WAVE FRONTS OF SOLUTIONS
 OF SOME CLASSES OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS

P. R. POPIVANOV
Department of Mathematics, Sofia University
Bul. A. Ivanov 5, Sofia, Bulgaria

1. This paper is devoted to the study of wave fronts of solutions of first order symmetric systems of non-linear partial differential equations. A short communication was published in [4]. The microlocal point of view enables us to obtain more precise information concerning the smoothness of solutions of symmetric hyperbolic systems. Our main result is a generalization to the non-linear case of Theorem 1.1 of Ivriĭ [3]. The machinery of paradifferential operators introduced by Bony [1] together with an idea coming from [3], [2] are used.
2. The definition and main properties of paradifferential operators are assumed to be known to the reader [1]. We will use here the same notations as in [1]. We recall the definition of the microlocalized Sobolev space $\mathcal{H}_{\text {mcl }}^{s}$:

Definition. A distribution $u \in \mathcal{D}^{\prime}(X)$ belongs to the class $\mathcal{H}_{\mathrm{mcl}}^{s}\left(\varrho^{0}\right), \varrho^{0} \in$ $T^{*}(X) \backslash 0, \varrho^{0}=\left(x^{0}, \xi^{0}\right)$, if there exists a classical properly supported pseudodifferential operator a of order 0 such that $a\left(\varrho^{0}\right) \neq 0$, $a u \in \mathcal{H}_{\text {loc }}^{s}(X)$, where $\mathcal{H}_{\text {loc }}^{s}$ is the local Sobolev space.

We denote by $W \subset T^{*}(X) \backslash 0$ an (open) closed set conical with respect to ξ and having a compact base in X. Assume that $F_{k}\left(x, u_{1}, \ldots, u_{N}, u_{11}, \ldots, u_{i j}, \ldots\right.$, $\left.u_{N n}\right), 1 \leq j \leq n, 1 \leq i, k \leq N$, are real-valued C^{∞}-functions of their arguments $x \in X, \vec{u} \in \mathbb{R}^{N},\left(u_{11}, \ldots, u_{N n}\right) \in \mathbb{R}^{N n}$ and X is a domain in \mathbb{R}^{n}. Define a matrix A_{j} by

$$
A_{j}=\left\|\partial F_{k} / \partial u_{i j}(x, \vec{u}(x), \partial \vec{u}(x))\right\|_{1 \leq i, k \leq N} .
$$

We now formulate the main result of this paper.

Theorem 1. Consider the non-linear system of partial differential operators

$$
\begin{equation*}
F_{k}(x, \vec{u}(x), \partial \vec{u}(x))=0, \quad 1 \leq k \leq N, \tag{1}
\end{equation*}
$$

$\vec{u}(x)=\left(u_{1}, \ldots, u_{N}\right)$, and suppose that (1) possesses a real-valued solution $\vec{u} \in$ $\mathcal{H}_{\text {loc }}^{s}(X), s>2+n / 2$, such that
(i) $\partial F_{k} / \partial u_{i j}(x, \vec{u}(x), \partial \vec{u}(x))=\partial F_{i} / \partial u_{k j}(x, \vec{u}(x), \partial \vec{u}(x)), \quad \forall x \in X$,
(ii) the matrix $A_{j_{0}}(x)=\left\|\partial F_{k} / \partial u_{i j_{0}}(x, \vec{u}(x), \partial \vec{u}(x))\right\|_{1 \leq i, k \leq N}, x \in X$, is (positive) negative definite.
Suppose, moreover, that for each characteristic point $\varrho^{0} \in \operatorname{Char} p_{1} \cap \partial W \cap$ $\left\{x_{j_{0}} \geq \delta\right\}$ we have $u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(\varrho^{0}\right)$ for some $t<2 s-2-n / 2$. Then $u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(\varrho^{0}\right)$, $\forall \varrho^{0} \in \operatorname{Char} p_{1} \cap W \cap\left\{x_{j_{0}} \geq \delta\right\}, \delta=$ const.

