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0. Introduction. The present paper is concerned with the study of the non-
linear operator

(0.1) TG : f → G(f) ,

where G : R
1 → R

1 is a given function and f is taken from a generalized Sobolev
space Hs

p(Rn) (cf. Section 1 for definitions). Operators of that type are called
superposition or Nemytskĭı operators, and play a crucial role in nonlinear analysis.
Our aim here is to describe under what conditions one can establish an embedding
of the form

(0.2) TG(Hs0

p (Rn)) →֒ Hs1

p (Rn) , s1 ≤ s0 .

Since the paper of Dahlberg [7] it is known that one cannot expect s0 = s1
in general. The loss of smoothness under the superposition, even in the case
G ∈ C∞(R1), depends on the dimension n as well as on the smoothness and
integrability properties of f ∈ Hs

p(Rn). This behaviour of TG will be explained in
what follows. Let us mention that all results are presented in the framework of the
scale Hs

p(Rn). However, they remain true if one replaces Hs
p(Rn) by Slobodetskĭı

spaces W s
p (Rn), the more general Besov spaces Bs

p,q(R
n) or the Triebel–Lizorkin

spaces F s
p,q(R

n) (a generalization of Hs
p(Rn), cf. Triebel [30]). Let us refer also

to the recent monograph by Appell and Zabrĕıko [2], where such problems are
investigated from a somewhat different point of view.

This survey summarizes recent results obtained by the Jena research group
on function spaces around H. Triebel. It is based on a lecture given at the Stefan
Banach International Center in Warsaw in November 1990.

1. Sobolev spaces of fractional order. The symbol R
n represents the

Euclidean n-space, by Z we denote the set of all integers, and by N all natural
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numbers. Let S(Rn) be the Schwartz space of all complex-valued rapidly decreas-
ing and infinitely differentiable functions on R

n, S′(Rn) the set of all tempered
distributions on R

n, F and F−1 the Fourier transform and its inverse on S′(Rn),
respectively.

Definition. Let 1 < p < ∞ and s ≥ 0. The Sobolev space Hs
p(Rn) of frac-

tional order s is the set of all f ∈ Lp(R
n) such that

(1.1) ‖f |Hs
p(Rn)‖ = ‖F−1(1 + |ξ|2)s/2Ff |Lp(R

n)‖ <∞ .

R e m a r k 1. We follow here the classical approach of Aronszajn–Smith [3] and
Calderón [5]. Sometimes the spaces Hs

p(Rn) are also called Liouville spaces (in
particular in the Russian literature) or Bessel-potential spaces.

R e m a r k 2. A more explicit description of Hs
p(Rn) can be obtained with the

help of differences. We put

(∆1
hf)(x) = f(x+ h) − f(x) , (∆l

hf)(x) = ∆1
h(∆l−1

h f)(x) , l = 2, 3, . . .

Then we have with l > s > 0, l ∈ N,

(1.2) f ∈ Hs
p(Rn) ⇔ f ∈ Lp(R

n) and

‖f |Lp(R
n)‖ +

∥∥∥∥
( 1∫

0

r−2s
( ∫

{h:|h|≤1}

|∆l
rhf(·)|dh

)2 dr

r

)1/2∣∣∣∣Lp(R
n)

∥∥∥∥ <∞ .

Moreover, the expression in (1.2) yields an equivalent norm in Hs
p(Rn) (cf.

Triebel [30]).

Basic properties. This scale generalizes the classical Sobolev spaces in a nat-
ural way:

(i) Hs
p(Rn) equipped with the norm in (1.1) is a Banach space,

(ii) Hm
p (Rn) = Wm

p (Rn), m = 1, 2, . . . ,
(iii) Hs0

p (Rn) →֒ Hs1

p (Rn) →֒ H0
p(Rn) = Lp(R

n) if s0 ≥ s1 ≥ 0 (“→֒” always
means continuous embedding),

(iv) f ∈ Hs
p(Rn) implies ∂f/∂xi ∈ Hs−1

p (Rn), i = 1, . . . , n, if s ≥ 1,
(v) Hs

p(Rn) →֒ L∞(Rn) ⇔ Hs
p(Rn) →֒ C(Rn) ⇔ s > n/p (cf. Fig 1).

