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1. This paper is devoted to the study of wave fronts of solutions of first order
symmetric systems of non-linear partial differential equations. A short commu-
nication was published in [4]. The microlocal point of view enables us to obtain
more precise information concerning the smoothness of solutions of symmetric
hyperbolic systems. Our main result is a generalization to the non-linear case of
Theorem 1.1 of Ivrĭı [3]. The machinery of paradifferential operators introduced
by Bony [1] together with an idea coming from [3], [2] are used.

2. The definition and main properties of paradifferential operators are assumed
to be known to the reader [1]. We will use here the same notations as in [1]. We
recall the definition of the microlocalized Sobolev space Hsmcl:

Definition. A distribution u ∈ D′(X) belongs to the class Hsmcl(%
0), %0 ∈

T ∗(X) \ 0, %0 = (x0, ξ0), if there exists a classical properly supported pseudodif-
ferential operator a of order 0 such that a(%0) 6= 0, au ∈ Hsloc(X), where Hsloc is
the local Sobolev space.

We denote by W ⊂ T ∗(X) \ 0 an (open) closed set conical with respect to ξ
and having a compact base in X. Assume that Fk(x, u1, . . . , uN , u11, . . . , uij , . . . ,
uNn), 1 ≤ j ≤ n, 1 ≤ i, k ≤ N , are real-valued C∞-functions of their arguments
x ∈ X, ~u ∈ RN , (u11, . . . , uNn) ∈ RNn and X is a domain in Rn. Define a matrix
Aj by

Aj = ‖∂Fk/∂uij(x, ~u(x), ∂~u(x))‖1≤i,k≤N .

We now formulate the main result of this paper.
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Theorem 1. Consider the non-linear system of partial differential operators

(1) Fk(x, ~u(x), ∂~u(x)) = 0 , 1 ≤ k ≤ N,

~u(x) = (u1, . . . , uN ), and suppose that (1) possesses a real-valued solution ~u ∈
Hsloc(X), s > 2 + n/2, such that

(i) ∂Fk/∂uij(x, ~u(x), ∂~u(x)) = ∂Fi/∂ukj(x, ~u(x), ∂~u(x)), ∀x ∈ X,
(ii) the matrix Aj0(x) = ‖∂Fk/∂uij0(x, ~u(x), ∂~u(x))‖1≤i,k≤N , x ∈ X, is (pos-

itive) negative definite.

Suppose, moreover , that for each characteristic point %0 ∈ Char p1 ∩ ∂W ∩
{xj0 ≥ δ} we have u ∈ Htmcl(%

0) for some t < 2s− 2− n/2. Then u ∈ Htmcl(%
0),

∀%0 ∈ Char p1 ∩W ∩ {xj0 ≥ δ}, δ = const.

We point out that conditions (i), (ii) imply that the linearized system Pv =∑n
j=1Aj(x)Djv − iB(x)v is symmetric and positive, B,Aj(x) ∈ C1+ε(X), 1 >

ε > 0. As usual,

Char p1 =
{
% = (x, ξ) ∈ T ∗(X) \ 0 : det

n∑
j=1

Aj(x)ξj = 0
}
.

It is interesting to note that u ∈ H2s−1−ε−n/2
mcl (%0), ε > 0, for each %0 6∈ Char p1

(see Th. 5.4 of [1]).
Standard considerations from the theory of paradifferential operators P ∈

Õp(Σ1
σ), σ > 1, σ not an integer, reduce the proof of Theorem 1 to the proof of

the following assertion.

Theorem 2. Consider the first order paradifferential system

(2) P (x,D)u =
n∑
j=1

Aj(x)Dju− iB(x)u = f (−P (x,D)u = −f)

where P ∈ Õp(Σ1
σ), σ > 1, σ not an integer , A∗j (x) = Aj(x), ∀x ∈ X, the Aj(x)

are real-valued N ×N matrices and (Aj0(x) > 0) Aj0(x) < 0, ∀x ∈ X. Assume
that u ∈ Ht−1/2

comp (X), Pu ∈ Htmcl(W ∩ {xj0 ≥ δ}), and u ∈ Htmcl(%
0) for each

%0 ∈ Char p1 ∩ ∂W ∩ {xj0 ≥ δ}. Then

u ∈ Htmcl(%
0) , ∀%0 ∈ Char p1 ∩W ∩ {xj0 ≥ δ} .

In the special case when %0 6∈ Char p1 the solution u ∈ Ht+1
mcl (%

0).