We point out that conditions (i), (ii) imply that the linearized system $P v=$ $\sum_{j=1}^{n} A_{j}(x) D_{j} v-i B(x) v$ is symmetric and positive, $B, A_{j}(x) \in C^{1+\varepsilon}(X), 1>$ $\varepsilon>0$. As usual,

$$
\text { Char } p_{1}=\left\{\varrho=(x, \xi) \in T^{*}(X) \backslash 0: \operatorname{det} \sum_{j=1}^{n} A_{j}(x) \xi_{j}=0\right\}
$$

It is interesting to note that $u \in \mathcal{H}_{\operatorname{mcl}}^{2 s-1-\varepsilon-n / 2}\left(\varrho^{0}\right), \varepsilon>0$, for each $\varrho^{0} \notin \operatorname{Char} p_{1}$ (see Th. 5.4 of [1]).

Standard considerations from the theory of paradifferential operators $P \in$ $\widetilde{O}_{p}\left(\Sigma_{\sigma}^{1}\right), \sigma>1, \sigma$ not an integer, reduce the proof of Theorem 1 to the proof of the following assertion.

Theorem 2. Consider the first order paradifferential system

$$
\begin{equation*}
P(x, D) u=\sum_{j=1}^{n} A_{j}(x) D_{j} u-i B(x) u=f \quad(-P(x, D) u=-f) \tag{2}
\end{equation*}
$$

where $P \in \widetilde{O}_{p}\left(\Sigma_{\sigma}^{1}\right), \sigma>1, \sigma$ not an integer, $A_{j}^{*}(x)=A_{j}(x), \forall x \in X$, the $A_{j}(x)$ are real-valued $N \times N$ matrices and $\left(A_{j_{0}}(x)>0\right) A_{j_{0}}(x)<0, \forall x \in X$. Assume that $u \in \mathcal{H}_{\mathrm{comp}}^{t-1 / 2}(X), P u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$, and $u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(\varrho^{0}\right)$ for each $\varrho^{0} \in \operatorname{Char} p_{1} \cap \partial W \cap\left\{x_{j_{0}} \geq \delta\right\}$. Then

$$
u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(\varrho^{0}\right), \quad \forall \varrho^{0} \in \operatorname{Char} p_{1} \cap W \cap\left\{x_{j_{0}} \geq \delta\right\}
$$

In the special case when $\varrho^{0} \notin \operatorname{Char} p_{1}$ the solution $u \in \mathcal{H}_{\mathrm{mcl}}^{t+1}\left(\varrho^{0}\right)$.
3. Supposing Theorem 2 is proved and $s<t$ we will verify Theorem 1. To do this we apply Theorem 5.3 b) of [1] with the corresponding notations $d=1$, $\varrho=s-\varepsilon-n / 2, \varepsilon>0, \sigma=\varrho-1$ to conclude that there exists a paradifferential operator $P \in \widetilde{O}_{p}\left(\Sigma_{\sigma}^{1}\right), \sigma>1$, satisfying $P u \in \mathcal{H}_{\mathrm{loc}}^{2 s-2-\varepsilon-n / 2} \Rightarrow P u \in \mathcal{H}_{\mathrm{loc}}^{t}$ for $\varepsilon>0$ sufficiently small, $u \in \mathcal{H}_{\text {loc }}^{s}$.

The next remark will be useful later:
Let $u \in \mathcal{H}_{\mathrm{loc}}^{s}(X), P u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right), u \in \mathcal{H}_{\mathrm{mcl}}^{t-1 / 2}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$ and $u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(\partial W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$. Then $u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$.

In fact, consider a classical pseudodifferential operator $T \in S_{1,0}^{0}, T \equiv 1$ in a small conic neighbourhood (ngbhd) of $W \cap\left\{x_{j_{0}} \geq \delta\right\}, T \equiv 0$ outside a larger conic ngbhd of $W \cap\left\{x_{j_{0}} \geq \delta\right\}$. Then $T u \in \mathcal{H}_{\text {comp }}^{t-1 / 2}(X), T u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(\partial W \cap\left\{x_{j_{0}} \geq\right.\right.$ $\delta\})$ and $P(T u) \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$ as $P(T u)=P u+P((T-I) u)$ and $P((I-T) u) \in \mathcal{H}_{\mathrm{mcl}}^{s-1+\sigma} \subset \mathcal{H}_{\mathrm{mcl}}^{t}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$ according to Corollary 3.5 of [1]. Thus $T u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right) \Rightarrow u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$. To complete the proof of Theorem 1 we observe that there exists a uniquely determined integer $k \geq 1$ for which $(k-1) / 2 \leq t-s<k / 2$ and therefore

