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Nevanlinna theory on the p-adic plane

by Capi Corrales Rodrigáñez (Madrid)

Abstract. Let K be a complete and algebraically closed non-Archimedean valued
field. Following ideas of Marc Krasner and Philippe Robba, we define K-meromorphic
functions from K to K. We show that the Nevanlinna theory for functions of a single
complex variable may be extended to those functions (and consequently to meromorphic
functions).

1. Introduction. In non-Archimedean analysis an entire function on
a complete and algebraically closed non-Archimedean valued field K is de-
fined as a Taylor series

∑∞
n=0 cnx

n which converges on all of K; an analytic
function as a Laurent series which converges on a certain domain D, and a
meromorphic function as the quotient of two entire functions.

Many of the series that appear in non-Archimedean analysis have small
domain of convergence. For example,

expp(z) =
∞∑

n=0

zn/n! converges for |z| < p−1/(p−1) ;

logp(1 + z) =
∑

(−1)n+1zn/n converges for |z| < 1 .

The natural question to ask is whether the domain of convergence of
a non-Archimedean function can be extended in a unique way. The tech-
nique by means of power series used in the theory of complex functions does
not work, since due to the peculiar properties of non-Archimedean valu-
ations, when we change the point of expansion of a non-Archimedean series,
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its radius of convergence will not change. There are, however, other tech-
niques to extend the domain of definition of a non-Archimedean function in
a unique way. The older technique is due to Krasner, and quite elaborate.
The more modern one (“rigid analytic spaces”) is due to Tate and requires
sophisticated commutative algebra.

Following ideas of Marc Krasner and Philippe Robba, we define K-mero-
morphic functions from K to K. Our goal is to show that the Nevanlinna
theory for functions of a single complex variable may be extended to those
functions (and consequently to meromorphic functions). The essential in-
gredient in the classical Nevanlinna theory is the Poisson–Jensen formula.
In the p-adic case our formula (3) plays the role of the Poisson–Jensen for-
mula, but it is not achieved in an analogous way. In the process, we show
that in the p-adic case a stronger version of Picard’s Theorem holds, more
specifically, a K-entire function excludes no value, and a K-meromorphic
function excludes at most one value. Such theory proves to be a successful
tool in the study of the following two problems.

Problem 1. How many fibers determine univocally functions defined
on a non-Archimedean valued field K, complete, algebraically closed and
with char K = 0? That is, on the fibers over how many points must two
non-Archimedean functions agree so we can guarantee them to be the same
function?

In the complex case, a well known result of Rolf Nevanlinna tells us that
two non-constant meromorphic functions which agree on the fibers of five
distinct values must be identical. On the other hand, two non-constant poly-
nomials defined over an algebraically closed field of characteristic zero are
identical if they agree on the fibers over two distinct finite values, and a ra-
tional function defined over an algebraically closed field of characteristic zero
is determined by the fibers over four distinct values. In many aspects, entire
non-Archimedean functions behave more like polynomials than like entire
complex functions, and non-Archimedean meromorphic functions more like
rational functions than like complex meromorphic ones. In this connection,
Adams and Straus [1] showed that

(i) if f and g are two non-constant non-Archimedean entire functions
so that for two distinct finite values a, b, we have f(x) = a⇔ g(x) = a, and
f(x) = b⇔ g(x) = b, then f 6= g;

(ii) if f and g are two non-constant non-Archimedean meromorphic func-
tions so that for four distinct values a1, a2, a3, a4 we have f(x) = ai ⇔
g(x) = ai, then f 6= g.

In the process of developing our Nevanlinna theory we extend the prop-
erties of the maximum modulus function of p-adic series to K-meromorphic
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functions. Once these properties are obtained, Adams and Straus’ proofs
can be extended to Krasner functions.

In the complex plane, Nevanlinna theory is being successfully used as
a tool for the study of the factorization of meromorphic functions. Some
recent results are collected in [14].

Problem 2. Do those results hold for Krasner functions? The answer
is yes. Most of the results by I. N. Baker, Fred Gross and C. F. Oswood
in [2]–[6] which use the complex analogues to our Theorems 9–14 and their
corollaries, follow similarly or with minor alterations in the p-adic plane.

Notation. Let K be a complete algebraically closed field with respect
to a non-Archimedean valuation | · | (for the properties of K see [7]). Let
D(a, r) = {x ∈ K ; |x− a| ≤ r}; S(a, r) = {x ∈ K ; |x− a| = r}; and if E is
a subset of K, let Ec = {x ∈ K ;x 6∈ E}.