3. Supposing Theorem 2 is proved and s < t we will verify Theorem 1. To
do this we apply Theorem 5.3 b) of [1] with the corresponding notations d = 1,
% = s− ε− n/2, ε > 0, σ = %− 1 to conclude that there exists a paradifferential
operator P ∈ Õp(Σ1

σ), σ > 1, satisfying Pu ∈ H2s−2−ε−n/2
loc ⇒ Pu ∈ Htloc for

ε > 0 sufficiently small, u ∈ Hsloc.
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The next remark will be useful later:

Let u ∈ Hsloc(X), Pu ∈ Htmcl(W ∩{xj0 ≥ δ}), u ∈ H
t−1/2
mcl (W ∩{xj0 ≥ δ}) and

u ∈ Htmcl(∂W ∩ {xj0 ≥ δ}). Then u ∈ Htmcl(W ∩ {xj0 ≥ δ}).

In fact, consider a classical pseudodifferential operator T ∈ S0
1,0, T ≡ 1 in a

small conic neighbourhood (ngbhd) of W ∩ {xj0 ≥ δ}, T ≡ 0 outside a larger
conic ngbhd of W ∩ {xj0 ≥ δ}. Then Tu ∈ Ht−1/2

comp (X), Tu ∈ Htmcl(∂W ∩ {xj0 ≥
δ}) and P (Tu) ∈ Htmcl(W ∩ {xj0 ≥ δ}) as P (Tu) = Pu + P ((T − I)u) and
P ((I − T )u) ∈ Hs−1+σ

mcl ⊂ Htmcl(W ∩ {xj0 ≥ δ}) according to Corollary 3.5 of [1].
Thus Tu ∈ Htmcl(W ∩{xj0 ≥ δ}) ⇒ u ∈ Htmcl(W ∩{xj0 ≥ δ}). To complete the
proof of Theorem 1 we observe that there exists a uniquely determined integer
k ≥ 1 for which (k − 1)/2 ≤ t− s < k/2 and therefore

t− k/2 ≤ s ≤ t− (k − 1)/2 < t− (k − 2)/2 < . . . < t− 1/2 < t.

Setting t′ = t − (k − 1)/2 we get u ∈ Hsloc ⊂ H
t−k/2
loc = Ht

′−1/2
loc , Pu ∈ Htloc ⊂

Ht−(k−1)/2
loc = Ht′loc, u ∈ Ht

′

mcl(∂W ∩ {xj0 ≥ δ}). So u ∈ Ht′mcl(W ∩ {xj0 ≥ δ}) as
s ≤ t′. Put now t′′ = t− (k−2)/2 = t′+ 1/2. Obviously u ∈ Ht

′′−1/2
mcl (W ∩{xj0 ≥

δ}), Pu ∈ Ht′′loc, u ∈ Ht
′′

mcl(∂W ∩ {xj0 ≥ δ}).
The remark above and s ≤ t′ ≤ t′′ give us u ∈ Ht′′mcl(W ∩{xj0 ≥ δ}). Thus we

conclude that u ∈ Htmcl(W ∩ {xj0 ≥ δ}).

4. Proof of Theorem 2. To simplify the proof we will assume that W =
∆×Γξ, ∆ = [a1, b1]× . . .× [an, bn], Γξ is a closed cone in T ∗(Rn) and A1(x) < 0.
Choose κj ∈ C∞0 (R) so that κj ≡ 1 on [aj , bj ], κ′j(xj) = κ−j (xj)−κ+

j (xj), 0 ≤ κ+
j ,

0 ≤ κ−j , xj ≤ aj in suppκ−j , xj ≥ bj in suppκ+
j and δ = a1 but no information

on the Htmcl-smoothness of u at {x1 = a1} × Γξ is given. For λ, δ1 > 0 put

Q = Qλ,δ1 = eλx1κ(x)(1 + |δ1ξ|2)−1h(ξ),

ordξ h = t and cone suppQλ,δ1 is concentrated in a small conic ngbhd of W .
Obviously, Qλ,δ1 ∈ St−2

1,0 and the factor κ(x)(1 + (δ1|ξ|)2)−1 is bounded in Σ0
% ,

S0
1,0, ∀% > 0, % not an integer, uniformly with respect to δ1 ∈ (0, 1] and κ(x) =
κ1(x) . . . κn(x). Thus for each fixed λ > 0 and arbitrary δ1 ∈ (0, 1], Qλ,δ1 ∈ St1,0.

Consider now the identity

(QPu,Qu)L2 = (PQu,Qu)L2 + ([Q,P ]u,Qu)L2 .

It is legitimate as Pu ∈ Htmcl(W ) ⇒ QPu ∈ H2
comp(X), Qu ∈ H3/2

comp(X) (in our
notations W = W ∩ {x1 ≥ δ}). So

(3) Im(QPu,Qu)L2 = Im(PQu,Qu)L2 + Im([Q,P ]u,Qu)L2 .