s
s = n/p

bounded

functions

∃ unbounded

functions

1/p

Fig. 1
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For (i)–(v) we refer to [30].
Finally, we consider two distinguished families of functions. Let Ψ be a smooth

cut-off function supported around zero and let α > 0. Then we define

gα(x) = Ψ(x)|x|α ,(1.3)

fα(x) = Ψ(x)|x|−α .(1.4)

It is known (cf. Stein [26], Triebel [30]) that

gα ∈ Hs
p(Rn) ⇔ s < n/p+ α ,(1.5)

fα ∈ Hs
p(Rn) ⇔ s < n/p− α .(1.6)

In particular, the family gα shows great similarity between measuring smoothness
in the Hs

p-scale and in the Cs-scale (Hölder spaces).
If there is no danger of confusion we shall omit R

n in notations.

2.Boundedness of superposition operators.Our programme is to discuss
the following three principal cases for the outer function G:

(i) G(t) = tm, m = 2, 3, . . . ,
(ii) G(t) = |t|µ, µ > 1,
(iii) G(t) ∈ C∞(R1).

To do this we follow the way in which the pertinent results were proved.
As we shall see the most striking feature will be the different behaviour of TG

for bounded and unbounded functions. In this survey much attention is paid to
describe the embedding (1.2) with proper inequalities.

2.1. Powers of f . First we investigate powers fm of f . It is a nonlinear prob-
lem, of course, but we can deal with it as a linear one, considering the family of
operators

T[g1,...,gm−1](f) = (g1 ◦ . . . ◦ gm−1) ◦ f , f ∈ Hs
p ,

where g1, . . . , gm−1 ∈ Hs
p are fixed functions. Nowadays this problem is well un-

derstood. It is the problem of pointwise multipliers with respect to Hs
p .

Theorem 1 ([23]). Let m = 2, 3, . . .

(i) Let s > n/p. Then there exists a constant c such that

(2.1) ‖fm|Hs
p‖ ≤ c‖f |Hs

p‖
m for all f ∈ Hs

p .

(ii) Let 0 < s < n/p. Let

(2.2) sm = s− (m− 1)(n/p − s) > 0 .

Then there exists a constant c such that

(2.3) ‖fm|Hsm
p ‖ ≤ c‖f |Hs

p‖
m for all f ∈ Hs

p .

R e m a r k 3. Whereas for bounded functions (s > n/p) the result shows a
good correspondence to that in the case of Hölder spaces Cs, the second part of
Theorem 1 requires some further comments. Since (fα)m is of the same type as
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fα, but with a local singularity of order mα, we can apply (1.6) to both functions.
This yields fm

α ∈ Hr
p ⇔ r < n/p− αm. For fα ∈ Hs

p , α ↑ (n/p− s) we get

r ≤ n/p−m(n/p− s) = s− (m− 1)(n/p − s) = sm .

This shows that each multiplication leads to a loss of smoothness of order n/p−s.
Also the condition (2.2) can be interpreted with the help of the family fα. The
inequality sm > 0 simply ensures fm

α ∈ Lp = H0
p .

R e m a r k 4. The statement (i) is a simple consequence of the fact that Hs
p ,

s > n/p, forms a multiplication algebra, a famous result of Strichartz [27]. The
second statement in Theorem 1 was proved by Yamazaki [32] with the help of
the paramultiplication principle. For a more detailed description (also in case
s = n/p) and further references we refer to the survey [23].

2.2. The real powers |f |µ, µ > 1. A new phenomenon appears when investi-
gating G(t) = |t|µ, µ > 1, as the outer function. The finite smoothness of |t|µ

leads to a restriction on the smoothness of the superposition G(f).

Theorem 2 ([20], [24]). Let µ > 1.

(i) Let n/p < s < µ. Then there exists a constant c such that

(2.4) ‖|f |µ|Hs
p | | ≤ c‖f |Hs

p‖
µ for all f ∈ Hs

p .

(ii) Let 0 < s < n/p. Let

(2.5) 0 < sµ = s− (µ− 1)(n/p − s) < µ .

Then there exists a constant c such that

(2.6) ‖|f |µ|Hµ
p ‖ ≤ c‖f |Hs

p‖
µ for all f ∈ Hs

p .

R e m a r k 5. For (ii) we can argue as in Theorem 1: again using the family fα

one derives that (2.5) ensures that T ∗
µ : f → |f |µ maps Hs

p into Lp.