2. K-Meromorphic functions and their properties

K-Meromorphic functions. A subset E of K is called quasi-connected
if E has at least two points, and given any a 6= ∞ in E, and any real
r < sup{|y − x| ; y, x ∈ E}, the set L = {|y − a| ; y 6∈ E} has only a finite
number of elements ≤ r. (Discs, complements of discs, circles, complements
of circles, annuli, discs with finitely many concentric circles removed, etc.,
are quasi-connected sets.)

Given a quasi-connected set E of K, a function f : E → K will be called
an analytic element of support E if it is a uniform limit in E of rational
functions having no poles on E.

Given a subset E of K, a function F : E → K will be called K-analytic on
E if there exists a family of chained analytic elements {fi} with respective
supports {Di} such that

⋃
iDi contains E, and F restricted to Di is fi for

each i. We say that a function F is K-meromorphic on a subset E of K if
F is analytic on E minus a set of points {pi}, which we call the poles of F .
The set of poles of F is denoted by PF .

Given an analytic element f , denote by Df its support. Given a K-mero-
morphic function F , denote by ΦF the family of analytic elements defining
F , and by SF the set of real numbers r such that the circumference S(0, r)
contains either a zero or a pole of F .

Properties of K-meromorphic functions. The set of functions K-mero-
morphic on K forms a field closed under differentiation. This field contains
the set of Taylor series converging on K and their quotients. The following
properties of K-meromorphic functions will be needed to develop a Nevan-
linna theory on them. Properties (P1)–(P3) are known, and hence appear
without proof. For their proofs see [12].
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(P1) K-meromorphic functions satisfy the principle of analytic continu-
ation (i.e., if a K-meromorphic function is zero in a disc, it is identically
zero).

(P2) Let F be a K-meromorphic function with 0, R 6∈ SF , and let a1, . . .
. . . , aM and b1, . . . , bN be, respectively , the zeroes and poles of F in D(0, R),
let mi be the multiplicity of ai, and nj the multiplicity of bj. Then there
exists a K-meromorphic function G(x) with no zeroes or poles in D(0, R)
such that

(1) F (x) = G(x)
M∏
i=1

(x− ai)mi

/ N∏
j=1

(x− bj)nj .

(P3) Every K-meromorphic function F is the quotient of two analytic
functions.

(P4) Let G be a K-meromorphic function with no zeroes or poles in
D(0, R). Then, for all x ∈ D(0, R),

(2) |G(x)| = |G(0)| .
P r o o f. We will use the following result, proved by Marc Krasner in [10],

pp. 170–171: If G is an analytic function defined by a finite family of
chained analytic elements, say ΦG = {f1, . . . , fs}, then G is itself an an-
alytic element with support DG =

⋃s
i=1Di, where Di is the support of fi

for each i = 1, . . . , s. Choose f ∈ ΦG such that 0 6∈ Df . Then, since Df is
quasi-connected, there exist finitely many values of r, 0 < r ≤ R, such that
S(0, r) ∩Dc

f 6= ∅. Call them r1, . . . , rN .

Claim. For each ri, i = 1, . . . , N , there exist finitely many g ∈ ΦG, say
gij , with j = 1, . . . ,Mi, such that

⋃Mi

j=1Dj ⊃ S(0, ri).

P r o o f o f c l a i m. Suppose we need infinitely many elements of ΦG to
cover S(0, ri) with their supports. Then we would have an infinite sequence
of embedded circles, say S1 ⊃ S2 ⊃ . . . , with each Sk contained in the
complement of Dg, for some g ∈ ΦG, and since K is maximally complete,
their non-empty intersection would give us a pole of G in S(0, ri), which is
absurd, since G has no poles in D(0, R). Hence, we can cover S(0, ri) with
finitely many supports of elements of ΦG.

Now, by the claim, the finite family Ψ = {gij ; i = 1, . . . , N , j =
1, . . . ,Mi} defines G in D(0, R), and so, by Krasner’s result, G|D(0,R) is an
analytic element with support D(0, R) and no zeroes in D(0, R). Hence,
by the properties of M(r, f) = sup|x|=r |f(x)| for an analytic element f
(see [10], p. 143), |G(x)| = |G(0)| for all x ∈ D(0, R).