We first estimate

(4) I = Im(PQu,Qu)L2 ,
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i.e. we have to consider the terms (Aj(x)DjQu,Qu), (B(x)Qu,Qu) (( · , · )L2 =
( · , · )). It can easily be seen that

|(B(x)Qu,Qu)| ≤ C1‖Qu‖20 + C1λ‖u‖2t−σ/2
where C1 is an absolute constant and C1λ depends on λ > 0 but does not depend
on δ1 ∈ (0, 1]. Now,

(Aj(x)DjQu,Qu) = (DjAjQu,Qu) + ([Aj , Dj ]Qu,Qu)
= (Qu,AjDjQu) + ([Aj , Dj ]Qu,Qu),

i.e. 2|Im (AjDjQu,Qu)| ≤ |([Aj , Dj ]Qu,Qu)|. The principal symbol of the
commutator [Aj , Dj ] is −i{Aj , ξj} = i∂Aj(x)/∂ξj ∈ Σ0

σ−1, σ − 1 > 0, i.e.
Im |(AjDjQu,Qu)| ≤ C2‖Qu‖20. In other words,

(5) |I| ≤ C3‖Qu‖20 + C3λ‖u‖2t−σ/2.

To estimate II = Im([Q,P ]u,Qu) we use Theorem 3.2 of [1]. Since the principal
symbol of [Q,P ] is (1/i){Q, p1} we have

II = −Re({Q, p1}u,Qu) + C ′3λ‖u‖2t+(1−σ)/2.

Obviously

−{Q, p1} = −
n∑

j,k=1

(∂Q/∂ξk)(∂Aj(x)/∂xk)ξj +
n∑
j=1

(∂Q/∂xj)Aj(x)

and therefore

∂Q/∂x1 = λQ+ eλx1(∂κ/∂x1)(1 + |δ1ξ|2)−1h(ξ).

The inequality ∂κ/∂x1 ≥ −κ+
1 (x1)κ2 . . . κn = −κ+(x) will enable us to apply the

sharp G̊arding estimate. In fact,

Re((∂Q/∂x1)A1u,Qu) = λRe(QA1u,Qu) + Re(Q̃+A1u,Qu),

where Q̃+ = eλx1(∂κ/∂x1)(1 + |δ1ξ|2)−1h(ξ). It is clear that (QA1u,Qu) =
(A1Qu,Qu) + ([Q,A1]u,Qu), thus

(6) Re(QA1u,Qu) ≤ −C4‖Qu‖20 + C4λ‖u‖2t−1/2 , C4 > 0.

On the other hand,

(7) Re(Q̃+A1u,Qu) ≤ Re(A1(x)κ(∂κ/∂x1)v, v) + C5λ‖u‖2t−1/2

where v = eλx1h(D)(1 + |δ1D|2)−1u. The commutator

[A1, κe
λx1(∂κ/∂x1)h(D)(1 + |δ1D|2)−1]

is bounded in Σt−1
σ−1 uniformly with respect to δ1 > 0. We apply the sharp G̊arding

inequality to the symmetric non-positive matrix A1κ(∂κ/∂x1) + κκ+A1 and we
get

(8) Re(κ(∂κ/∂x1)A1v, v) ≤ −Re(κκ+A1v, v) + C6λ‖u‖2t−µ/2,
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with µ < σ/2 if 1 < σ < 2 and µ = 1 if σ > 2 (see [1]). Then

|(κκ+A1v, v)| ≤ |(A1κv, κ
+v)|+ |([A1, κ]v, κ+v)|(9)

≤ C7(‖κv‖ · ‖κ+v‖+ ‖v‖−1 · ‖κ+v‖)
≤ C7‖Qu‖ · ‖Q+u‖+ C7λ‖u‖t−1 · ‖Q+u‖

and Q+ = Q+
λ,δ1

is defined as Qλ,δ1 with κ replaced by κ+. Note that ‖Q+u‖ <∞
as Q+(x, ξ) concentrates in a ngbhd of {x1 = b1}×Γξ and u ∈ Htmcl(∂W ∩{x1 ≥
δ}), δ = a1.

