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On the strong convergence to equilibrium
of the Foiaş solutions of the transport equation

by Jan Malczak (Kraków)

Abstract. We define the Foiaş solutions of the transport equation and we prove
that the strong asymptotic stability of the Foiaş solutions is equivalent to the asymptotic
stability of the solutions of the transport equation in L1.

Introduction. The purpose of this paper is to study the behavior of
the Foiaş solutions of the integro-differential equation of the form

(0.1)
∂u(t, x)
∂t

+
n∑

i=1

∂

∂xi
(Fi(x)u(t, x)) + u(t, x) =

∫
X

k(x, y)u(t, y) dy ,

t ≥ 0, x ∈ X = Rn
+ = [0,∞)n, where k : X × X → R is a measurable

stochastic kernel, i.e. k(x, y) ≥ 0,
∫

X
k(x, y) dx = 1 for y ∈ X, with the

initial value

(0.2) u(0, x) = f(x) .

This equation generates a semigroup of Markov operators on the space
L1(X) given by

(0.3) T tf(x) = u(t, x),

where f ∈ L1(X) is the initial value.
The semigroup {T t}t≥0 describes the evolution in time of the initial

density f ∈ L1(X) appearing in (0.2). The asymptotic behavior of this
semigroup in L1 was studied in [D lLa] and [Klac].

The following questions arise:

1o Can we define a solution of (0.1) if the initial value (0.2) is not an
L1(X) function but a finite measure defined on the Borel subsets of X
in such a way that this solution will coincide with {T tf}t≥0 if the initial
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measure is absolutely continuous with respect to the Lebesgue measure with
Radon–Nikodym derivative f?

2o What kind of dependence does there exist between the statistical
behavior of those two kinds of solutions ?

We give an answer to the first question by defining the Foiaş solution for
(0.1) in the case where the initial value in (0.2) is a finite measure. Further,
we prove that the asymptotic stability of the semigroup (0.3) in L1(X) is
equivalent to the strong asymptotic stability of the Foiaş solutions in the
sense of the convergence of the total variation of measures. This is an answer
to the second question.

Sections 1–3 provide a mathematical base for Section 6; however, Theo-
rem 3.1 stated in Section 3 is of independent interest. In Sections 4 and 5
we give a precise description of the semigroups generated by equation (0.1),
while Section 6 contains the main results of the paper.

1. A Markov operator on L1. Let (X,Σ, λ) be a σ-finite measure
space. In the sequel we deal exclusively with real-valued functions and
measures. Inequalities (equalities) between functions or sets are in the a.e.
sense. A linear operator T : L1(λ) → L1(λ) is called a Markov operator if
T (D) ⊂ D, where

D = {f ∈ L1(λ) : f ≥ 0, ‖f‖1 = 1}
is the set of densities and ‖ ‖1 stands for the norm in L1(λ) . For a given
Markov operator on L1(λ) define a linear operator U : L∞(λ) → L∞(λ) to
be the adjoint of T :

(1.1) 〈Tu, f〉 = 〈u, Uf〉, u ∈ L1(λ), f ∈ L∞(λ),
Then U satisfies the following conditions:

(i) If f ∈ L∞(λ), f ≥ 0 then Uf ≥ 0.
(ii) U1 = 1.
(iii) If fn ↓ 0 then Ufn ↓ 0.

Conditions (i) and (ii) are immediate. For (iii), let fn ↓ 0 and 0 ≤ u ∈
L1(λ); then

〈u, limUfn〉 :=
∫
u(limUfn) dλ = lim〈u, Ufn〉 = lim〈Tu, fn〉 = 0.

Thus limUfn = 0.

2. A Markov operator on measures. Let X be a locally compact
metric space. Assume also that every open subset of X is σ-compact, i.e. the
union of a countable family of compact subsets of X. Denote by B = B(X)
the σ-algebra of Borel subsets of X. A measure µ : B → R+ will be called
locally finite if it is finite on every compact subset of X. Of course in a
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σ-compact metric space every locally finite measure µ is σ-finite, since X
may be written as a countable union of compact subsets. The space of all
locally finite measures on X will be denoted byM =M(X). The subspaces
ofM of all finite and all probabilistic measures will be denoted byMfin and
M1 respectively.