(P5) If F is a K-meromorphic function with 0, R 6∈ SF , and a1, . . . , aM ,
b1, . . . , bN are the zeroes and poles of F in D(0, R), repeated according to
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their multiplicities, and xR is such that |xR| = R, then

(3) |F (xR)|RN−M = |F (0)|
N∏

j=1

|bj |
/ M∏

i=1

|ai| .

P r o o f. This is a consequence of (1) and (2).

(P6) If F is entire and not a constant , then F has at least one zero.

P r o o f. Suppose F is entire and without zeroes. Then for each R > 0,
F has no zeroes and poles in D(0, R), and hence F |D(0,R) is an analytic
element. Thus, there exists a sequence of rational functions {fn,R}, which
we can assume to have all of their zeroes and poles outside D(0, R), such that
{fn,R} converges uniformly to F in D(0, R). For R→∞, the corresponding
fn,R’s must be constant, and hence so is F .

As consequences of (P6) we obtain:

(P7) Every K-meromorphic function which is not a constant has at least
a zero or a pole.

(P8) If F is a non-constant entire function, F has no excluded values.

(P9) If F is K-meromorphic, then, for all R 6∈ SF ∪SF ′ , R > 0, we have

(4) |F ′(x)/F (x)| ≤ 1/|x| for |x| = R .

P r o o f. We need the following two lemmas:

Lemma 1. Let g be a rational function. Then

(5) |g′(x)| ≤ |g(x)|/|x| for |x| > 0.

P r o o f. Let g(x) = h(x)/t(x), where h and t are polynomials. Then
|h′(x)| ≤ |h(x)|/|x| if |x| > 0, and |t′(x)| ≤ |t(x)|/|x| for |x| > 0. Now,

|g′(x)| = |h′(x)/t(x)− h(x)t′(x)/t(x)2|
≤ max{|h′(x)|/|t(x)|, |h(x)| · |t′(x)|/|t(x)|2} .

But

|h′(x)|/|t(x)| ≤ |h(x)|/|x| · |t(x)| = |g(x)|/|x| ,
and

|h(x)| · |t′(x)|/|t(x)|2 ≤ |h(x)| · |t(x)|/|x| · |t(x)|2 = |g(x)|/|x| ,

hence, |g′(x)| ≤ |g(x)|/|x|.

Lemma 2. If G is K-meromorphic without zeroes or poles in D(0, R),
then

(6) |G′(x)| ≤ |G(x)|/|x| for 0 < |x| ≤ R .
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P r o o f. We know that G(x) is an analytic element without zeroes in
D(0, R). Let x ∈ D(0, R). Let {gn} be an approximating sequence for G in
D(0, R). Then, by (5),

|G′(x)| = lim
n→∞

|g′n(x)| ≤ lim
n→∞

|gn(x)|/|x| = |G(x)|/|x| .

Now, back to the proof of (4), given any positive R 6∈ SF ∪ SF ′ , let
a1, . . . , aM and b1, . . . , bN be the zeroes and poles of F (x) in D(0, R); we
then have F (x) = [

∏M
i=1(x − ai)/

∏N
j=1(x − bj)]G(x), where G(x) is a

K-meromorphic function which has no zeroes and poles in D(0, R).
Set A =

∏M
i=1(x − ai), B =

∏N
j=1(x − bj), Ai =

∏M
k=1,k 6=i(x − ak),

Bj =
∏N

l=1(x− bl). Then

|F ′(x)/F (x)|

=
∣∣∣[(B M∑

i=1

Ai −A
N∑

j=1

Bj

)/
B2
]
G(x) + (A/B)G′(x)

∣∣∣/|(A/B)G(x)|

=
∣∣∣[B M∑

i=1

Ai −A
N∑

j=1

Bj

]
G(x) +ABG′(x)

∣∣∣/|A| · |B| · |G(x)|

≤ max
{∣∣∣ M∑

i=1

Ai

∣∣∣/|A|, ∣∣∣ N∑
j=1

Bj

∣∣∣/|B|, |G′(x)|/|G(x)|
}
.

Now, from (6), |G′(x)|/|G(x)| ≤ 1/R, and we easily see that |
∑M

i=1Ai|/|A|
≤ 1/R and |

∑N
j=1Bj |/|B| ≤ 1/R, so |F ′(x)/F (x)| ≤ 1/R for |x| = R.

