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On the mean values of an analytic function

by G. S. Srivastava and Sunita Rani (Roorkee)

Abstract. Let f(z), z = reiθ, be analytic in the finite disc |z| < R. The growth
properties of f(z) are studied using the mean values Iδ(r) and the iterated mean values
Nδ,k(r) of f(z). A convexity result for the above mean values is obtained and their relative
growth is studied using the order and type of f(z).

1. Let f(z) =
∑∞
n=0 anz

n, z = reiθ, be analytic in the disc |z| < R,
0 < R <∞. For 0 ≤ r < R, we set M(r) = max|z|=r |f(z)|. Then the order
% and lower order λ of f(z) are defined as (see [4])

(1.1) lim
r→R

{
sup
inf

log+ log+M(r)
log x

=
{
%,

λ,
0 ≤ λ ≤ % ≤ ∞ ,

where x = Rr/(R − r) and log+ t = max{0, log t}. When 0 < % < ∞, we
define the type T and lower type τ (0 ≤ τ ≤ T ≤ ∞) of f(z) as

(1.2) lim
r→R

{
sup
inf

log+M(r)
x%

=
{
T,

τ.

Let m(r) = maxn≥0{|an|rn} be the maximum term in the Taylor series
expansion of f(z) for |z| = r. If f(z) is of finite order %, then ([1], [3])

(1.3) logm(r) ' logM(r) as r → R .

Hence m(r) can be used in place of M(r) in (1.1) and (1.2) for defining %,
λ etc.

The following mean value of an analytic function f(z) was introduced
by Hardy [2]:

(1.4) Iδ(r) = [Jδ(r)]1/δ =
[

1
2π

2π∫
0

|f(reiθ)|δ dθ
]1/δ
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where 0 < δ <∞. We introduce the following weighted mean of f(z):

(1.5) Nδ,k(r) = x−k
r∫

0

Iδ(y)
(

Ry

R− y

)k+1
dy

y2
,

where x = Rr/(R− r) and 0 < k <∞.
In this paper we have studied the growth properties of the analytic func-

tion f(z) through its mean values Iδ(r) and Nδ,k(r). In the sequel, we also
derive some convexity properties of these means and also study their relative
growths. We shall assume throughout that % <∞.

2. We now prove

Lemma. For every r, 0 < r < R, [xkIδ(r)/(R − r)] is an increasing
convex function of [xkNδ,k(r)].

P r o o f. From (1.5) we have

d[xkIδ(r)/(R− r)]
d[xkNδ,k(r)]

=
rI ′δ(r)
RIδ(r)

+
r

R(R− r)
+

k

R− r
,

where I ′δ(r) denotes the derivative of Iδ(r) with respect to r. Since R and
k are fixed, the last two terms on the right hand side of the above equation
are increasing functions of r. Further, it is well known that log Iδ(r) is an
increasing convex function of log r. Hence the right hand side of the above
equation is an increasing function of r and the Lemma follows.

Theorem 1. For ϕ(r) = Iδ(r), Jδ(r) and Nδ,k(r), we have

(2.1) lim
r→R

{
sup
inf

log logϕ(r)
log x

=
{
%,

λ,
0 ≤ λ ≤ % <∞ .

P r o o f. It is known that for n ≥ 0,

an =
1

2πi

∮
C

f(z)
zn+1

dz ,

where C is the circle |z| = r, 0 < r < R. Hence

|an|rn ≤
1

2π

2π∫
0

|f(reiθ)| dθ .

Since the right hand side is independent of n, we can choose n suitably to
obtain

m(r) ≤ 1
2π

2π∫
0

|f(reiθ)| dθ .
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For δ ≥ 1, we apply Hölder’s inequality to the right hand side. Then

m(r) ≤ 1
2π

{ 2π∫
0

|f(reiθ)|δ dθ
}1/δ{ 2π∫

0

dθ
}(δ−1)/δ

=
[

1
2π

2π∫
0

|f(reiθ)|δ dθ
]1/δ

.

