On the mean values of an analytic function

by G. S. Srivastava and Sunita Rani (Roorkee)

Abstract

Let $f(z), z=r e^{i \theta}$, be analytic in the finite disc $|z|<R$. The growth properties of $f(z)$ are studied using the mean values $I_{\delta}(r)$ and the iterated mean values $N_{\delta, k}(r)$ of $f(z)$. A convexity result for the above mean values is obtained and their relative growth is studied using the order and type of $f(z)$.

1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, z=r e^{i \theta}$, be analytic in the disc $|z|<R$, $0<R<\infty$. For $0 \leq r<R$, we set $M(r)=\max _{|z|=r}|f(z)|$. Then the order ϱ and lower order λ of $f(z)$ are defined as (see [4])

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \tag{1.1}\\
\inf
\end{array} \frac{\log ^{+} \log ^{+} M(r)}{\log x}=\left\{\begin{array}{l}
\varrho, \\
\lambda,
\end{array} \quad 0 \leq \lambda \leq \varrho \leq \infty,\right.\right.
$$

where $x=\operatorname{Rr} /(R-r)$ and $\log ^{+} t=\max \{0, \log t\}$. When $0<\varrho<\infty$, we define the type T and lower type $\tau(0 \leq \tau \leq T \leq \infty)$ of $f(z)$ as

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \tag{1.2}\\
\inf
\end{array} \frac{\log ^{+} M(r)}{x^{\varrho}}=\left\{\begin{array}{l}
T \\
\tau
\end{array}\right.\right.
$$

Let $m(r)=\max _{n \geq 0}\left\{\left|a_{n}\right| r^{n}\right\}$ be the maximum term in the Taylor series expansion of $f(z)$ for $|z|=r$. If $f(z)$ is of finite order ϱ, then ([1], [3])

$$
\begin{equation*}
\log m(r) \simeq \log M(r) \quad \text { as } r \rightarrow R \tag{1.3}
\end{equation*}
$$

Hence $m(r)$ can be used in place of $M(r)$ in (1.1) and (1.2) for defining ϱ, λ etc.

The following mean value of an analytic function $f(z)$ was introduced by Hardy [2]:

$$
\begin{equation*}
I_{\delta}(r)=\left[J_{\delta}(r)\right]^{1 / \delta}=\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right]^{1 / \delta} \tag{1.4}
\end{equation*}
$$

1991 Mathematics Subject Classification: 30B10.
Key words and phrases: analytic function, maximum term, order, type, mean values.
where $0<\delta<\infty$. We introduce the following weighted mean of $f(z)$:

$$
\begin{equation*}
N_{\delta, k}(r)=x^{-k} \int_{0}^{r} I_{\delta}(y)\left(\frac{R y}{R-y}\right)^{k+1} \frac{d y}{y^{2}} \tag{1.5}
\end{equation*}
$$

where $x=\operatorname{Rr} /(R-r)$ and $0<k<\infty$.
In this paper we have studied the growth properties of the analytic function $f(z)$ through its mean values $I_{\delta}(r)$ and $N_{\delta, k}(r)$. In the sequel, we also derive some convexity properties of these means and also study their relative growths. We shall assume throughout that $\varrho<\infty$.
2. We now prove

Lemma. For every $r, 0<r<R,\left[x^{k} I_{\delta}(r) /(R-r)\right]$ is an increasing convex function of $\left[x^{k} N_{\delta, k}(r)\right]$.

Proof. From (1.5) we have

$$
\frac{d\left[x^{k} I_{\delta}(r) /(R-r)\right]}{d\left[x^{k} N_{\delta, k}(r)\right]}=\frac{r I_{\delta}^{\prime}(r)}{R I_{\delta}(r)}+\frac{r}{R(R-r)}+\frac{k}{R-r},
$$

where $I_{\delta}^{\prime}(r)$ denotes the derivative of $I_{\delta}(r)$ with respect to r. Since R and k are fixed, the last two terms on the right hand side of the above equation are increasing functions of r. Further, it is well known that $\log I_{\delta}(r)$ is an increasing convex function of $\log r$. Hence the right hand side of the above equation is an increasing function of r and the Lemma follows.