The function M(r, f). Given a K-meromorphic function F , we define
M(r, F ) = sup|x|=r |F (x)|. The function M(r, F ) satisfies the following
properties:

(I) If r 6= 0,∞, then M(r, F ) = 0 implies F ≡ 0.
(II) M(r, F +G) ≤ max[M(r, F ),M(r,G)].

(III) M(r, FG) = M(r, F )M(r,G).
(IV) If 0 6∈ SF , then for each r ≥ 0 such that r 6∈ SF , M(r, F ) = |F (xr)|,

with xr arbitrary such that |xr| = r.
(V) If r 6∈ SF ∪ SF ′ , r > 0, then M(r, F ′) ≤M(r, F )/r.

(VI) If F is a non-constant entire function, then M(r, F )→∞ as r →∞.

Properties (I)–(III) follow directly from the properties of M(r, f) for f
an analytic element (see [10], p. 143); (IV) is easily deduced from (3); (V)
follows from (4) and (IV), and finally (VI) is proved using (3) and (IV).

Theorem 3 (Four Points Theorem). Let F,G be two non-constant K-
meromorphic functions on K so that for distinct a1, a2, a3, a4 we have F (x)
= ai ⇔ G(x) = ai, i = 1, 2, 3, 4. Then F ≡ G.
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P r o o f. Once we have (V) and (VI) above, Adams and Straus’ proof
of the 4-points theorem carries over without difficulty (see [1], p. 421). We
give a sketch of this proof.

Without loss of generality we may assume a3 = 0, a4 = 1. Let F =
f1/f2, G = g1/g2, with fi, gi analytic for i = 1, 2. Then there exists an
entire function H such that

(f ′1f2 − f1f
′
2)(f1g2 − f2g1) = Hf1f2(f1 − a1f2)(f1 − a2f2) ,

and for r large enough, using the properties of the function M(f, r), we
obtain (see [1]) M(H, r) ≤ 1/r. Consequently, H ≡ 0, and since f ′1f2 −
f1f
′
2 6= 0, we must have F ≡ G.

3. Nevanlinna theory for meromorphic functions

Definitions. Recall that log+ a = max{0, log a}, and let n(r, F ) be
the number of poles of F in D(0, r). We define, for F K-meromorphic with
0, r 6∈ SF and arbitrary xr ∈ S(0, r),

m(r, F ) = log+ |F (xr)|, N(r, F ) =
r∫

0

(n(t, F )/t) dt .

R e m a r k. N(r, F ) =
∑n

j=1 log(r/|bj |), since, if r1, . . . , rn are the values
of the poles of F in D(0, r) arranged in non-decreasing order, then

n∑
j=1

log(r/|bj |) =
n∑

j=1

log(r/rj) =
r∫

0

log(r/t) dn(t, F ) = (∗) ,

which is a real Stieltjes integral. We then integrate by parts to get

(∗) = n(t, F ) log(r/t)]r0 +
r∫

0

(n(t, F )/t) dt =
r∫

0

(n(t, F )/t) dt .

Theorem 4-a (First Fundamental Theorem). If F is a K-meromorphic
function with 0, r 6∈ SF , then log |F (0)| = N(r, F )−N(r, 1/F ) +m(r, F )−
m(r, 1/F ).

P r o o f. By the above definitions, taking logarithms in (3) gives

log |F (xr)|+ (n−m) log r = log |F (0)|+
n∑

j=1

log |bj | −
m∑

i=1

log |ai| ;

and hence, since log |a| = log+ |a| − log+ |1/a|, we have

log+ |F (xr)|+
n∑

j=1

log(r/|bj |) = log+(1/|F (xr)|)+
m∑

i=1

log(r/|ai|)+log |F (0)| .
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Definition. For F a K-meromorphic function we define T (r, F ) =
N(r, F ) +m(r, F ) for all r 6∈ SF .

Then Theorem 4-a can be rewritten as

Theorem 4-b. If F is a K-meromorphic function with 0, r 6∈ SF , then

(7) T (r, F ) = T (r, 1/F ) + log |F (0)| .
Theorem 5. If F is a K-meromorphic function with 0, r 6∈ SF , then for

all a ∈ K with 0, r 6∈ SF−a, and for each non-zero b ∈ K, we have

(i) T (r, bF ) = T (r, F ) +O(1),
(ii) T (r,

∑n
i=1 Fi(x)) ≤

∑n
i=1 T (r, Fi(x)),

(iii) T (r, 1/(F − a)) = T (r, F ) +O(1),
(iv) T (r,

∏n
i=1 Fi(x)) ≤

∑n
i=1 T (r, Fi(x)).