$$
t-k / 2 \leq s \leq t-(k-1) / 2<t-(k-2) / 2<\ldots<t-1 / 2<t
$$

Setting $t^{\prime}=t-(k-1) / 2$ we get $u \in \mathcal{H}_{\mathrm{loc}}^{s} \subset \mathcal{H}_{\mathrm{loc}}^{t-k / 2}=\mathcal{H}_{\text {loc }}^{t^{\prime}-1 / 2}, P u \in \mathcal{H}_{\mathrm{loc}}^{t} \subset$ $\mathcal{H}_{\mathrm{loc}}^{t-(k-1) / 2}=\mathcal{H}_{\mathrm{loc}}^{t^{\prime}}, u \in \mathcal{H}_{\mathrm{mcl}}^{t^{\prime}}\left(\partial W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$. So $u \in \mathcal{H}_{\mathrm{mcl}}^{t^{\prime}}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$ as $s \leq t^{\prime}$. Put now $t^{\prime \prime}=t-(k-2) / 2=t^{\prime}+1 / 2$. Obviously $u \in \mathcal{H}_{\mathrm{mcl}}^{t^{\prime \prime}-1 / 2}\left(W \cap\left\{x_{j_{0}} \geq\right.\right.$ $\delta\}), P u \in \mathcal{H}_{\mathrm{loc}}^{t^{\prime \prime}}, u \in \mathcal{H}_{\mathrm{mcl}}^{t^{\prime \prime}}\left(\partial W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$.

The remark above and $s \leq t^{\prime} \leq t^{\prime \prime}$ give us $u \in \mathcal{H}_{\mathrm{mcl}}^{t^{\prime \prime}}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$. Thus we conclude that $u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(W \cap\left\{x_{j_{0}} \geq \delta\right\}\right)$.
4. Proof of Theorem 2. To simplify the proof we will assume that $W=$ $\Delta \times \Gamma_{\xi}, \Delta=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right], \Gamma_{\xi}$ is a closed cone in $T^{*}\left(\mathbb{R}^{n}\right)$ and $A_{1}(x)<0$. Choose $\kappa_{j} \in C_{0}^{\infty}(\mathbb{R})$ so that $\kappa_{j} \equiv 1$ on $\left[a_{j}, b_{j}\right], \kappa_{j}^{\prime}\left(x_{j}\right)=\kappa_{j}^{-}\left(x_{j}\right)-\kappa_{j}^{+}\left(x_{j}\right), 0 \leq \kappa_{j}^{+}$, $0 \leq \kappa_{j}^{-}, x_{j} \leq a_{j}$ in $\operatorname{supp} \kappa_{j}^{-}, x_{j} \geq b_{j}$ in $\operatorname{supp} \kappa_{j}^{+}$and $\delta=a_{1}$ but no information on the $\mathcal{H}_{\mathrm{mcl}}{ }^{- \text {-smoothness of }} u$ at $\left\{x_{1}=a_{1}\right\} \times \Gamma_{\xi}$ is given. For $\lambda, \delta_{1}>0$ put

$$
Q=Q_{\lambda, \delta_{1}}=e^{\lambda x_{1}} \kappa(x)\left(1+\left|\delta_{1} \xi\right|^{2}\right)^{-1} h(\xi)
$$

$\operatorname{ord}_{\xi} h=t$ and conesupp $Q_{\lambda, \delta_{1}}$ is concentrated in a small conic ngbhd of W. Obviously, $Q_{\lambda, \delta_{1}} \in S_{1,0}^{t-2}$ and the factor $\kappa(x)\left(1+\left(\delta_{1}|\xi|\right)^{2}\right)^{-1}$ is bounded in Σ_{ϱ}^{0}, $S_{1,0}^{0}, \forall \varrho>0, \varrho$ not an integer, uniformly with respect to $\delta_{1} \in(0,1]$ and $\kappa(x)=$ $\kappa_{1}(x) \ldots \kappa_{n}(x)$. Thus for each fixed $\lambda>0$ and arbitrary $\delta_{1} \in(0,1], Q_{\lambda, \delta_{1}} \in S_{1,0}^{t}$.