Theorem 1. For $\varphi(r)=I_{\delta}(r), J_{\delta}(r)$ and $N_{\delta, k}(r)$, we have

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \tag{2.1}\\
\inf
\end{array} \frac{\log \log \varphi(r)}{\log x}=\left\{\begin{array}{l}
\varrho, \\
\lambda,
\end{array} \quad 0 \leq \lambda \leq \varrho<\infty .\right.\right.
$$

Proof. It is known that for $n \geq 0$,

$$
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z^{n+1}} d z
$$

where C is the circle $|z|=r, 0<r<R$. Hence

$$
\left|a_{n}\right| r^{n} \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

Since the right hand side is independent of n, we can choose n suitably to obtain

$$
m(r) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

For $\delta \geq 1$, we apply Hölder's inequality to the right hand side. Then

$$
\begin{aligned}
m(r) & \leq \frac{1}{2 \pi}\left\{\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right\}^{1 / \delta}\left\{\int_{0}^{2 \pi} d \theta\right\}^{(\delta-1) / \delta} \\
& =\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta\right]^{1 / \delta}
\end{aligned}
$$

Hence $m(r) \leq I_{\delta}(r)$. From (1.4) we obviously have $I_{\delta}(r) \leq M(r)$. Hence for $r>0$ and $\delta \geq 1$, we have

$$
\begin{equation*}
m(r) \leq I_{\delta}(r) \leq M(r) \tag{2.2}
\end{equation*}
$$

If $0<\delta<1$, then

$$
\begin{aligned}
2 \pi\left[I_{1+\delta}(r)\right]^{1+\delta} & =\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{1+\delta} d \theta \leq M(r) \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\delta} d \theta \\
& =2 \pi M(r)\left[I_{\delta}(r)\right]^{\delta} \leq 2 \pi[M(r)]^{1+\delta}
\end{aligned}
$$

Thus

$$
\begin{equation*}
I_{1+\delta}(r) \leq[M(r)]^{1 /(1+\delta)}\left[I_{\delta}(r)\right]^{\delta /(1+\delta)} \leq M(r) . \tag{2.3}
\end{equation*}
$$

From (2.2) we have, in view of (1.3),

$$
\log I_{\delta}(r) \simeq \log M(r) \quad \text { as } r \rightarrow R, \delta \geq 1
$$

Hence $\log I_{(1+\delta)}(r) \simeq \log M(r)$ as $r \rightarrow R, 0<\delta<1$. Thus from (2.3) we have

$$
\log I_{\delta}(r) \simeq \log M(r) \quad \text { as } r \rightarrow R, 0<\delta<1
$$

Combining these two asymptotic relations, we get

$$
\begin{equation*}
\log I_{\delta}(r) \simeq \log M(r) \quad \text { as } r \rightarrow R, \delta>0 \tag{2.4}
\end{equation*}
$$

From (1.4) and (2.4) we immediately have

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log \log I_{\delta}(r)}{\log x}=\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log \log J_{\delta}(r)}{\log x}=\left\{\begin{array}{l}
\varrho \\
\lambda
\end{array}\right.\right.\right.
$$

To prove (2.1) for $\varphi(r)=N_{\delta, k}(r)$, we take

$$
r^{\prime}=R\left[1-\frac{1}{\alpha}\left(1-\frac{r}{R}\right)\right]
$$

where $\alpha>1$ is an arbitrary constant. Then from (1.5) we have

$$
\begin{aligned}
N_{\delta, k}\left(r^{\prime}\right) & =\left(x^{\prime}\right)^{-k} \int_{0}^{r^{\prime}} I_{\delta}(y)\left(\frac{R y}{R-y}\right)^{k+1} \frac{d y}{y^{2}} \\
& >\left(x^{\prime}\right)^{-k} \int_{r}^{r^{\prime}} I_{\delta}(y)\left(\frac{R y}{R-y}\right)^{k+1} \frac{d y}{y^{2}}
\end{aligned}
$$

where $x^{\prime}=R r^{\prime} /\left(R-r^{\prime}\right)$. Since $I_{\delta}(r)$ is an increasing function of r, we have

$$
\begin{equation*}
N_{\delta, k}\left(r^{\prime}\right)>\frac{I_{\delta}(r)}{k} \frac{\left(x^{\prime}\right)^{k}-x^{k}}{\left(x^{\prime}\right)^{k}}=O(1) I_{\delta}(r) \tag{2.5}
\end{equation*}
$$

It can be easily verified that $x^{\prime} / x \rightarrow \alpha$ and $\left(\log x^{\prime}\right) / \log x \rightarrow 1$ as $r \rightarrow R$.
Hence we have

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \tag{2.6}\\
\inf
\end{array} \frac{\log \log N_{\delta, k}(r)}{\log x} \geq \lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log \log I_{\delta}(r)}{\log x} .\right.\right.
$$

For the reverse inequality we have from (1.5),

$$
\begin{equation*}
N_{\delta, k}(r) \leq I_{\delta}(r) / k \tag{2.7}
\end{equation*}
$$

Hence

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \tag{2.8}\\
\inf
\end{array} \frac{\log \log N_{\delta, k}(r)}{\log x} \leq \lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log \log I_{\delta}(r)}{\log x} .\right.\right.
$$

Combining (2.6) and (2.8) we get the relation (2.1) for $\varphi(r)=N_{\delta, k}(r)$. This proves (2.1) completely.

