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1. Let G be an open set in Rn and let F be its boundary. Let Γ be some part
of F which is a smooth (n−1)-dimensional submanifold. Let A be a closed subset
of Γ .

Let u be a function harmonic in G satisfying the boundary condition Dvu = 0
on Γ \ A, where v is the outer normal to Γ . When can we say that Dvu = 0 on
Γ , i.e. when the singularity of u on A is removable? It is evident that the answer
depends on the structure of A and on the behaviour of u in a neighbourhood
of A. For instance, if A is a single point, then the singularity is removable if
|u(x)| = o(r2−n) as r → 0, where r is the distance from A, and can be non-
removable if n > 2 and |u(x)| = O(r2−n).

Indeed, let f ∈ C∞0 (Γ ). We show that if |u(x)| = o(r2−n), then∫
Γ

f(x)Dvu(x) dS = 0 .

Let A be the origin. Let h ∈ C∞0 (Γ ), h(A) = 1. Then∫
Γ

f(x)Dvu(x) dS =
∫
Γ

f(x)Dvu(x)h(x/ε) dS

for any ε > 0. We can extend f and h in such a way that they vanish outside
some neighbourhood of A and Dvf = Dvh = 0 on Γ . By the Green formula we
have∫

Γ

f(x)Dvu(x)h(x/ε) dS =
∫
G

(f(x)h(x/ε)∆u(x)− u(x)∆(f(x)h(x/ε))) dx

[137]
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and therefore,∫
Γ

f(x)Dvu(x) dS = − lim
ε→0

∫
G

u(x)∆(f(x)h(x/ε)) dx .

It is clear that |∆(f(x)h(x/ε))| ≤ Cε−2. Therefore from the condition |u(x)| =
o(r2−n) it follows that

∫
f(x)Dvu(x) dS = 0. The same is true if u ∈ Lp,loc(G),

where p = n/(n − 2), n > 2. This can be seen immediately if we apply Hölder’s
inequality.

On the other hand, if Γ coincides locally with the plane xn = 0, then for
the fundamental solution E(x) of the Laplace operator we have DnE(x) = δ(x′)
when xn = 0, where x′ = (x1, . . . , xn−1), and we can see that the singularity of
the solution is non-removable if n > 2 and |u(x)| = O(r2−n).

2. Now let P (x,D) be a linear differential operator of order m with coefficients
smooth in G, and suppose that another differential operator B(x,D), which also
has smooth coefficients, is defined on Γ . We do not make any assumptions about
the type of the operator P .

Consider the following problem: when from the conditions: Pu = 0 in G,
Bu = 0 on Γ \ A does it follow that Bu = 0 on Γ? We state a number of suffi-
cient conditions. All these conditions are sharp, which can be shown by suitable
examples.

Our results can be easily transferred to boundary-value problems for linear
systems of differential equations. The conditions on the smoothness of the coeffi-
cients of the operators P and B, and on the smoothness of the manifold Γ can,
of course, be made essentially weaker.

3. Our main assumption is the validity of the Green formula:∫
G

(Pu · v − u · P ′v) dx =
∫
Γ

N∑
j=1

Bj(x,D)u · Sj(x,D)v dS

for smooth functions u and v, if v = 0 in a neighbourhood of F \ Γ . Here P ′ is
the operator transposed to P , Bj and Sj are differential operators with smooth
coefficients, and one of the Bj , say B1, coincides with the original operator B.

Assume also that

S1(x,D) = Q(x,D)Dk
v + S′1(x,D) ,

where Dv is differentiation in the normal direction, Q acts in the directions tan-
gent to Γ , and k is some number, 0 ≤ k ≤ m− 1.

Suppose that the operators S′1, S2, . . . , SN do not involve the derivative Dk
v

(but they can involve Di
v for i < k and for i > k) and that the equation Qw = g

has a solution w ∈ Cm(Γ ) for a set M of functions g, which is dense in C∞0 (Γ ).
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4. Theorem 1. Let A be a single point. If u(x) = o(rm−n−k), where r is the
distance of x from A, then Bu = 0 on Γ .