Consider now the identity

$$
(Q P u, Q u)_{L_{2}}=(P Q u, Q u)_{L_{2}}+([Q, P] u, Q u)_{L_{2}}
$$

It is legitimate as $P u \in \mathcal{H}_{\text {mcl }}^{t}(W) \Rightarrow Q P u \in \mathcal{H}_{\text {comp }}^{2}(X), Q u \in \mathcal{H}_{\text {comp }}^{3 / 2}(X)$ (in our notations $\left.W=W \cap\left\{x_{1} \geq \delta\right\}\right)$. So

$$
\begin{equation*}
\operatorname{Im}(Q P u, Q u)_{L_{2}}=\operatorname{Im}(P Q u, Q u)_{L_{2}}+\operatorname{Im}([Q, P] u, Q u)_{L_{2}} \tag{3}
\end{equation*}
$$

We first estimate

$$
\begin{equation*}
I=\operatorname{Im}(P Q u, Q u)_{L_{2}} \tag{4}
\end{equation*}
$$

i.e. we have to consider the terms $\left(A_{j}(x) D_{j} Q u, Q u\right),(B(x) Q u, Q u)\left((\cdot, \cdot)_{L_{2}}=\right.$ $(\cdot, \cdot))$. It can easily be seen that

$$
|(B(x) Q u, Q u)| \leq C_{1}\|Q u\|_{0}^{2}+C_{1 \lambda}\|u\|_{t-\sigma / 2}^{2}
$$

where C_{1} is an absolute constant and $C_{1 \lambda}$ depends on $\lambda>0$ but does not depend on $\delta_{1} \in(0,1]$. Now,

$$
\begin{aligned}
\left(A_{j}(x) D_{j} Q u, Q u\right) & =\left(D_{j} A_{j} Q u, Q u\right)+\left(\left[A_{j}, D_{j}\right] Q u, Q u\right) \\
& =\left(Q u, A_{j} D_{j} Q u\right)+\left(\left[A_{j}, D_{j}\right] Q u, Q u\right),
\end{aligned}
$$

i.e. $2\left|\operatorname{Im}\left(A_{j} D_{j} Q u, Q u\right)\right| \leq\left|\left(\left[A_{j}, D_{j}\right] Q u, Q u\right)\right|$. The principal symbol of the commutator $\left[A_{j}, D_{j}\right]$ is $-i\left\{A_{j}, \xi_{j}\right\}=i \partial A_{j}(x) / \partial \xi_{j} \in \Sigma_{\sigma-1}^{0}, \sigma-1>0$, i.e. $\operatorname{Im}\left|\left(A_{j} D_{j} Q u, Q u\right)\right| \leq C_{2}\|Q u\|_{0}^{2}$. In other words,

$$
\begin{equation*}
|I| \leq C_{3}\|Q u\|_{0}^{2}+C_{3 \lambda}\|u\|_{t-\sigma / 2}^{2} \tag{5}
\end{equation*}
$$

To estimate $I I=\operatorname{Im}([Q, P] u, Q u)$ we use Theorem 3.2 of [1]. Since the principal symbol of $[Q, P]$ is $(1 / i)\left\{Q, p_{1}\right\}$ we have

$$
I I=-\operatorname{Re}\left(\left\{Q, p_{1}\right\} u, Q u\right)+C_{3 \lambda}^{\prime}\|u\|_{t+(1-\sigma) / 2}^{2}
$$

Obviously

$$
-\left\{Q, p_{1}\right\}=-\sum_{j, k=1}^{n}\left(\partial Q / \partial \xi_{k}\right)\left(\partial A_{j}(x) / \partial x_{k}\right) \xi_{j}+\sum_{j=1}^{n}\left(\partial Q / \partial x_{j}\right) A_{j}(x)
$$

and therefore

$$
\partial Q / \partial x_{1}=\lambda Q+e^{\lambda x_{1}}\left(\partial \kappa / \partial x_{1}\right)\left(1+\left|\delta_{1} \xi\right|^{2}\right)^{-1} h(\xi)
$$

The inequality $\partial \kappa / \partial x_{1} \geq-\kappa_{1}^{+}\left(x_{1}\right) \kappa_{2} \ldots \kappa_{n}=-\kappa^{+}(x)$ will enable us to apply the sharp Gårding estimate. In fact,

$$
\operatorname{Re}\left(\left(\partial Q / \partial x_{1}\right) A_{1} u, Q u\right)=\lambda \operatorname{Re}\left(Q A_{1} u, Q u\right)+\operatorname{Re}\left(\widetilde{Q}^{+} A_{1} u, Q u\right)
$$

where $\widetilde{Q}^{+}=e^{\lambda x_{1}}\left(\partial \kappa / \partial x_{1}\right)\left(1+\left|\delta_{1} \xi\right|^{2}\right)^{-1} h(\xi)$. It is clear that $\left(Q A_{1} u, Q u\right)=$ $\left(A_{1} Q u, Q u\right)+\left(\left[Q, A_{1}\right] u, Q u\right)$, thus