Theorem 2. For $0<\varrho<\infty$, we have

$$
\begin{gather*}
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log I_{\delta}(r)}{x^{\varrho}}=\left\{\begin{array}{l}
T \\
\tau,
\end{array}\right.\right. \tag{2.9}\\
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log N_{\delta, k}(r)}{x^{\varrho}}=\left\{\begin{array}{l}
T \\
\tau
\end{array}\right.\right. \tag{2.10}
\end{gather*}
$$

Proof. The relation (2.9) follows easily from (2.4) and the definitions of T and τ. To prove (2.10) we have from (2.7),

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \tag{2.11}\\
\inf
\end{array} \frac{\log N_{\delta, k}(r)}{x^{\varrho}} \leq \lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log I_{\delta}(r)}{x^{\varrho}} .\right.\right.
$$

Also, from (2.5) we have

$$
\log N_{\delta, k}\left(r^{\prime}\right)>O(1)+\log I_{\delta}(r)
$$

Since $x^{\prime} / x \rightarrow \alpha$ as $r \rightarrow R$, we have

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log N_{\delta, k}\left(r^{\prime}\right)}{\left(x^{\prime}\right)^{\varrho}} \geq \alpha^{-\varrho} \lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log I_{\delta}(r)}{x^{\varrho}} .\right.\right.
$$

Since $\alpha>1$ was arbitrary, we thus have

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \tag{2.12}\\
\inf
\end{array} \frac{\log N_{\delta, k}(r)}{x^{\varrho}} \geq \lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log I_{\delta}(r)}{x^{\varrho}} .\right.\right.
$$

Now combining (2.11) and (2.12), we get (2.10) in view of (2.9). This proves Theorem 2.

In the next two theorems, we obtain the relative growth of $I_{\delta}(r)$ and $N_{\delta, k}(r)$. We prove

Theorem 3. For the mean values $I_{\delta}(r)$ and $N_{\delta, k}(r)$ as defined before, we have

$$
\left.\begin{array}{l}
\varrho \tag{2.13}\\
\lambda
\end{array}\right\} \leq \lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup _{\inf } \frac{\log \left[I_{\delta}(r) /(R-r) N_{\delta, k}(r)\right]}{\log x} \leq\left\{\begin{array}{l}
\varrho+1 \\
\lambda+1
\end{array} . . . ~\right.
\end{array}\right.
$$

Proof. From (1.5) we have

$$
\frac{d}{d r}\left[x^{r} N_{\delta, k}(r)\right]=x^{k+1} I_{\delta}(r) / r^{2}
$$

where $x=\operatorname{Rr} /(R-r)$. Expanding and rearranging the terms on the left hand side, we get

$$
\frac{N_{\delta, k}^{\prime}(r)}{N_{\delta, k}(r)}=\frac{R I_{\delta}(r)}{r(R-r) N_{\delta, k}(r)}-\frac{k R}{r(R-r)} .
$$

Integrating on both sides of this equation with respect to r, we get

$$
\begin{equation*}
\log N_{\delta, k}(r)=O(1)+R \int_{r_{0}}^{r} \frac{I_{\delta}(y) d y}{y(R-y) N_{\delta, k}(y)}-k \log [r /(R-r)] \tag{2.14}
\end{equation*}
$$

where $0<r_{0} \leq r<R$. Since $\varrho<\infty$, we have from Theorem 1,

$$
\begin{equation*}
\lim _{r \rightarrow R} \frac{\log (R-r)}{\log N_{\delta, k}(r)}=0 \tag{2.15}
\end{equation*}
$$

Now from the Lemma, $\left[I_{\delta}(y) /(R-y) N_{\delta, k}(y)\right]$ is an increasing function of y. Hence from (2.14) we have

$$
\log N_{\delta, k}(r)<O(1)+\frac{R I_{\delta}(r) \log \left(r / r_{0}\right)}{(R-r) N_{\delta, k}(r)}-k \log [r /(R-r)]
$$

or, in view of (2.15),

$$
\log N_{\delta, k}(r)\{1+o(1)\}<\frac{R I_{\delta}(r) \log \left(r / r_{0}\right)}{(R-r) N_{\delta, k}(r)}
$$

Hence

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log \log N_{\delta, k}(r)}{\log x} \leq \lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log \left[I_{\delta}(r) /(R-r) N_{\delta, k}(r)\right]}{\log x} .\right.\right.
$$