Let a Markov operator T : L1(X,B, λ) → L1(X,B, λ) be given. De-
fine U : L∞(X,B, λ) → L∞(X,B, λ) by (1.1). Then U satisfies conditions
(i)–(iii). Finally, assume that U satisfies a Feller type condition

(iv) UC0(X) ⊂ C(X).

Here C(X) is the space of all continuous bounded functions on X and C0(X)
is the space of all continuous functions with compact supports.

Now for µ ∈Mfin consider the linear functional

h 7→
∫
Uhdµ, h ∈ C0(X).

By the Riesz representation theorem there is a unique regular measure,
denoted by Pµ ∈M, satisfying

(2.1) 〈h, Pµ〉 :=
∫
h d(Pµ) =

∫
Uhdµ, h ∈ C0(X) .

In general, except some trivial cases like A = ∅ or A = X, the character-
istic function 1A is not continuous and 〈1A, Pµ〉 cannot be defined explicitly,
but in our case we have the following

Proposition 2.1. Let (X,B, λ) and T,U be as above. Then

(2.1a) Pµ(A) = 〈U1A, µ〉 for A ∈ B.

P r o o f. Let A ∈ Σ be an open set. There exists a sequence {hn}, hn ∈
C0(X), such that hn ↑ 1A. By (2.1) we have

〈hn, Pµ〉 = 〈Uhn, µ〉.
By (iii) and the Lebesgue monotone convergence theorem

(2.2) 〈1A, Pµ〉 = 〈U1A, µ〉.
Substituting A = X in (2.2) and using (ii) we have

Pµ(X) = 〈1X , Pµ〉 = 〈U1, µ〉 = 〈1, µ〉 = µ(X).

Therefore (2.2) is true for any closed set F ∈ Σ, and hence for any A ∈ Σ
since Pµ is regular.

Formula (2.2) defines a Markov operator on Mfin. This means that

(I) P (α1µ1 + α2µ2) = α1Pµ1 + α2Pµ2 for α1, α2 ≥ 0, µ1, µ2 ∈Mfin,
(II) Pµ(X) = µ(X) for µ ∈Mfin.

Suppose now that µ ∈ Mfin is absolutely continuous with respect to λ
(A ∈ Σ, λ(A) = 0 ⇒ µ(A) = 0). Note that if λ(A) = 0 then 1A = 0
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in L∞(λ) sense, thus U1A = 0 λ-a.e., hence U1A = 0 µ-a.e. The formula
(2.2) implies, in turn, that Pµ(A) = 0. Hence the measure Pµ is absolutely
continuous with respect to λ.

Using the Radon–Nikodym theorem we may define a linear operator P̂
on L1(X,B, λ) = L1(λ) as follows. Let 0 ≤ u ∈ L1(λ), put dµ = udλ; then

(2.3) P̂ u =
d(Pµ)
dλ

.

Now equation (2.2) means

(2.4) 〈P̂ u, 1A〉 = 〈u, U1A〉
where 〈u, f〉 =

∫
u · fdλ for u ∈ L1(λ), f ∈ L∞(λ). Using linearity and

continuity of U (‖U‖∞ = 1) on L∞(λ) we conclude

(2.5) 〈P̂ u, f〉 = 〈u, Uf〉, f ∈ L∞(λ) .

Now note that P̂ is a Markov operator on L1(λ). By (2.5) and (1.1) we
have

(2.6) P̂ = T .

3. Strong convergence for measures. Let (X,B, λ) be as in Section 2.
Let {µn} be a sequence of finite measures and µ ∈Mfin. We say that {µn}
converges strongly to µ if

(3.1) lim
n→∞

‖µn − µ‖ = 0

where

(3.2) ‖µn − µ‖ = sup
m∑

i=1

|µn(Xi)− µ(Xi)|

and the supremum is taken over all possible measurable partitions (X1, . . .
. . . , Xm) of X (with arbitrary m). In the case when the measures µn and
µ are absolutely continuous with respect to λ with Radon–Nikodym deriva-
tives fn and f respectively we have

µn(Xi)− µ(Xi) =
∫

Xi

(fn − f) dλ .