P r o o f. The first equality is clear by definition of T (r, F ).
(ii) By definition, m(r,

∑n
i=1 Fi) = log+ |

∑n
i=1 Fi(xr)|, but if n ∈ Z+,

ai ∈ K, then

log+
∣∣∣ n∑

i=1

ai

∣∣∣ = max
(

log
∣∣∣ n∑

i=1

ai

∣∣∣, 0) ≤ max(0, log max
i=1,...,n

|ai|)

≤ max(0, max
i=1,...,n

log |ai|) = max
i=1,...,n

log+ |ai| ≤
n∑

i=1

log+ |ai| ,

and thus,

(8) m
(
r,

n∑
i=1

Fi(x)
)
≤

n∑
i=1

m(r, Fi(x)) .

Also, since the order of a pole of
∑
Fi at a point x0 des not exceed the

sum of the orders of the poles of Fi at x0 (it is at most the maximum of the
orders of the zeroes of the Fi at x0), we have

(9) N
(
r,

n∑
i=1

Fi(x)
)
≤

n∑
i=1

N(r, Fi(x)) .

Thus (8) and (9) imply (ii).
(iii) Letting, in (ii), n = 2, F1(x) = F (x) and F2(x) = −a, we get

T (r, F − a) ≤ T (r, F ) + T (r,−a) ≤ T (r, F ) +N(r,−a) +m(r,−a)

= T (r, F ) + log+ | − a|+
r∫

0

(n(t,−a)/t) dt

= T (r, F ) + log+ | − a| .
Now (7) implies that T (r, 1/(F − a)) = T (r, F − a) + log |F (0)− a|, and so

T (r, 1/(F − a)) ≤ T (r, F ) + log+ | − a|+ log |F (0)− a| = T (r, F ) +O(1) .
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(iv) First for a1, . . . , an ∈ K, n ≥ 1, we have the inequality log+ |
∏n

i=1 ai|
= log+∏n

i=1 |ai| ≤
∑n

i=1 log+ |ai|; hence,

(10) m
(
r,

n∏
i=1

Fi

)
≤

n∑
i=1

m(r, Fi) .

Also, if Fi is a K-meromorphic function, i = 1, . . . , n, then since the order
of a pole of

∏
Fi(x) at a point x0 is at most the sum of the orders of the

poles of the Fi at x0,

(11) N
(
r,

n∏
i=1

Fi

)
≤

n∑
i=1

N(r, Fi) .

Now (10) and (11) imply (iv).

Theorem 6. Suppose G(x) = [aF (x) + b]/[cF (x) +d], with a, b, c, d ∈ K,
ad − bc 6= 0 and F a K-meromorphic function such that 0, r 6∈ SF ∪ SG.
Then T (r,G) = T (r, F ) +O(1).

P r o o f. Analogous to the complex case. See [13], p. 174.

Lemma 7. If F is a meromorphic function with 0, r 6∈ SF ∪ SF−1, then

(12) T (r, F ) = N(r, 1/(F − 1)) + log+ |F (0)| .

P r o o f. From (1) we have log |F (0)| = log |F (xr)| −
∑m(r)

i=1 log(r/|ai|) +∑n(r)
j=1 log(r/|bj |), so for F (z)− 1 = G(z),

log |F (0)− 1| = log |F (xr)− 1| −N(r, 1/(F − 1)) +N(r, F − 1)
= log |F (xr)− 1| −N(r, 1/(F − 1)) +N(r, 1/F ) .

But since for all a ∈ K, if |a| ≥ 1, then log |a − 1| = log |a|, and if |a| < 1
then log |a− 1| = 0, we have log |a− 1| = log+ |a|.

Thus, substituting a = F (0) and a = F (xr), we get

log+ |F (0)| = log+ |F (xr)| −N(r, 1/(F − 1)) +N(1/r, F )
= m(r, F )−N(r, 1/(F − 1)) +N(r, F )
= T (r, F )−N(r, 1/(F − 1)) .

Theorem 8. If f is a rational function on K with numerator of degree
m and denominator of degree n, then T (r, f) = max{m,n} log r +O(1).

P r o o f. By taking r large enough, and considering separately the cases
m > n, m < n, and m = n, a long but simple computation gives the result.