R e m a r k 6. Part (i) is a consequence of a more general result proved by
Runst [20]. A proof of (ii) may we found in Sickel [24]. Partial results may also
be found in Triebel [31] and Edmunds–Triebel [9].

A remark on the proof and a first generalization. In both cases the proof is
based on the use of the Taylor expansion of G(t) = |t|µ, µ > 1. The estimate
of the Taylor polynomial reduces to an application of Theorem 1. To obtain an
estimate of the remainder one has to investigate the integral means

(2.7) (Iµ
k f)(x) =

∫

|z|≤2−k

|f(x+ z) − f(x)|µ dz , k ∈ Z .

In Runst [20] and Sickel [24] different estimates for these means were derived by
using maximal-function techniques (Fefferman–Stein–Peetre maximal inequality,
Hardy–Littlewood maximal inequality).
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However, only the following qualitative properties of G(t) = |t|µ are used:

G : R
1 → R

1 ,(2.8)

|G(l)(t)| ≤ cl|t|
µ−l, l = 0, . . . , N, N ∈ N ,(2.9)

sup
t0 6=t1

|G(N)(t1) −G(N)(t0)|

|t1 − t0|τ
≤ c <∞, τ +N = µ, 0 < τ ≤ 1 .(2.10)

A simple reformulation of the conditions (2.8)–(2.10) is given by

(2.11) G is N times continuously differentiable,

(2.12) G(l)(0) = 0, l = 0, . . . , N,

(2.13) G(N) ∈ Lip τ ,

where the Lipschitz space Lip τ is characterized by (2.10). To make a composition
G(f) meaningful, we restrict ourselves to real-valued functions f .

Definition. Let 1 < p <∞ and s ≥ 0. By H̃s
p we denote the subspace of Hs

p

consisting of all real-valued functions f ∈ Hs
p , equipped with the norm (1.1).

Theorem 3 ([20], [24], [25]). Let G be a function such that (2.11)–(2.13) are

satisfied for some µ > 1. Then Theorem 2 remains true if we replace |f |µ by G(f)

and Hs
p by H̃s

p .

2.3. The case G ∈ C∞(R1), G(0) = 0. As usual, Cm(R1) denotes the set of
functions f such that

(i) f, . . . , f (m) are uniformly continuous,

(ii) ‖f |Cm(R1)‖ = max0≤l≤m supt∈R1 |f (l)(t)| <∞.

We put

C∞(R1) =

∞⋂

m=1

Cm(R1) .

To overcome the restriction (2.12) in Theorem 3 one uses the splitting

G(t) =

(
G(t) −

N∑

j=0

G(j)(0)

j!
tj

)
+

N∑

j=0

G(j)(0)

j!
tj = HN (t) + PN (t) .

Then PN (f) is estimated by Theorem 1, and HN(f) by Theorem 3. If G ∈
C∞(R1), G(0) = 0, then N and τ are at our disposal. If n/p < s we choose
µ > max(1, s), µ ↓ max(1, s). If s < n/p the situation is more complicated. Both
µ and sµ are upper bounds for the smoothness of G(f). Since sµ decreases if µ
increases the optimal choice is sµ = µ. We have

µ = sµ =
n

p
− µ

(
n

p
− s

)
⇔ µ

(
n

p
− s+ 1

)
=
n

p
⇔ µ =

n/p

n/p− s+ 1
.

From this point of view the following result is not surprising.
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Theorem 4. Let G ∈ C∞(R1), G(0) = 0.

(i) Let s > n/p. Then there exists a constant c such that

(2.14) ‖G(f)|Hs
p‖ ≤ c(‖f |Hs

p‖ + ‖f |Hs
p‖

max(1,s)) for all f ∈ H̃s
p .

(ii) Let 1 < s < n/p. Let

(2.15) ̺(s, n/p) = ̺ =
n/p

n/p− s+ 1
.

Then there exists a constant c such that

(2.16) ‖G(f)|H̺
p‖ ≤ c(‖f |Hs

p‖ + ‖f |Hs
p‖

̺) for all f ∈ H̃s
p .

(iii) Let 0 ≤ s ≤ 1. Then there exists a constant c such that

(2.17) ‖G(f)|Hs
p‖ ≤ c‖f |Hs

p‖ for all f ∈ H̃s
p .