In view of (2.1), we get the left hand inequalities of (2.13). To obtain the right hand inequalities of (2.13), we again take arbitrary $\alpha>1$ and
$r^{\prime}=R[1-(1 / \alpha)(1-r / R)]$. Then from (2.14), since $r^{\prime}>r$,

$$
\begin{aligned}
\log N_{\delta, k}\left(r^{\prime}\right) & \geq O(1)+R \int_{r}^{r^{\prime}} \frac{I_{\delta}(y) d y}{y(R-y) N_{\delta, k}(y)}-k \log \left[r^{\prime} /\left(R-r^{\prime}\right)\right] \\
& \geq O(1)+\frac{R I_{\delta}(r) \log \left(r^{\prime} / r\right)}{(R-r) N_{\delta, k}(r)}-k \log \left[r^{\prime} /\left(R-r^{\prime}\right)\right]
\end{aligned}
$$

Using (2.15) we have

$$
\begin{equation*}
[1+o(1)] \log N_{\delta, k}\left(r^{\prime}\right) \geq \frac{R I_{\delta}(r) \log \left(r^{\prime} / r\right)}{(R-r) N_{\delta, k}(r)}+O(1) \tag{2.16}
\end{equation*}
$$

or

$$
\frac{\log \log N_{\delta, k}\left(r^{\prime}\right)}{\log x} \geq \frac{\log \left[I_{\delta}(r) /(R-r) N_{\delta, k}(r)\right]}{\log x}+\frac{\log \log \left(r^{\prime} / r\right)}{\log x}+o(1) .
$$

As before, $(\log x) / \log x^{\prime} \rightarrow 1$ and $\left[\log \log \left(r^{\prime} / r\right)\right] / \log x \rightarrow-1$ as $r \rightarrow R$.
Hence we obtain, on proceeding to limits,

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log \left[I_{\delta}(r) /(R-r) N_{\delta, k}(r)\right]}{\log x} \leq\left\{\begin{array}{l}
\varrho+1 \\
\lambda+1
\end{array}\right.\right.
$$

This proves Theorem 3.
Theorem 4. For $0<\varrho<\infty$, we have
where $A=(\varrho+1)^{\varrho+1} / \varrho^{\varrho}$.
Proof. From (2.16) we have

$$
[1+o(1)] \frac{\log N_{\delta, k}\left(r^{\prime}\right)}{\left(x^{\prime}\right)^{\varrho}} \geq \frac{R \log \left(r^{\prime} / r\right) I_{\delta}(r)}{(R-r) N_{\delta, k}(r)\left(x^{\prime}\right)^{\varrho}}+o(1)
$$

Since

$$
\lim _{r \rightarrow R} \frac{\log \left(r^{\prime} / r\right)}{R-r}=\frac{\alpha-1}{\alpha R} \quad \text { and } \quad \lim _{r \rightarrow R} \frac{x^{\prime}}{x}=\alpha
$$

where as before $x^{\prime}=R r^{\prime} /\left(R-r^{\prime}\right)$, we get on proceeding to limits

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{\log N_{\delta, k}\left(r^{\prime}\right)}{\left(x^{\prime}\right)^{\varrho}} \geq\left(\frac{\alpha-1}{\alpha}\right) \alpha^{-\varrho} \lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{I_{\delta}(r) / N_{\delta, k}(r)}{x^{\varrho}} .\right.\right.
$$

Since $\alpha>1$ was arbitrary, we can take $\alpha=(\varrho+1) / \varrho$. Hence, using (2.10) we obtain

$$
\lim _{r \rightarrow R}\left\{\begin{array}{l}
\sup \\
\inf
\end{array} \frac{I_{\delta}(r) / N_{\delta, k}(r)}{x^{\varrho}} \leq\left\{\begin{array}{l}
A T \\
A \tau,
\end{array}\right.\right.
$$

where $A=(\varrho+1)^{\varrho+1} / \varrho^{\varrho}$. Thus Theorem 4 follows.

The authors are thankful to the referee for his valuable comments and suggestions.

References

[1] R. P. Boas, Entire Functions, Academic Press, New York 1954.
[2] G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc. 14 (2) (1915), 269-277.
[3] G. P. Kapoor, A note on the proximate order of functions analytic in the unit disc, Rev. Fac. Sci. Univ. d'Istanbul Sér. A 36 (1971), 35-40.
[4] L. R. Sons, Regularity of growth and gaps, J. Math. Anal. Appl. 24 (1968), 296-306.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ROORKEE
ROORKEE 247667, INDIA