Theorem 9. If F is K-meromorphic, and not a constant , then T (r, F )
→∞ as r →∞.

P r o o f. If F is K-meromorphic, and not a constant, we know that F
has at least one pole or zero in K. Without loss of generality assume F has
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at least one pole, say b1, such that 0 < |b1| <∞. Then we choose any finite
R1 such that R1 > |b1|, and R1 6∈ SF . Then b1 ∈ D(0, r) for all r ≥ R1.

Recall that if a1, . . . , aM(r) and b1, . . . , bN(r) are, respectively, the zeroes
and poles of F in D(0, r), and if xr is such that |xr| = r, then

(13) T (r, F ) = log+ |F (xr)|+
N(r)∑
j=1

log(r/|bj |) .

Claim. limr→∞
∑N(r)

j=1 log(r/|bj |) =∞.

P r o o f. Take any r ≥ R1, and arrange the poles bj of F inside D(0, r)
so that |b1| ≤ . . . ≤ |bN(R1)| ≤ . . . ≤ |bN(r)|. Then limr→∞ log(r/|b1|) =∞,
and r/|bj | ≥ 1 for all j ≥ 2, so that

∑N(r)
j=2 log(r/|bj |) ≥ 0. Therefore, for all

r ≥ R1,
N(r)∑
j=1

log(r/|bj |) = log(r/|b1|) +
N(r)∑
j=2

log(r/|bj |) ≥ log(r/|b1|) ,

and hence, limr→∞
∑N(r)

j=1 log(r/|bj |) ≥ limr→∞ log(r/|b1|) =∞.

Coming back to (16),

T (r, F ) = log+ |F (xr)|+
N(r)∑
j=1

log(r/|bj |) ≥
N(r)∑
j=1

log(r/|bj |) ,

and so, by the claim, T (r, F )→∞ as r →∞.

Theorem 10 (Second Fundamental Theorem). Suppose F is a non-
constant K-meromorphic function with 0, r 6∈ SF ∪SF ′ . Let z1, . . . , zq (where
q ≥ 2) be distinct numbers in K such that |zi − zj | ≥ δ for 1 ≤ i < j ≤ q,
0 < δ < 1.

(I) We have the inequality

(14) m(r, F ) +
q∑

i=1

m(r, 1/(F − zi)) ≤ 2T (r, F ) +N1(r) + S(r) ,

where
(II) N1(r) = N(r, 1/F ′) + 2N(r, F )−N(r, F ′) is non-negative, and

(III) S(r) = m(r,
∑q

i=1 F
′/(F − zi)) +m(r, F ′/F )− log(1/|F ′(0)|)

+q log+(q/δ) + log(q/(q − 1))

= m(r,
∑q

i=1 F
′/(F − zi)) +m(r, F ′/F ) + C(q, δ)

is an error term with S(r)/T (r, F )→ 0 as r →∞.
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P r o o f. The proofs of (I) and (II) are analogous to the complex case
with minor alterations. See [13], p. 188. For (III) we first show

(15) S(r) ≤ (q + 1) log+(1/r) + C(q, δ) .

Indeed, by (4), we know that |F ′(x)/F (x)| ≤ 1/r for |x| = r; we thus have

m(r, F ′/F ) = log+ |F ′(xr)/F (xr)| ≤ log+(1/r) ,(16)

m
(
r,

q∑
i=1

F ′/(F − zi)
)
≤

q∑
i=1

m(r, F ′/(F − zi)) ≤ q log+(1/r)(17)

(by (8) and (16)).
Now (16) and (17) imply (15).
Finally, since log+(1/r) = 0 for r ≥ 1, and by Theorem 9, T (r, F )→∞

as r →∞, we have S(r)/T (r, F ) ≤ [(q+1) log+(1/r)+C(q, δ)]/T (r, F )→ 0
as r →∞. This completes the proof of Theorem 10.

Consequences of the Second Fundamental Theorem. As in the complex
case, we will cast Theorem 10 in a somewhat different form which contains
slightly less information, but which may sometimes be more easily used. To
do this, we need some definitions. All the results following the definitions
have proofs analogous to those for the complex case.

Definitions. We redefine the function N(t, 1/(F − a)) to allow for the
possibility that F (0) = a. Hence, if F is a K-meromorphic function with
r 6∈ SF−a, redefine

N(t, 1/(F − a)) = n(0, 1/(F − a)) log r

+
r∫

0

([n(t, 1/(F − a))− n(0, 1/(F − a))]/t) dt .