Some comments. (i) The case s > n/p. With regard to this case there are

numerous references. The first is Mizohata [15], who had discovered TG(H̃s
2) →֒

Hs
2 , s > n/2, in 1965. Fifteen years later Meyer [14] established TG(H̃s

p) →֒ Hs
p

by using the elegant method of paradifferential operators. Inspired by Meyer’s
work there exist further extensions to the classes Bs

p,q and F s
p,q (Runst [19]),

to anisotropic spaces (Yamazaki [32]), and to weighted spaces (Marschall [13]).
Runst [20] applied maximal function techniques to this problem. However, the
simple structure of (2.14), including the exponents, seems to be new. Note that
at least for the Sobolev spaces Hm

p (= Wm
p ) these exponents are optimal. We

refer to Sickel [25].

(ii) The case 0 ≤ s ≤ 1. Because our function G is smooth one can apply the
chain rule. Now, (2.17) is a simple consequence for s = 1. If 0 < s < 1 then (2.17)
follows from (1.2). In case s = 0 inequality (2.17) is again obvious.

(iii) The case 1 < s < n/p. First, note that the restriction on s implies
1 < ̺ < s, so we have some loss of smoothness. The reason becomes clear by the
following example. Again we use the family fα defined in (1.4). We have

∂m

∂xm
1

G(f(x)) ∼ Gm(f(x))

(
∂f

∂x1

)m

+ lower order terms ∼ (|x|−α−1)m

as |x| → 0 ,

at least if G(m)(t) 9 0 as t→ ∞. Compare this with

∂mf

∂xm
1

(x) ∼ |x|−α−m as |x| → 0 .

Hence, superpositions with even very smooth functions G create stronger singu-
larities in the derivatives of order m ≥ 2. Inequality (2.16) is proved in Sickel [24].

2.4. The counterexample of Dahlberg . As mentioned in the introduction more
than ten years ago Dahlberg [7] proved: If G ∈ C2(R1) such that G(f) ∈Wm

p for
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all f ∈ W̃m
p , where 1 + 1/p < m < n/p, then G is a linear function. The example

he used is a function of the type

(2.18) f(x) =

∞∑

j=1

jβu(jα(x− zj)) ,

where u ∈ C∞
0 , u(x) = u(x1, . . . , xn) = x1 if |x| ≤ 1, u(x) = 0 if |x| ≥ 2, {zj}∞j=1

is an appropriate sequence in R
n and α, β are positive real numbers.

By using the same example the degeneracy result was extended to B̃s
p,q and

F̃ s
p,q by Bourdaud [4] and Runst [20]. The problem of measuring this loss of

smoothness was first treated in Sickel [24]. Again we applied the construction
(2.18).

Theorem 5 ([24]). Let 1<s<n/p. Let τ >0. Let G be τ -periodic, sufficiently

smooth, and non-trivial. Then for all ε > 0 there exists fε ∈ H̃s
p (with arbitrarily

small support) such that G(fε) 6∈ H̺+ε
p .

R e m a r k 7. Theorem 5 proves that Theorem 4(ii) is sharp in the sense that
the exponent ̺ cannot be improved in general.

We make a simple observation concerning the loss of smoothness. Let n and
p be fixed such that n/p > 1. We define

d(s) = s− ̺(s, n/p) .

One easily checks lims↓1 d(s) = lims↑n/p d(s) = 0. Furthermore, ̺ < s if 1 < s <
n/p and d(s) is concave there. Hence, d(s) has a maximum on (1, n/p). It is taken
at the point

(2.19) s0 = n/p−
√
n/p+ 1 ,

and

(2.20) d(s0) = (
√
n/p− 1)2

d(s)

1 s0 n/p s

Fig. 2

(cf. Fig. 2). Consequently, d(s) can become arbitrarily large if n/p→∞. To make
the behaviour of TG more clear, we draw a further figure.
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s
TG is again good

n/p

TG becomes better

s0 worst case

TG becomes bad

1

TG is good

p

Fig. 3

Here “TG is good” means TG maps a space Hs
p into itself and “TG becomes

bad” means d(s) is increasing. On the other hand, “TG becomes better” is used
for d(s) decreasing.

Figure 3 shows that the behaviour of nonlinear operators can be completely
different from that of linear ones. Since TG is good on Hs

p , s > n/p, and on Hs
p ,

s ≤ 1, by interpolation one would also expect a good behaviour with respect to
[Hs0

p , Lp]θ = Hs
p , 0 < θ < 1, s = (1 − θ)s0 (cf. Triebel [29]). But this is false by

Fig. 3.