Substituting this into (3.2) we obtain immediately

‖µn − µ‖ =
∫
X

|fn − f |dλ = ‖fn − f‖1.

The value ‖µ‖ = µ(X) is called the norm of µ ∈Mfin.
Let T : L1(λ) → L1(λ) be a Markov operator. We say that {Tn} is

asymptotically stable if there exists a unique f∗ ∈ D such that Tf∗ = f∗ and

lim ‖Tnf − f∗‖1 = 0 for every f ∈ D .
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The operator P defined by (2.1) is strongly asymptotically stable if there
is a unique measure µ∗ ∈ M1 such that Pµ∗ = µ∗ and {Pnµ} converges
strongly to µ∗ for every µ ∈M1.

Finally, for every µ ∈ M we have the Lebesgue decomposition µ =
µa+µs, where µa is the maximal measure absolutely continuous with respect
to λ.

We may now state our main result in this section.

Theorem 3.1. Let T be a Markov operator on L1(X,B, λ). Suppose its
adjoint U acting on L∞(X,B, λ) satisfies (iv). Assume moreover that the
Markov operator P :Mfin →Mfin defined by (2.1) satisfies

(A) ‖(Pnµ)a‖ → 1 as n→∞ for µ ∈M1.

Then P is strongly asymptotically stable iff T is asymptotically stable.

P r o o f. Let µ∗ ∈ M1, Pµ∗ = µ∗ and ‖Pnµ− µ∗‖ → 0 for any µ ∈ M1.
We will show that {Tn} is asymptotically stable. First by (A)

µ∗a(X) = (Pnµ∗)a(X)→ µ∗(X) as n→∞.
Thus µ∗s = 0. Let dµ∗ = u∗dλ. Therefore Tu∗ = d(Pµ∗)/dλ = dµ∗/dλ =
u∗. Further, for u ∈ D let dµn = Tnudλ. Thus ‖Tnu−u∗‖1 = ‖µn−µ∗‖ → 0.

Conversely, assume that {Tn} is asymptotically stable. Then there is
u∗ ∈ D such that

(3.3) ‖Tnu− u∗‖1 → 0 for any u ∈ D.
Put dµ∗ = u∗dλ. Consider the sequence {Pnµ} with an arbitrary µ ∈ M1.
Choose ε ≥ 0. According to (A) there exists an integer k such that

(P kµ)a(X) = µka(X) ≥ 1− ε.
Define Θ = µka(X). Since µk = µka + µks we have

µn+k − µ∗ = Pnµk − µ∗ = Pnµka −Θµ∗ + Pnµks − (1−Θ)µ∗

and so

(3.4) ‖µn+k − µ∗‖ ≤ Θ‖Pn(Θ−1µka)− µ∗‖+ ‖Pnµks‖+ (1−Θ)‖µ∗‖.
The last two terms are easy to evaluate. Namely,

(3.5) ‖Pnµks‖ = Pnµks(X) = µks(X) = 1−Θ ≤ ε,

(3.6) (1−Θ)‖µ∗‖ = (1−Θ)µ∗(X) = 1−Θ ≤ ε.
The measure Θ−1µka is absolutely continuous and normalized. Denote its
density by fa. Evidently Pn(Θ−1µka) has density Tnfa and by (3.3)

‖Pn(Θ−1µka)− µ∗‖ = ‖Tnfa − u∗‖1 → 0.

Combining this with (3.4)–(3.6) yields lim ‖µn+k − µ∗‖ = 0.
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4. The transport equation. Let X = [0,∞)n with the Lebesgue
measure m. We consider the integro-differential equation

(4.1)
∂u(t, x)
∂t

+
n∑

i=1

∂

∂xi
(Fi(x)u(t, x)) + u(t, x) =

∫
X

k(x, y)u(t, y) dy,

t ≥ 0, x ∈ X, with the boundary conditions

(4.2)
u(t, x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0, i = 1, . . . , n, t ≥ 0,

u(0, x) = f(x), x ∈ X.
We assume that Fi has continuous derivatives ∂Fi/∂xj , i, j = 1, . . . , n, and
that the solution of the equation