Hence m(r) ≤ Iδ(r). From (1.4) we obviously have Iδ(r) ≤ M(r). Hence
for r > 0 and δ ≥ 1, we have

(2.2) m(r) ≤ Iδ(r) ≤M(r) .

If 0 < δ < 1, then

2π[I1+δ(r)]1+δ =
2π∫
0

|f(reiθ)|1+δ dθ ≤M(r)
2π∫
0

|f(reiθ)|δ dθ

= 2πM(r)[Iδ(r)]δ ≤ 2π[M(r)]1+δ .

Thus

(2.3) I1+δ(r) ≤ [M(r)]1/(1+δ)[Iδ(r)]δ/(1+δ) ≤M(r) .

From (2.2) we have, in view of (1.3),

log Iδ(r) ' logM(r) as r → R , δ ≥ 1 .

Hence log I(1+δ)(r) ' logM(r) as r → R, 0 < δ < 1. Thus from (2.3) we
have

log Iδ(r) ' logM(r) as r → R , 0 < δ < 1 .
Combining these two asymptotic relations, we get

(2.4) log Iδ(r) ' logM(r) as r → R , δ > 0 .

From (1.4) and (2.4) we immediately have

lim
r→R

{
sup
inf

log log Iδ(r)
log x

= lim
r→R

{
sup
inf

log log Jδ(r)
log x

=
{
%,

λ.

To prove (2.1) for ϕ(r) = Nδ,k(r), we take

r′ = R

[
1− 1

α

(
1− r

R

)]
where α > 1 is an arbitrary constant. Then from (1.5) we have

Nδ,k(r′) = (x′)−k
r′∫
0

Iδ(y)
(

Ry

R− y

)k+1
dy

y2

> (x′)−k
r′∫
r

Iδ(y)
(

Ry

R− y

)k+1
dy

y2
,
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where x′ = Rr′/(R− r′). Since Iδ(r) is an increasing function of r, we have

(2.5) Nδ,k(r′) >
Iδ(r)
k

(x′)k − xk

(x′)k
= O(1)Iδ(r) .

It can be easily verified that x′/x → α and (log x′)/ log x → 1 as r → R.
Hence we have

(2.6) lim
r→R

{
sup
inf

log logNδ,k(r)
log x

≥ lim
r→R

{
sup
inf

log log Iδ(r)
log x

.

For the reverse inequality we have from (1.5),

(2.7) Nδ,k(r) ≤ Iδ(r)/k .
Hence

(2.8) lim
r→R

{
sup
inf

log logNδ,k(r)
log x

≤ lim
r→R

{
sup
inf

log log Iδ(r)
log x

.

Combining (2.6) and (2.8) we get the relation (2.1) for ϕ(r) = Nδ,k(r). This
proves (2.1) completely.

Theorem 2. For 0 < % <∞, we have

(2.9) lim
r→R

{
sup
inf

log Iδ(r)
x%

=
{
T ,

τ ,

(2.10) lim
r→R

{
sup
inf

logNδ,k(r)
x%

=
{
T ,

τ .

P r o o f. The relation (2.9) follows easily from (2.4) and the definitions
of T and τ . To prove (2.10) we have from (2.7),

(2.11) lim
r→R

{
sup
inf

logNδ,k(r)
x%

≤ lim
r→R

{
sup
inf

log Iδ(r)
x%

.

Also, from (2.5) we have

logNδ,k(r′) > O(1) + log Iδ(r) .

Since x′/x→ α as r → R, we have

lim
r→R

{
sup
inf

logNδ,k(r′)
(x′)%

≥ α−% lim
r→R

{
sup
inf

log Iδ(r)
x%

.

Since α > 1 was arbitrary, we thus have

(2.12) lim
r→R

{
sup
inf

logNδ,k(r)
x%

≥ lim
r→R

{
sup
inf

log Iδ(r)
x%

.

Now combining (2.11) and (2.12), we get (2.10) in view of (2.9). This proves
Theorem 2.
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In the next two theorems, we obtain the relative growth of Iδ(r) and
Nδ,k(r). We prove

Theorem 3. For the mean values Iδ(r) and Nδ,k(r) as defined before,
we have

(2.13)
%

λ

}
≤ lim
r→R

{
sup
inf

log[Iδ(r)/(R− r)Nδ,k(r)]
log x

≤
{
%+ 1 ,
λ+ 1 .