R e m a r k 8. Note that τ -periodicity of G in Theorem 5 is not necessary. One
needs the existence of a sequence of disjoint intervals {Ij}

∞
j=1 with

inf
j
|Ij | ≥ A > 0 ,(2.21)

Ij ⊂ {t : |G(m+1)(t)| ≥ B > 0} ,(2.22)

where m+ 1 = [̺+ 1] (integer part) for some A,B > 0.

Since a function like (1 + t2)−α, α > 0, cannot satisfy (2.21), (2.22), the
following degeneracy result is also of interest.

Theorem 6 ([24]). Let 1 + 1/p < s < n/p. Let

(2.23) ̺∗
(
s,
n

p

)
= ̺∗ =

n

p
+

1

p

(
n

p
− s

)

n

p
− s+ 1

.
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Put m = [̺∗] (integer part). Let G be sufficiently smooth and let G(m+1) be non-

trivial. Then for any ε > 0 there exists fε ∈ H̃s
p (with arbitrarily small support)

such that G(f) 6∈ H̺∗+ε
p .

R e m a r k 9. A short calculation gives 1+1/p < ̺∗ < s, ̺ < ̺∗ if 1+1/p < s <
n/p, so for any non-trivial G we have some loss of smoothness after superposition.

R e m a r k 10. Positive results for the number ̺∗, i.e. improvements on Theo-
rem 4(ii) under additional assumptions on G are not known to the author.

R e m a r k 11. Let Ω ⊆ R
n be a bounded C∞-domain. Let

Hs
p(Ω) = {f ∈ Lp(Ω) : ∃g ∈ Hs

p(Rn) such that g|Ω = f} ,(2.24)

‖f |Hs
p(Ω)‖ = inf

g|Ω=f
‖g|Hs

p(Rn)‖ .(2.25)

Theorems 5 and 6 are also applicable in this situation, since we can make the
support of fε as small as we want.

2.5. Boundedness of superposition operators in Sobolev spaces of fractional

order s ≤ 1 + 1/p. Theorems 5 and 6 make it plausible that under additional
conditions on G the operator TG maps Hs

p into Hs
p if s ≤ 1 + 1/p.

Theorem 7 ([25]). Let 1 < p < 2. Let 0 ≤ t < s ≤ 2/p. Let G be a function

with

(i) G(0) = 0,

(ii) G′′ ∈ L1(R
1).

Then there exists a constant c such that

(2.26) ‖G(f)|Ht
p‖ ≤ c‖f |Hs

p‖ for all f ∈ H̃s
p .

R e m a r k 12. Theorem 7 is a consequence of the following result of Bour-
daut [4]: If G is a function with properties (i) and (ii), then there exists a constant
c such that

(2.27) ‖G(f)|W 2
1 ‖ ≤ c‖f |W̃ 2

1 ‖ for all f ∈ W̃ 2
1 .

In Sickel [25] a further extension of (2.27) is obtained with the help of interpolation
of nonlinear operators (cf. Peetre [18], Maligranda [11]).

2.6. An overview . Our aim is to explain in three figures the different behaviour
of TG for G ∈ C∞(R1), G(0) = 0. For simplicity we assume G 6≡ 0.

(i) The case n = 1. In that case we have a very simple and nice behaviour
shown in Fig. 4 (cf. Theorem 4). Here A stands for any space Hs

p , where the
couple (s, 1/p) is taken from the shaded region.

(ii) The case n = 2. As a consequence of Theorems 4 and 7 we obtain the
situation as in Fig. 5.
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s

TG : A→ A

1 1/p

Fig. 4

s

s = n/p

2

∃TG : A→ A

∃TG : A9 A
1 TG : A→ A s = 1

1/2 1 1/p

Fig. 5

In the non-shaded region 1 < p < 2, 1 < s < 2/p the symbol “∃TG : A 9 A”
is used for the fact that there exists some G (cf. Theorem 4 and Remark 8) such
that TG does not map A into A, while “∃TG : A → A” means that there exists
some G (cf. Theorem 7) such that TG maps A into A.

(iii) The general case n ≥ 3. Now we have to use Theorems 4–7 (see Fig. 6).

In the region 1 < p < n, max(1, 2/p) < s < 1 + 1/p it is an open problem
whether there exists some G ∈ C∞(R1) such that TG : A → A holds. Note that
for 1/(n − 1) < 1/p < 1, 1 + 1/p < s < n/p we have TG : A 9 A for any G 6≡ 0.