(4.3) ẋ(t) = F (x(t))

with initial condition x(0) = x0 exists for all t ∈ R for every x0 ∈ Rn. This
guarantees that (4.3) defines a group of transformations by

(4.4) Π(t, x0) = x(t),

where x(t) is the solution of (4.3) with x(0) = x0. By the well-known
theorem on the continuous dependence of solutions of differential equations
on the initial conditions, Π : R × Rn → Rn is a dynamical system. The
kernel k(x, y) is measurable and stochastic, i.e.,

(4.5)
∫
X

k(x, y)dx = 1, k(x, y) ≥ 0, x, y ∈ X.

5. A linear evolution equation. In order to rewrite (4.1) as an
evolution equation in L1 space we must first replace the operator

(5.1) Aϕ(x) = −
n∑

i=1

∂

∂xi
(Fi(x)ϕ(x))

by its closure A in L1. We define

DA = {ϑ ∈ L1(Rn) : ϑ is continuously differentiable} .
Further, set

Iϑ = ϑ, Kϑ(x) =
∫
X

k(x, y)ϑ(y)dy.

It is well known (see pp. 185–186 in [LaMa]) that A is the generator of a
semigroup {T0(t)} such that u(t) = T0(t)ϑ satisfies the differential equation

u̇(t) = Au(t) for t ≥ 0 and ϑ ∈ DA.

This semigroup is given by

(5.3) T0(t)ϑ(x) = 1X [Π(−t, x)]f(Π(−t, x)) · J(−t, x),
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ϑ ∈ L1, where J(−t, x) is the determinant of the Jacobian matrix of the
transformation x 7→ Π(−t, x) and 1X is the characteristic function of X.

The semigroup {T0(t)}t≥0 is continuous in L1. That is, for every ϑ ∈
L1(X) the function t 7→ T0(t)ϑ is continuous in L1 norm (see Remark 7.6.2
in [LaMa], p. 187). Analogously, A − I is the generator of the semigroup
e−tT0(t) and u = e−tT0(t)ϑ for ϑ ∈ DA is the solution of

u̇(t) = (A− I)u(t).

Finally, A − I + K is the generator for the semigroup {T t}t≥0 of linear
operators on L1 such that u = T tϑ satisfies

(5.4) u̇(t) = (A− I +K)u(t) for ϑ ∈ DA.

From the Phillips perturbation theorem [DuSc], T t is given by

(5.5) (T tϑ)(x) = u(t, x) = e−t
∞∑

n=0

Tn(t)ϑ(x)

where

(5.6) Tn+1(t)ϑ(x) =
t∫

0

T0(t− s) ◦K ◦ Tn(s)ϑ(x) ds.

Thus instead of studying the solutions of (4.1) we shall study the behavior
of the semigroup {T t}t≥0.

The function u(t) = T tϑ may be considered as a generalized solution of
(4.1). In fact, if ϑ ∈ DA, then u(t) is a strong solution of (5.4) and for k
sufficiently smooth the formula u(t, x) = T tϑ(x) gives a classical solution of
(4.1).

6. The Foiaş type solution of the transport equation. Let us
summarize the properties of {T t} given by (5.5) and (5.6) which we will
need in the sequel.

(a) T tϑ ≥ 0 for ϑ ≥ 0, ϑ ∈ L1, t ≥ 0.
(b) ‖T tϑ‖1 = ‖ϑ‖1 for ϑ ≥ 0, ϑ ∈ L1, t ≥ 0.

From (a) and (b) it is easy to derive that

‖T tϑ‖1 ≤ ‖ϑ‖1 for ϑ ∈ L1, t ≥ 0 .

(c) T t+s = T t ◦ T s and T 0 = I for t, s ≥ 0.
(d) For every ϑ ∈ L1 the function t 7→ T tϑ is continuous in L1 norm.

From conditions (a) and (b) we have T tD ⊂ D, where D is the set of
densities.
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Proceeding analogously to Section 2 we may define the semigroup
{U t}t≥0, U t : L∞(m)→ L∞(m), of the adjoints to T t. Namely,

(6.1) 〈T tu, f〉 = 〈u, U tf〉 for u ∈ L1(m), f ∈ L∞(m).