By the identity ∂Q/∂xj = eλx1(∂κ/∂xj)(1 + |δ1ξ|2)−1h(ξ), j ≥ 2, ∂Q/∂xj
concentrates in a ngbhd of {xj = aj}×Γξ, {xj = bj}×Γξ and simple computations
show that

(10) |(∂Q/∂xj(x,D)Aj(x)u,Qu)|
≤ |(Aj(∂Q/∂xj)u,Qu)|+ |([Aj , ∂Q/∂xj ]u,Qu)|

≤ C8λ‖u‖Ht
mcl(∂W∩{x1≥δ})‖Qu‖0 + C9λ‖u‖t−1‖Qu‖0

≤ ‖Qu‖20 + C10λ(‖u‖2t−1 + ‖u‖Ht
mcl(∂W∩{x1≥δ})).

Now we will estimate ((∂Aj/∂xk)Dj(∂Q/∂ξk)(x,D)u,Qu). To do this two
terms will be considered, namely

III1 = ((∂Aj/∂xk)eλx1κ(x)Dj(∂h/∂ξk)(D)(1 + |δ1D|2)−1u,Qu),

III2 = ((∂Aj/∂xk)eλx1κ(x)h(D)Djδ
2
1Dk(1 + |δ1D|2)−2u,Qu).

Obviously, δ21ξk(1 + δ21 |ξ|2)−2 is uniformly bounded in S−1,0
1,0 , Σ−1

% , % > 0, % not
an integer, ∀δ1 ∈ (0, 1]. The observations that δ21ξjξk(1 + |δ1ξ|2)−1 is uniformly
bounded in S0

1,0 with respect to δ1 > 0 and

eλx1κ(x)h(D)δ21DjDk(1 + |δ1D|2)−2u = Q(δ21DjDk(1 + |δ1D|2)−1u)

enable us to conclude that

(11) |III2| ≤ C11‖Qu‖20 + C11λ‖u‖2t−1/2.

The cut-off symbol h(ξ) can be written as h(ξ) = |ξ|tc(ξ), ordξ c = 0, 0 ≤ c ≤ 1,
c ≡ 1 in a conic ngbhd of Γξ and c ≡ 0 outside a larger conic ngbhd of Γξ. The
inequality

(12) |∂h/∂ξk|2 ≤ 2t2(h2/|ξ|2) + 2|ξ|2t|∂c/∂ξk|2

will be useful later. Thus

‖eλx1κDj(∂h/∂ξk)(D)(1 + |δ1D|2)−1u‖0
≤ ‖Dj(∂h/∂ξk)(D)(1 + |δ1D|2)−1(eλx1κ(x)u)‖0 + C12λ‖u‖t−1.
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On the other hand, according to (12),

‖Dj(∂h/∂ξk)(D)(1 + |δ1D|2)−1(eλx1κ(x)u)‖20
=
∫
ξ2j (∂h/∂ξk)2(1 + |δ1ξ|2)−2|(eλx1κ(x)u)∧|2(ξ) dξ

≤ 2t2‖h(D)(1 + |δ1D|2)−1(eλx1κu)‖20

+ 2
∫
|ξ|2t+2(∂c/∂ξk)2|(eλx1κ(x)u)∧|2(ξ) dξ

≤ 2t2‖Qu‖20 + C13λ‖u‖2t−1 + 2‖ |D|t+1(∂c/∂ξk)(eλx1κu)‖20
≤ 2t2‖Qu‖20 + C13λ‖u‖2t−1 + C14λ‖u‖2Ht

mcl(∂W∩{x1≥δ})).

We remind the reader that ordξ |ξ|t+1(∂c/∂ξk) = t and κ(x)(∂c/∂ξk) concentrates
in a conic ngbhd of ∆× ∂Γξ. In other words,

(13) |III1| ≤ C15‖Qu‖20 + C16λ(‖u‖2t−1 + ‖u‖2Ht
mcl(∂W∩{x1≥δ})).

Combining the identity (3) and the corresponding estimates (5) for I, (6)–(11),
(13) for II and

Im(QPu,Qu) ≥ −2‖QPu‖20 − 2‖Qu‖20
we come to the conclusion that

(14) (λ− C)‖Qu‖20 ≤ 2‖QPu‖20 + C‖Q+u‖20
+Kλ(‖u‖2t−1/2 + ‖u‖2t−µ/2 + ‖u‖2t+(1−σ)/2 + ‖u‖2Ht

mcl(∂W∩{x1≥δ})).

The constant C does not depend on λ > 0 and δ1 > 0, and Kλ depends on λ > 0
only. Taking λ sufficiently large and letting δ1 → 0 we prove Theorem 2 for σ > 2.

To consider the case 1 < σ < 2 we have to modify the proof of our Theorem 2
assuming Pu ∈ Htmcl, u ∈ Htmcl(∂W ) and u ∈ Ht−γcomp(X), 0 < γ < 1/2, instead of
γ = 1/2 etc.
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