2.7. Some further results on boundedness of superposition operators

2.7.1. Moser-type inequalities. It is known that by restriction to bounded func-
tions one can improve several of the results collected in 2.1–2.3. A first example
is the embedding

(2.28) (Wm
p ∩ L∞) ◦ (Wm

p ∩ L∞) →֒ Wm
p , m = 1, 2, . . . ,
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s = n/p

s

TG : A9 A s = 2/p

2 TG : A→ A s = 1+1/p

∃TG : A→ A? ∃TG : A→ A
∃TG : A9 A ∃TG : A9 A

1 s = 1

1/n 1/2 1 1/p

Fig. 6

which holds true without the restriction m > n/p (cf. Nirenberg [17]). Later on
Moser [16] dealt with some extensions. Recall that the results in 2.1–2.3 are based
on assertions on pointwise multipliers. So, (2.28) gives some hope of improving
Theorems 1–4.

Theorem 8 ([20], [24], [25]). Let G ∈ C∞(R1), G(0) = 0.

(i) Let m = 2, 3, . . . Then there exists a constant c such that

(2.29) ‖fm|Hs
p‖ ≤ c‖f |Hs

p‖‖f |L∞‖m−1 for all f ∈ Hs
p ∩ L∞ .

(ii) Let µ > 1 and s < µ. Then there exist a constant c such that

(2.30) ‖|f |µ|Hs
p‖ ≤ c‖f |Hs

p‖‖f |L∞‖µ−1 for all f ∈ Hs
p ∩ L∞ .

(iii) There exists a constant c such that

(2.31) ‖G(f)|Hs
p‖ ≤ c(‖f |Hs

p‖ + ‖f |Hs
p‖‖f |L∞‖max(0,s−1))

for all f ∈ H̃s
p ∩ L∞ .

R e m a r k 13. Further contributions to this subject can be found in Peetre [18]
and Adams–Frazier [1]. The first deals with Bs

p,q ∩ L∞ (Besov spaces), whereas
the second is concerned with the action of TG on Hs

p ∩ BMO.
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2.7.2. An improvement of the integrability properties. In Sickel [24, 25] we
considered the possibility that one can improve the results of the preceding sub-
sections concerning integrability properties. We ask now for an embedding

(2.32) TG(Hs
p0

) →֒ Hs
p1
, p0 ≥ p1 .

It is not our aim to treat (2.32) in its full generality. We only mention the following
two interesting lemmata.

Lemma 1. Let 0 < s < n/p.

(i) Let m = 2, 3, . . . and let

(2.33) 1 < r <∞,
p

m
≤ r ≤

n

s+m(n/p− s)
.

Then there exists a constant c such that

(2.34) ‖fm|Hs
r‖ ≤ c‖f |Hs

p‖
m for all f ∈ Hs

p .

(ii) Let max(1, s) < µ and let

(2.35) 1 < r <∞,
p

µ
≤ r ≤

n

s+ µ(n/p− s)
.

Then there exists a constant c such that

(2.36) ‖|f |µ|Hs
r‖ ≤ c‖f |Hs

p‖
µ for all f ∈ Hs

p .

Lemma 2. Let Ω be a bounded C∞-domain. Let G ∈ C∞(R1), G(0) = 0. Let

0 < s < n/p and

(2.37) 1 < r <
n

s+ max(1, s)(n/p − s)
.

Then there exists a constant c such that

(2.38) ‖G(f)|Hs
r (Ω)‖ ≤ c(‖f |Hs

p(Ω)‖ + ‖f |Hs
p(Ω)‖max(1,s))

for all f ∈ H̃s
p(Ω) .

R e m a r k 14. From the embedding relations for Hs
p-spaces we know that

(2.39) Hs
r →֒ Hsµ

p , r =
n

s+ µ(n/p− s)
> 1 ,

and Hs
r+ε →֒ H

sµ+δ
p , ε > 0, δ = δ(ε) > 0 (cf. Triebel [30]). Thus, the number r

cannot be improved since sµ is best possible (cf. Theorem 2, Remarks 3 and 5).