Then each U t satisfies conditions (i)–(iii) of Section 1. By a straightforward
calculation the semigroup {U t}t≥0 may be written explicitly in the form

(6.2) U tf(x) = e−t
∞∑

n=0

Un(t)f(x), f ∈ L∞,

where

Un+1(t)f(x) =
t∫

0

Un(s)PU0(t− s)f(x) ds ,(6.3)

U0(t)f(x) = f(Π(t, x)) ,(6.4)

Pf(y) =
∫
X

k(x, y)f(x) dx, y ∈ X .(6.5)

Now we make the following additional assumption:

(B) PC(X) ⊂ C(X) .

Lemma 6.1. Under assumption (B), the semigroup {U t}t≥0 given by (6.2)
has the following property :

(6.6) U tC0(X) ⊂ C(X), t ≥ 0.

P r o o f. First we show that if f is bounded then so is U tf . Indeed, if
|f | ≤M then |U tf | ≤ |U tM | ≤M |U t1| = M.

For fixed f ∈ C(X), Ui(t)f(x) is continuous in (t, x), since Ui is a com-
position of transformations each of which carries a continuous function to
a continuous one and the parameter t appears in this composition when we
compose a continuous function with Π(t, x). Note, finally, that the series in
(6.2) is convergent in the supremum norm with respect to x, is uniformly
convergent with respect to t on bounded intervals and thus U tf(x) is a
continuous function of (t, x).

Now we are in a position to define the family of Foiaş operators corre-
sponding to the transport equation.

The mapping P t :Mfin(X)→Mfin(X) given by

(6.7) P tµ(A) =
∫
X

U t1Adµ

is called the Foiaş operator corresponding to U t.
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We know that for every fixed t ≥ 0, P t satisfies (I), (II) of Section 2
and moreover the family {P t}t≥0 forms a semigroup of Markov operators
on Mfin. That is,

(III) P s+t = P s ◦ P t and P 0 = I.

To prove this take h ∈ C(X), h ≥ 0. There exists a sequence {hn},
hn ∈ C0(X), such that hn ↑ h. Then we have

〈hn, P
tµ〉 = 〈U thn, µ〉, µ ∈Mfin.

By (iii) for U t and the Lebesgue monotone convergence theorem

(6.8) 〈h, P tµ〉 = 〈U th, µ〉, µ ∈Mfin.

To obtain (6.8) for every h ∈ C(X), we put h = h+ − h−, where h+(x) =
max{h(x), 0}, h−(x) = max{−h(x), 0}, and repeat the above argument for
h+ and h−.

Now, for h ∈ C0(X) and µ ∈Mfin, from (6.8) we have

〈h, P t+sµ〉 =
∫
U t+sh dµ =

∫
U t(Ush) dµ = 〈Ush, P tµ〉

=
∫
Ush d(P tµ) = 〈h, P s(P tµ)〉.

This proves (III).
Suppose that the initial value u(0, x) in (4.2) is a measure µ0 ∈ Mfin.

Then the semigroup P tµ0 describes the evolution of the distribution µ0 with
respect to t.

The semigroup {P tµ0} will be called the Foiaş solution of the transport
equation (4.1) with initial condition µ0. Further, according to Section 2
observe that if a measure µ0 is absolutely continuous with respect to the
Lebesgue measure m, that is, dµ0 = f0dm, f0 ∈ L1(m), then P tµ0 is also
absolutely continuous with respect to m and

(6.9) d(P tµ0) = (T tf0)dm,

where {T t} is given by (5.5).
Analogously to Section 3 we say that {P t} is strongly asymptotically

stable if there is a unique measure µ∗ ∈ M1 such that P tµ∗ = µ∗ for t ≥ 0
and limt ‖P tµ − µ∗‖ = 0 for every µ ∈ M1. A semigroup {T t} of Markov
operators is asymptotically stable if there is a unique f∗ ∈ D such that
T tf∗ = f∗ for t ≥ 0 and limt ‖T tf − f∗‖1 = 0 for every f ∈ D.