$$
\begin{equation*}
\operatorname{Re}\left(Q A_{1} u, Q u\right) \leq-C_{4}\|Q u\|_{0}^{2}+C_{4 \lambda}\|u\|_{t-1 / 2}^{2}, \quad C_{4}>0 \tag{6}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\operatorname{Re}\left(\widetilde{Q}^{+} A_{1} u, Q u\right) \leq \operatorname{Re}\left(A_{1}(x) \kappa\left(\partial \kappa / \partial x_{1}\right) v, v\right)+C_{5 \lambda}\|u\|_{t-1 / 2}^{2} \tag{7}
\end{equation*}
$$

where $v=e^{\lambda x_{1}} h(D)\left(1+\left|\delta_{1} D\right|^{2}\right)^{-1} u$. The commutator

$$
\left[A_{1}, \kappa e^{\lambda x_{1}}\left(\partial \kappa / \partial x_{1}\right) h(D)\left(1+\left|\delta_{1} D\right|^{2}\right)^{-1}\right]
$$

is bounded in $\Sigma_{\sigma-1}^{t-1}$ uniformly with respect to $\delta_{1}>0$. We apply the sharp Gårding inequality to the symmetric non-positive matrix $A_{1} \kappa\left(\partial \kappa / \partial x_{1}\right)+\kappa \kappa^{+} A_{1}$ and we get

$$
\begin{equation*}
\operatorname{Re}\left(\kappa\left(\partial \kappa / \partial x_{1}\right) A_{1} v, v\right) \leq-\operatorname{Re}\left(\kappa \kappa^{+} A_{1} v, v\right)+C_{6 \lambda}\|u\|_{t-\mu / 2}^{2} \tag{8}
\end{equation*}
$$

with $\mu<\sigma / 2$ if $1<\sigma<2$ and $\mu=1$ if $\sigma>2$ (see [1]). Then

$$
\begin{align*}
\left|\left(\kappa \kappa^{+} A_{1} v, v\right)\right| & \leq\left|\left(A_{1} \kappa v, \kappa^{+} v\right)\right|+\left|\left(\left[A_{1}, \kappa\right] v, \kappa^{+} v\right)\right| \tag{9}\\
& \leq C_{7}\left(\|\kappa v\| \cdot\left\|\kappa^{+} v\right\|+\|v\|_{-1} \cdot\left\|\kappa^{+} v\right\|\right) \\
& \leq C_{7}\|Q u\| \cdot\left\|Q^{+} u\right\|+C_{7 \lambda}\|u\|_{t-1} \cdot\left\|Q^{+} u\right\|
\end{align*}
$$

and $Q^{+}=Q_{\lambda, \delta_{1}}^{+}$is defined as $Q_{\lambda, \delta_{1}}$ with κ replaced by κ^{+}. Note that $\left\|Q^{+} u\right\|<\infty$ as $Q^{+}(x, \xi)$ concentrates in a ngbhd of $\left\{x_{1}=b_{1}\right\} \times \Gamma_{\xi}$ and $u \in \mathcal{H}_{\mathrm{mcl}}^{t}\left(\partial W \cap\left\{x_{1} \geq\right.\right.$ $\delta\}), \delta=a_{1}$.

By the identity $\partial Q / \partial x_{j}=e^{\lambda x_{1}}\left(\partial \kappa / \partial x_{j}\right)\left(1+\left|\delta_{1} \xi\right|^{2}\right)^{-1} h(\xi), j \geq 2, \partial Q / \partial x_{j}$ concentrates in a ngbhd of $\left\{x_{j}=a_{j}\right\} \times \Gamma_{\xi},\left\{x_{j}=b_{j}\right\} \times \Gamma_{\xi}$ and simple computations show that
(10) $\left|\left(\partial Q / \partial x_{j}(x, D) A_{j}(x) u, Q u\right)\right|$

$$
\begin{aligned}
& \leq\left|\left(A_{j}\left(\partial Q / \partial x_{j}\right) u, Q u\right)\right|+\left|\left(\left[A_{j}, \partial Q / \partial x_{j}\right] u, Q u\right)\right| \\
& \leq C_{8 \lambda}\|u\|_{\mathcal{H}_{\mathrm{mcl}}^{t}}\left(\partial W \cap\left\{x_{1} \geq \delta\right\}\right)\|Q u\|_{0}+C_{9 \lambda}\|u\|_{t-1}\|Q u\|_{0} \\
& \leq\|Q u\|_{0}^{2}+C_{10 \lambda}\left(\|u\|_{t-1}^{2}+\|u\|_{\mathcal{H}_{\mathrm{mcl}}^{t}}\left(\partial W \cap\left\{x_{1} \geq \delta\right\}\right)\right.
\end{aligned} .
$$

