3 and 4.4 yield the following (cf. [16], Theorem 2):

PROPOSITION 4.9. (i) A = (A,) s a multiplier from N, o > 1, into HP,
0 < p, if and only if |\,| = Olexp(—nn/@TN)] for some n > 0.

(ii) A= (A\n) is a multiplier from N¢(D), a > 1, into HP, 0 < p, if and
only if |\n| = Olexp(—nn?/@+2)] for some n > 0.

For an arbitrary F-space, X, the topology induced by the p-envelope is
stronger than that induced by the Fréchet envelope, 0 < p < 1. Let X = N¢

or N¢(D ) and d = d, or p,. If we can show that the X topology is stronger

than the X topology on X, then necessarily X = X Let V' be a d-ball of
radius 1/n, n=1,2,..., and let || - ||,,» be the Mmkowskl functional of the
p-co V. Recall that the family {Il - |lp,n} induces the §A§p topology on X. For
f e X, if || fllp.n =0, then since || f|p.n > || fll1,n it must follow that f = 0.
Thus each || - ||p,» is actually a p-norm on X and the completion of X with
respect to || - ||p.n is a p-Banach space. This observation will be utilized in
the proof of the following theorem.

THEOREM 4.10. For 0 < p <1, the p-envelope of N, a > 1, is Fy /4.

Proof. Let ||| be any one of the p-norms ||-||,»,, n =1,2,..., and let Y
be the completion of N¢ with respect to |- ||. Let T" be the natural inclusion
map T' : N — Y; T is continuous and linear. From Proposition 4.5 we
have Tf = Y07 janpey, for f € N, f(z) = Y2 janz", and, in addition,
llenl| < M exp(—nn'/(@*t1) for some i, M > 0. Let 11,72 > 0 be such that
m +n2 =n and let ¢ > 0 be such that p+ g = 1. (If ¢ = 0, then the result
is simply a restatement of Theorem 3.1.) For f € N¢, we have

7517 < 3 apllenll < D lanl? M exp(—t =)
n=0 n=0
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= > lan[P[M exp(=mn"/ V)P lexp(—pnan'/ V)]

n=0

p p q
M E an| exp(—mnt/(@+h) } {E exp<— nl/(a+1))} :
{ |ay| (=m ) Z q772

n=0

IN

consequently, for a constant C' > 0,

ITFII < C Y lan] exp(=mn'/ D) = C| f|l, -

n=0

The Fy,, topology is therefore stronger than the p-envelope topology on
&, and the proof is complete.

[11]
12
13)
[14]

[15]

THEOREM 4.11. For 0 < p < 1, the p-envelope of N¢(D), a > 1, is Fy /.
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