R e m a r k 15. Of course, (2.33), (2.35), and (2.37) also imply further restric-
tions on s. For instance, from (2.33), (2.35) we find

(2.40) s >
n

p
−

1

µ− 1

(
n−

n

p

)

to guarantee n/(s+µ(n/p−s)) > 1. Using a similar condition to (2.40), Cazenave
and Weissler [6] proved a corresponding statement for homogeneous Besov spaces.
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2.7.3. Minimal smoothness conditions on G. It is more or less clear that
G ∈ C∞(R1) is far from optimal. A more detailed examination of our approach
yields that G ∈ Cr(R1) with r > s (in the case of (2.14), (2.27)) or r > ̺ (in
the case of (2.15)) is always sufficient. Moreover, the constants which appear in
these inequalities have the form c = c′‖G|Cr(R1)‖, c′ independent of G. However,
this is not optimal either. For Sobolev spaces W 1

p , it is known (cf. Marcus and
Mizel [12]) that TG maps W 1

p into W 1
p if and only if

(i) G is locally Lipschitz continuous if either p > n, or n = 1 and p ≥ 1,
(ii) G is uniformly Lipschitz continuous if p < n.

Also the result of Bourdaud [4] mentioned in Remark 12 cannot be improved,
at least if W 2

1
6֒→ L∞. A more general result in this direction is the following.

Theorem 9 ([25]). To have an embedding

(2.41) TG(Hs
p) →֒ Hs

p

it is necessary that G ∈ Hs,loc
p (R1).

R e m a r k 16. In this connection let us refer to Szigeti [28] who stated that

(2.42) TG(Wm
p ([a, b])) →֒ Wm

p ([a, b]), −∞ < a < b <∞ ,

if G ∈ Wm
p (R1) and m ≥ 2. Moreover, he investigated the example f(x) =

|x|α−1/pψ(x), x ∈ R
1, α > 1/p, and G(t) = |t|β−1/pψ(t), t ∈ R

1, β > 1/p (cf.
(1.3), (1.5)). The superposition results in

G(f(x)) ∼ |x|(α−1/p)(β−1/p) near zero, which gives

G(f(x)) ∈ Hr
p(R1), r < (α− 1/p)(β − 1/p) + 1/p .

Because of f ∈ Hs
p(R1), s < α, it is necessary to have

(α − 1/p)(β − 1/p) + 1/p > α

to guarantee the embedding (2.42). This means β − 1/p > 1. Hence, in that case
G ∈ Hs

p(R1), s > 1 + 1/p, is necessary to have (2.42).

In the literature some attention is also paid to the mappings f → |f | or
equivalently to f → max(0, f) = f+, f → min(0, f) = f−. As a supplement to
Theorem 7 and to the above-mentioned result of Marcus and Mizel [12] we have
proved the following in Runst–Sickel [22]:

Theorem 10. Let ε > 0. Let 1 < p < 2. Let 0 ≤ s < 2/p. Then there exists a

constant cε such that

(2.43) ‖|f ||Hs
p‖ ≤ cε‖f |H

s+ε
p ‖ for all f ∈ Hs+ε

p .

R e m a r k 17. The proof in [22] is based on the fact that the translates and
dilates of the hut function N (see Fig. 7) form a dense set in Hs

p , 1 < p < ∞,
0 ≤ s < 1 + 1/p. Furthermore, one can use the formula |

∑
j αjN(t − j)| =∑

j |αj |N(t− j), t ∈ R
1.
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N(t)
1

−1 0 1 t

Fig. 7

2.7.4. R
m → R

1 functions G. Using similar ideas to the case of R
1 → R

1

functions one obtains the following generalizations of Theorems 4 and 8.

Theorem 11 ([25]). Let G : R
m → R

1, G(0, . . . , 0) = 0 and G ∈ C∞(Rn).

(i) Let s ≥ 0. Then there exists a constant c such that

(2.44) ‖G(f1, . . . , fm)|Hs
p‖

≤ c max
i=1,...,m

(‖fi|H
s
p‖ + ‖fi|H

s
p‖‖fi|L∞‖max(0,s−1))

for all (f1, . . . , fm) ∈ (H̃s
p ∩ L∞)m.

(ii) Let 1<s<n/p. Let ̺ be defined as in (2.15). Then there exists a constant

c such that

(2.45) ‖G(f1, . . . , fm)|H̺
p‖ ≤ c max

i=1,...,m
(‖fi|H

s
p‖ + ‖fi|H

s
p‖

̺)

for all (f1, . . . , fm) ∈ (H̃s
p)m.