Now we will estimate $\left(\left(\partial A_{j} / \partial x_{k}\right) D_{j}\left(\partial Q / \partial \xi_{k}\right)(x, D) u, Q u\right)$. To do this two terms will be considered, namely

$$
\begin{aligned}
I I I_{1} & =\left(\left(\partial A_{j} / \partial x_{k}\right) e^{\lambda x_{1}} \kappa(x) D_{j}\left(\partial h / \partial \xi_{k}\right)(D)\left(1+\left|\delta_{1} D\right|^{2}\right)^{-1} u, Q u\right) \\
I I I_{2} & =\left(\left(\partial A_{j} / \partial x_{k}\right) e^{\lambda x_{1}} \kappa(x) h(D) D_{j} \delta_{1}^{2} D_{k}\left(1+\left|\delta_{1} D\right|^{2}\right)^{-2} u, Q u\right)
\end{aligned}
$$

Obviously, $\delta_{1}^{2} \xi_{k}\left(1+\delta_{1}^{2}|\xi|^{2}\right)^{-2}$ is uniformly bounded in $S_{1,0}^{-1,0}, \Sigma_{\varrho}^{-1}, \varrho>0$, ϱ not an integer, $\forall \delta_{1} \in(0,1]$. The observations that $\delta_{1}^{2} \xi_{j} \xi_{k}\left(1+\left|\delta_{1} \xi\right|^{2}\right)^{-1}$ is uniformly bounded in $S_{1,0}^{0}$ with respect to $\delta_{1}>0$ and

$$
e^{\lambda x_{1}} \kappa(x) h(D) \delta_{1}^{2} D_{j} D_{k}\left(1+\left|\delta_{1} D\right|^{2}\right)^{-2} u=Q\left(\delta_{1}^{2} D_{j} D_{k}\left(1+\left|\delta_{1} D\right|^{2}\right)^{-1} u\right)
$$

enable us to conclude that

$$
\begin{equation*}
\left|I I I_{2}\right| \leq C_{11}\|Q u\|_{0}^{2}+C_{11 \lambda}\|u\|_{t-1 / 2}^{2} \tag{11}
\end{equation*}
$$

The cut-off symbol $h(\xi)$ can be written as $h(\xi)=|\xi|^{t} c(\xi), \operatorname{ord}_{\xi} c=0,0 \leq c \leq 1$, $c \equiv 1$ in a conic ngbhd of Γ_{ξ} and $c \equiv 0$ outside a larger conic ngbhd of Γ_{ξ}. The inequality

$$
\begin{equation*}
\left|\partial h / \partial \xi_{k}\right|^{2} \leq 2 t^{2}\left(h^{2} /|\xi|^{2}\right)+2|\xi|^{2 t}\left|\partial c / \partial \xi_{k}\right|^{2} \tag{12}
\end{equation*}
$$

will be useful later. Thus

$$
\begin{aligned}
& \left\|e^{\lambda x_{1}} \kappa D_{j}\left(\partial h / \partial \xi_{k}\right)(D)\left(1+\left|\delta_{1} D\right|^{2}\right)^{-1} u\right\|_{0} \\
& \quad \leq\left\|D_{j}\left(\partial h / \partial \xi_{k}\right)(D)\left(1+\left|\delta_{1} D\right|^{2}\right)^{-1}\left(e^{\lambda x_{1}} \kappa(x) u\right)\right\|_{0}+C_{12 \lambda}\|u\|_{t-1}
\end{aligned}
$$