Now we are ready to state our main result concerning the strong asymp-
totic stability of the Foiaş solutions of the transport equation.

Theorem 6.1. The family of Foiaş operators {P t} is strongly asymp-
totically stable iff {T t} is asymptotically stable. In other words, the Foiaş
solutions of the transport equation (4.1) are strongly asymptotically stable
iff the solutions corresponding to densities are stable.
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P r o o f. An inspection of the proof of Theorem 3.1 shows that we only
needed the following four requirements:

(1) P satisfies conditions (I) and (II).
(2) {Pn} is a semigroup onMfin, that is, Pn+m = Pn ◦Pm and P 0 = I.

(3) If µ ∈ Mfin and µ is absolutely continuous with respect to λ, then
so is Pnµ, n ≥ 1.

(4) {Pn} satisfies condition (A).

Since our semigroup {P t} of Markov operators on Mfin satisfies analo-
gous requirements to (1), (2) and (3) for every t ≥ 0 with respect to the
Lebesgue measure m, in order to adapt the proof of Theorem 3.1 to {P t}
we must only prove condition (A) for the semigroup {P t}. Namely, we will
show that (P tµ)a(X)→ 1 as t→∞ for every µ ∈M1.

In order to evaluate (P tµ)a we will use an explicit formula for Un(t)f .
From the recurrence formula for Un(t)f , by a quite easy calculation, we may
rewrite Un(t)f in the form

Un(t)f(x) =
∫
X

dw1 . . .
∫
X

dwn

t∫
0

dsn

sn∫
0

dsn−1 . . .(6.10)

. . .
s2∫
0

ds1 ϕ(t, s1, . . . , sn, x, w1, . . . , wn)

where

(6.11) ϕ(t, s1, . . . , sn, x, w1, . . . , wn)
= k(w1, Π(s1, x))k(w2, Π(s2 − s1, w1)

· . . . · k(wn, Π(sn − sn−1, wn−1)) · f(Π(t− sn, wn))

and si ∈ R, wi ∈ X, i = 1, . . . , n, 0 ≤ si ≤ si+1.

Let µ ∈ M1. Using the Lebesgue decomposition and linearity of P t we
have P tµ = P tµa + P tµs. Note that P tµa is also absolutely continuous.
Then by (II) we have

(6.12) (P tµ)a(X) = P tµa(X) + (P tµs)a(X) = µa(X) + (P tµs)a(X) .

Our goal now is to evaluate (P tµs)a(X). Let A ∈ B(X). By (6.7)

P tµs(A) =
∫
X

U t1A dµs = e−t
∞∑

n=0

∫
X

Un(t)1A dµs = e−t
∞∑

n=0

P t
nµs.

Here

P t
nµs(A) =

∫
X

Un(t)1A dµs =
∫
X

ν(wn, t) dwn, n ≥ 1,
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where

ν(wn, t) =
∫
X

µs(dx)
∫
X

dw1 . . .
∫
X

dwn−1

t∫
0

dsn

sn∫
0

dsn−1 . . .

. . .
s2∫
0

ds1ϕA(t, s1, . . . , sn, x, w1, . . . , wn)

and ϕA is obtained by substituting f = 1A into (6.11). Thus

P t
nµs(A) =

∫
A

ν(wn, t) dwn +
∫

X\A

ν(wn, t) dwn = σt,n(A) + %t,n(A).

The measure σt,n(A) is absolutely continuous with respect to the Lebesgue
measure with density ν(wn, t). Hence

(6.13) (P t
nµs)a ≥ σt,n.

Noting that P t
nµs(X) = σt,n(X) and using (6.13) we obtain

(P t
nµs)a(X) = P t

nµs(X), n ≥ 0.

From this it follows that

(P tµs)a(X) ≥ e−t
∞∑

n=1

(P t
nµs)a(X) = e−t

∞∑
n=1

P t
nµs(X)

= P tµs(X)− e−tµs(X) = µs(X)− e−tµs(X).

Thus (P tµs)a(X) → µs(X) as t → ∞. Finally, from (6.12) we have
(P tµ)a(X)→ 1 as t→∞.
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