P r o o f. From (1.5) we have

d

dr
[xrNδ,k(r)] = xk+1Iδ(r)/r2

where x = Rr/(R − r). Expanding and rearranging the terms on the left
hand side, we get

N ′δ,k(r)
Nδ,k(r)

=
RIδ(r)

r(R− r)Nδ,k(r)
− kR

r(R− r)
.

Integrating on both sides of this equation with respect to r, we get

(2.14) logNδ,k(r) = O(1) +R
r∫

r0

Iδ(y) dy
y(R− y)Nδ,k(y)

− k log[r/(R− r)]

where 0 < r0 ≤ r < R. Since % <∞, we have from Theorem 1,

(2.15) lim
r→R

log(R− r)
logNδ,k(r)

= 0 .

Now from the Lemma, [Iδ(y)/(R− y)Nδ,k(y)] is an increasing function of y.
Hence from (2.14) we have

logNδ,k(r) < O(1) +
RIδ(r) log(r/r0)
(R− r)Nδ,k(r)

− k log[r/(R− r)] ,

or, in view of (2.15),

logNδ,k(r){1 + o(1)} < RIδ(r) log(r/r0)
(R− r)Nδ,k(r)

.

Hence

lim
r→R

{
sup
inf

log logNδ,k(r)
log x

≤ lim
r→R

{
sup
inf

log[Iδ(r)/(R− r)Nδ,k(r)]
log x

.

In view of (2.1), we get the left hand inequalities of (2.13). To obtain
the right hand inequalities of (2.13), we again take arbitrary α > 1 and
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r′ = R[1− (1/α)(1− r/R)]. Then from (2.14), since r′ > r,

logNδ,k(r′) ≥ O(1) +R
r′∫
r

Iδ(y) dy
y(R− y)Nδ,k(y)

− k log[r′/(R− r′)]

≥ O(1) +
RIδ(r) log(r′/r)
(R− r)Nδ,k(r)

− k log[r′/(R− r′)] .

Using (2.15) we have

(2.16) [1 + o(1)] logNδ,k(r′) ≥ RIδ(r) log(r′/r)
(R− r)Nδ,k(r)

+O(1) ,

or
log logNδ,k(r′)

log x
≥ log[Iδ(r)/(R− r)Nδ,k(r)]

log x
+

log log(r′/r)
log x

+ o(1) .

As before, (log x)/ log x′ → 1 and [log log(r′/r)]/ log x → −1 as r → R.
Hence we obtain, on proceeding to limits,

lim
r→R

{
sup
inf

log[Iδ(r)/(R− r)Nδ,k(r)]
log x

≤
{
%+ 1 ,
λ+ 1 .

This proves Theorem 3.

Theorem 4. For 0 < % <∞, we have

(2.17) lim
r→R

{
sup
inf

Iδ(r)/Nδ,k(r)
x%

≤
{
AT ,

Aτ ,

where A = (%+ 1)%+1/%%.

P r o o f. From (2.16) we have

[1 + o(1)]
logNδ,k(r′)

(x′)%
≥ R log(r′/r)Iδ(r)

(R− r)Nδ,k(r)(x′)%
+ o(1) .

Since

lim
r→R

log(r′/r)
R− r

=
α− 1
αR

and lim
r→R

x′

x
= α ,

where as before x′ = Rr′/(R− r′), we get on proceeding to limits

lim
r→R

{
sup
inf

logNδ,k(r′)
(x′)%

≥
(
α− 1
α

)
α−% lim

r→R

{
sup
inf

Iδ(r)/Nδ,k(r)
x%

.

Since α > 1 was arbitrary, we can take α = (% + 1)/%. Hence, using (2.10)
we obtain

lim
r→R

{
sup
inf

Iδ(r)/Nδ,k(r)
x%

≤
{
AT ,

Aτ ,

where A = (%+ 1)%+1/%%. Thus Theorem 4 follows.
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