On the other hand, according to (12),

$$
\begin{aligned}
\| D_{j}\left(\partial h / \partial \xi_{k}\right)(D) & \left(1+\left|\delta_{1} D\right|^{2}\right)^{-1}\left(e^{\lambda x_{1}} \kappa(x) u\right) \|_{0}^{2} \\
= & \int \xi_{j}^{2}\left(\partial h / \partial \xi_{k}\right)^{2}\left(1+\left|\delta_{1} \xi\right|^{2}\right)^{-2}\left|\left(e^{\lambda x_{1}} \kappa(x) u\right)^{\wedge}\right|^{2}(\xi) d \xi \\
\leq & 2 t^{2}\left\|h(D)\left(1+\left|\delta_{1} D\right|^{2}\right)^{-1}\left(e^{\lambda x_{1}} \kappa u\right)\right\|_{0}^{2} \\
& +2 \int|\xi|^{2 t+2}\left(\partial c / \partial \xi_{k}\right)^{2}\left|\left(e^{\lambda x_{1}} \kappa(x) u\right)^{\wedge}\right|^{2}(\xi) d \xi \\
\leq & 2 t^{2}\|Q u\|_{0}^{2}+C_{13 \lambda}\|u\|_{t-1}^{2}+2\left\||D|^{t+1}\left(\partial c / \partial \xi_{k}\right)\left(e^{\lambda x_{1}} \kappa u\right)\right\|_{0}^{2} \\
\leq & \left.2 t^{2}\|Q u\|_{0}^{2}+C_{13 \lambda}\|u\|_{t-1}^{2}+C_{14 \lambda}\|u\|_{\mathcal{H}_{\mathrm{mcl}}^{t}\left(\partial W \cap\left\{x_{1} \geq \delta\right\}\right)}^{2}\right) .
\end{aligned}
$$

We remind the reader that $\operatorname{ord}_{\xi}|\xi|^{t+1}\left(\partial c / \partial \xi_{k}\right)=t$ and $\kappa(x)\left(\partial c / \partial \xi_{k}\right)$ concentrates in a conic ngbhd of $\Delta \times \partial \Gamma_{\xi}$. In other words,

$$
\begin{equation*}
\left|I I I_{1}\right| \leq C_{15}\|Q u\|_{0}^{2}+C_{16 \lambda}\left(\|u\|_{t-1}^{2}+\|u\|_{\mathcal{H}_{\mathrm{mcl}}^{t}\left(\partial W \cap\left\{x_{1} \geq \delta\right\}\right)}^{2}\right) . \tag{13}
\end{equation*}
$$

Combining the identity (3) and the corresponding estimates (5) for I, (6)-(11), (13) for $I I$ and

$$
\operatorname{Im}(Q P u, Q u) \geq-2\|Q P u\|_{0}^{2}-2\|Q u\|_{0}^{2}
$$

we come to the conclusion that

$$
\begin{align*}
& (\lambda-C)\|Q u\|_{0}^{2} \leq 2\|Q P u\|_{0}^{2}+C\left\|Q^{+} u\right\|_{0}^{2} \tag{14}\\
& \quad+K_{\lambda}\left(\|u\|_{t-1 / 2}^{2}+\|u\|_{t-\mu / 2}^{2}+\|u\|_{t+(1-\sigma) / 2}^{2}+\|u\|_{\mathcal{H}_{\mathrm{mcl}}^{t}\left(\partial W \cap\left\{x_{1} \geq \delta\right\}\right)}^{2}\right) .
\end{align*}
$$

The constant C does not depend on $\lambda>0$ and $\delta_{1}>0$, and K_{λ} depends on $\lambda>0$ only. Taking λ sufficiently large and letting $\delta_{1} \rightarrow 0$ we prove Theorem 2 for $\sigma>2$.

To consider the case $1<\sigma<2$ we have to modify the proof of our Theorem 2 assuming $P u \in \mathcal{H}_{\mathrm{mcl}}^{t}, u \in \mathcal{H}_{\mathrm{mcl}}^{t}(\partial W)$ and $u \in \mathcal{H}_{\text {comp }}^{t-\gamma}(X), 0<\gamma<1 / 2$, instead of $\gamma=1 / 2$ etc.

References

[1] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Ann. Sci. Ecole Norm. Sup. (4) 14 (1981), 209-246.
[2] L. Hörmander, The Analysis of Linear Partial Differential Operators IV, Springer, Berlin 1985.
[3] V. I. Ivriŭ, Wave fronts of solutions of symmetric pseudodifferential systems, Sibirsk. Mat. Zh. 20 (1979), 557-578 (in Russian).
[4] P. Popivanov, Wave fronts of the solutions of some classes of non-linear partial differential equations, C. R. Acad. Bulgare Sci. 40 (11) (1987), 27-28.