(iii) Let 0 ≤ s ≤ 1. Then there exists a constant c such that

(2.46) ‖G(f1, . . . , fm)|Hs
p‖ ≤ c max

i=1,...,m
(‖fi|H

s
p‖)

for all (f1, . . . , fm) ∈ (H̃s
p)m.

3.Continuity and differentiability of TG. In most applications continuity
and smoothness properties of TG are also of interest.

3.1. Continuity of TG. The following simple trick yields the continuity of TG

as a consequence of its boundedness. We apply the interpolation inequality

(3.1) ‖G(f) −G(g)|Hs
p‖ ≤ ‖G(f) −G(g)|Hs0

p ‖1−θ‖G(f) −G(g)|Lp‖
θ ,

where 0 < θ < 1, s = (1−θ)s0 (cf. Triebel [29, 30]). Then the Lp continuity of TG

in connection with its Hs0

p boundedness yield the continuity of TG as a mapping
from Hs0

p into Hs
p . By choosing θ sufficiently small, the defect s0−s can be made

arbitrarily small.
A little more elegant is the following application of Theorem 11, which works

for bounded functions. We use the identity

G(f) −G(g) =
G(f) −G(g)

f − g
(f − g) −G′(0)(f − g) +G′(0)(f − g)

= H(f, g)(f − g) +G′(0)(f − g)
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and the fact that Hs
p ∩L∞ is a multiplication algebra. This leads to the following

theorem (cf. Franke–Runst [10], Drabek–Runst [8], Sickel [25]).

Theorem 12. Let G ∈ C∞(R1), G(0) = 0. Then TG is locally Lipschitz

continuous as a mapping of H̃s
p ∩ L∞ into itself. Moreover ,

(3.2) ‖G(f) −G(g)|Hs
p‖

≤ c(‖f − g|Hs
p‖ + ‖f − g|L∞‖max(‖f |Hs

p‖ + ‖f |Hs
p‖‖f |L∞‖max(0,s−1) ,

‖g|Hs
p‖ + ‖g|Hs

p‖‖g|L∞‖max(0,s−1))

for all f, g ∈ H̃s
p ∩ L∞.

3.2. Differentiability . Sometimes also differentiability properties of TG are of
interest. Here we only present the following result.

Theorem 13 ([25]). Let G be an infinitely differentiable function on R
1. Let

Ω be a bounded C∞-domain. Let s > n/p. Then the operator TG is infinitely

differentiable as a mapping from Hs
p(Ω) into Hs

p(Ω). We have

(3.3) (TG(f))(j)[g1, . . . , gj ] = G(j)(f)g1 ◦ . . . ◦ gj , j = 1, 2, . . . ,

f ∈ Hs
p(Ω), g1, . . . , gj ∈ Hs

p(Ω). Moreover ,

(3.4)

∥∥∥∥G(f + g) −
N∑

j=0

G(j)(f)

j!
gj

∣∣∣∣H
s
p(Ω)

∥∥∥∥ ≤ c‖g|Hs
p(Ω)‖N+1(1 + ‖g|Hs

p(Ω)‖)

for all f, g ∈ Hs
p and all N = 1, 2, . . .

A f i n a l r e m a r k. In Runst [19–21], Runst–Sickel [22], Triebel [31] and
Sickel [23–25] boundedness and continuity of superposition operators are investi-
gated in the scales Bs

p,q and F s
p,q . On the one hand, this is a natural extension of

the case treated above because of F s
p,2 = Hs

p ; on the other hand, F s
p,q and Bs

p,q are
meaningful also for p ≤ 1. Beside some technical difficulties, also the problem it-
self then becomes complicated. For instance, in case n = 1 or n = 2, G ∈ C∞(R1)
we obtain similar figures as in the general case n ≥ 3 (cf. Figs. 4–6), since the
critical triangle starts at (s, 1/p) = (1, 1/n) (cf. Fig. 6). Also our considerations
in 2.7.2 make it meaningful to deal with p ≤ 1.

References

[1] D. R. Adams and M. Fraz ier, BMO and smooth truncation in Sobolev spaces, Studia
Math. 89 (1988), 241–260.

[2] J. Appel l and P. Zabre ı̆ko, Nonlinear Superposition Operators, Cambridge Univ. Press,
Cambridge 1990.

[3] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I , Ann. Inst. Fourier
(Grenoble) 11 (1961), 385–476.
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