If A is an infinite set, it is convenient to apply the Hausdorff measure for its
description. The d-dimensional Hausdorff measure of A, denoted by Hd(A), is
defined as limε→0 inf

∑
rdj , where the infimum is taken over all coverings of A by

countable collections of balls with radii rj ≤ ε.

5. Theorem 2. Let −∞ < l < m, 1 < p < ∞, 1/p + 1/q = 1. If Pu = 0 in
G, Bu = 0 on Γ \ A, u ∈ W l

p(G) and Hn−q(m−k−l)(A) <∞, then Bu = 0 on Γ .
If u ∈W l

∞(G), then the same is true if Hn−m+k+l(A) = 0.

Here W 0
p (G) = Lp(G) and W l

p(G) for l natural is the space of functions whose
derivatives of orders ≤ l are in Lp(G). For negative integers l this space consists
of distributions of the form

∑
Difi for |i| ≤ −l, fi ∈ Lp(G).

6. Theorem 3. Let Pu = 0 in G, Bu = 0 on Γ \ A and u ∈ Cl(G ∪ Γ ).
Assume that the order of the operator B is greater than l. If Hn−m+k+l(A) = 0,
then Bu = 0 on Γ .

Here the space Cl(M) for l natural consists of functions whose derivatives of
orders ≤ l− 1 are continuous and satisfy the Lipschitz condition in M . If l > 0 is
not an integer, then this is a space of functions whose derivatives of orders ≤ [l]
satisfy the Hölder condition with exponent l− [l] (here [l] is the integer part of l).
Finally, if l ≤ 0, then Cl(M) consists of distributions of the form

∑
Difi, where

|i| ≤ −[l], fi ∈ C [l]−l(M).

7. The results for the Neumann problem, stated in the first section, are not
sharp in the case n = 2. It is well known that in this case the condition on u
must have the form |u(x)| = o(ln r). We state a similar sharp result for a general
elliptic boundary-value problem.

Let A be a smooth submanifold in Γ of dimension d = n − m. Suppose
z1, . . . , zd are local coordinates on A, and y1, . . . , yn−d are coordinates in the
complementary space, so that the yn−d = xn axis is transversal to Γ and
y1, . . . , yn−d−1 are the inner coordinates in Γ .

Assume that m = 2k and the operators P , B1, . . . , Bk define a regular elliptic
problem. Assume also that m1 < m2 < . . . < mk = m− 1, where mj is the order
of Bj . By the construction of the parametrix of this problem (see [1]),

u(x) = QPu+
k∑
j=1

QjBj [u⊗ δ(xn)] + Tu ,

where Q, Qj , T are pseudo-differential operators of orders −m, −mj , −1, respec-
tively. Let Q0 be the operator with symbol 1/p0(x, ξ) and gj = Bju−BjQ0u. Let
x ∈ Γ . Let r1, . . . , rk be the roots of the equation p0(x, ξ′, r) = 0 with positive
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imaginary parts. Let R(x, ξ′) = B(x, ξ′)−1 where B is the matrix with elements
bjl(x, ξ′) = bj(x · ξ′, rl(x, ξ′)). Then

u(x) = Q0Pu

+ (2π)−n+1
∫ k∑

j,l=1

rjl(x, ξ′)F [gl](ξ′) exp(irj(x, ξ′)xn + ix′ξ′) dξ′ + Tu

where F [g] is the Fourier transform of g. Therefore the principal symbol of Qj is∑
l

rlj(x, ξ′) exp(irj(x, ξ′)xn)

and the order of homogeneity of rlj in ξ′ is −mj . Let

r(y, z, η, ζ) = r(x, ξ′) =
∑

rjl(x, ξ′) .

The order of this function in ξ′ is 1−m.

Theorem 4. Let Pu = 0 in G and Bju = 0 on Γ \ A for j = 1, . . . , k, and
|u(x)| = o(ln r), where r is the distance of x from A. Let∫

|η|=1

r(0, z, η, 0) dSη 6= 0 for z ∈ A .

Then Bju = 0 on Γ and u ∈ C∞(G ∪ Γ ).

The proof is based on a construction from [3].
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