Let ñ(t, F ) = number of distinct poles of F in D(0, t) (multiple poles are
counted singly). Then, if F is a K-meromorphic function with r 6∈ SF−a,
we define

Ñ(r, 1/(F − a))

=
r∫

0

([ñ(t, 1/(F − a))− ñ(0, 1/(F − a))]/t) dt+ ñ(0, 1/(F − a)) log r ,

∂(a) = ∂(a, F ) = lim inf
r→∞

m(r, 1/(F − a))/T (r, F )

= 1− lim sup
r→∞

N(r, 1/(F − a))/T (r, F ) .

∂(a) is called the deficiency of F at a. If for all x ∈ K, F (x) 6= a, then
N(r, 1/(F −a)) = 0, and so ∂(a) = 1. In any case, since 0 ≤ m(r, 1/(F −a))
≤ T (r, F ), we have 0 ≤ ∂(a) ≤ 1, and ∂(a) > 0 means that there are “rela-
tively few” (though maybe infinitely many) values of x such that F (x) = a.
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We will see this cannot happen for too many values of a. We also define

Q(a) = Q(a, F ) = 1− lim sup
r→∞

Ñ(r, 1/(F − a))/T (r, F ),

q(a) = q(a, F ) = lim inf
r→∞

[N(r, 1/(F − a))− Ñ(r, 1/(F − a))]/T (r, F ) .

The function q(a) is called the ramification index or index of multiplicity
of a; we have 0 ≤ q(a) ≤ 1, and q(a) > 0 means that there are “relatively
many” multiple roots of the equation F (x) = a.

Theorem 11. If F is a K-meromorphic function, then the set of values
of a for which q(a) > 0 is at most countable, and

(18)
∑

a,Q(a)>0

(∂(a) + q(a)) ≤
∑

a,Q(a)>0

Q(a) ≤ 2 .

P r o o f. This theorem is equivalent to Theorem 10; see [13], p. 206.

N o t e. If F is entire, then ∂(∞) = Q(∞) = 1 (since N(r, F ) =
Ñ(r, F ) = 0), and so, from Theorem 11,

∑
a finite,Q(a)>0(∂(a) + q(a)) ≤∑

a finite,Q(a)>0Q(a) ≤ 1; hence ∂(a) > 1/2 for at most one finite value of a.

Corollary 12 (see [11]). Let F be a K-meromorphic function.

(i) There can be at most two values of a for which N(r, 1/(F − a)) =
O(T (r, F )).

(ii) There can be at most two values of a for which ∂(a) > 2/3 (i.e. for
which lim supr→∞N(r, 1/(F − a))/T (r, F ) < 1/3).

(iii) There can be at most four values of a such that every root of F (x)−a
is multiple.

N o t e. Rolf Nevanlinna proved both Picard’s Theorem and the Five
Points Theorem as corollaries to Theorem 11. Such results can also be
deduced in the p-adic case, but we have already seen both of them in a
stronger form as property (P8) of K-meromorphic functions, and Theorem 3,
respectively.

Theorem 13 (J. G. Clunie; see [8]). Let G(x) be a K-meromorphic func-
tion, F (x) entire, and H(x) = G(F (x)). Then T (r, F )/T (r,H) → 0 as
r →∞.

Theorem 14 (Rolf Nevanlinna; see [8]). If F is a K-meromorphic func-
tion, and a1(x), a2(x), a3(x) are distinct K-meromorphic functions satisfying
T (r, ai(x)) = o(T (r, F )) as r →∞, then

{1 + o(1)}T (r, F ) ≤
3∑

i=1

Ñ(r, 1/(F − ai(x))) + S(r, F ) ,

where S(r, F )/T (r, F )→ 0 as r →∞.
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Remarks and applications. In his paper [9], Ha Huy Khoai develops
analogs of the Nevanlinna counting functions for quotients of p-adic series
converging on a disc of radius 1. With these he obtains an analog to the
First Fundamental Theorem. (“If T (r, f − a) is bounded for some a ∈ K,
it is bounded for all a ∈ K”.) He does not give an analog to the Second
Fundamental Theorem, but he proves, by use of interpolation methods, both
Picard’s Theorem and the Three Points Theorem, always for quotients of
series converging on a disc of radius 1.
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