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Parc de Grandmont, F-37200 Tours, France

Introduction. The equations we shall consider here are the so-called classical
Emden equations, namely

(1) −∆u = λeu (λ > 0)

in a 3-dimensional domain and

(2) −∆u = |u|q−1u (q > 1)

in an N -dimensional domain, N ≥ 2. Those equations play an important role in
meteorology, physics, astrophysics and now Riemannian geometry and variational
analysis, therefore they have been studied by many authors. The first works on
radial solutions of (1)–(2) are due to Emden (1897), Fowler (1914–1931), Chan-
drasekhar (1939). An important fact for understanding limit phenomena is the
existence of explicit radial singular solutions:

(3) us(x) = Ln(1/|x|2) + Ln(2/λ)

for (1) and

(4) us(x) =
((

2
q − 1

)(
N − 2q

q − 1

))1/(q−1)

r−2/(q−1)

for (2); in that case it is clear that we have to assume

(5) q > N/(N − 2),

which in fact contains the most interesting phenomena. We may look now for
nonradial solutions of (1) as deformations of the radial ones of the following form:

(6) u(r, σ) = Ln(1/r2) + Ln(2/λ) + 2ω(σ)
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where (r, σ) are the spherical coordinates in RN \ {0}; then ω must satisfy

(7) ∆S2ω + e2ω − 1 = 0

on S2. Let G2 be the set of all continuous, and therefore C∞, solutions of (7);
then it is classical that G2 is the set of functions ω = 1

2 Ln(det |dφ|) where φ is a
conformal transformation of S2.G2 has a structure of a 3-dimensional noncompact
manifold on which SL(2,C) acts transitively [6].

If we look for solutions of (2) of the form

(8) u(r, σ) = r−2/(q−1)ω(σ)

then we see that

(9) −∆SN−1ω + lω − |ω|q−1ω = 0

where

(10) l =
(

2
q − 1

)(
N − 2q

q − 1

)
.

Let GN,q be the set of ω ∈ C(SN−1) satisfying (9) and let G+
N,q = GN,q ∩

C+(SN−1) be the set of nonnegative solutions of (9). If we assume that q >
N/(N − 2), then G+

N,q contains at least the two constant elements 0 and l1/(q−1).
A particular interesting case appears when N ≥ 4 and q = (N + 1)/(N − 3). If
we write d = N − 1, then G+

d,(d+2)/(d−2) is the set of nonnegative solutions of

(11) ∆Sdω − d(d− 2)
4

ω + ω(d+2)/(d−2) = 0

on Sd. Let Gd be G+
d,(d+2)/(d−2). This set is completely known from the works

of Obata [11], Aubin [1] or Uhlenbeck; it is a (d + 1)-dimensional noncompact
manifold on which the Möbius group of Sd acts transitively, and if we fix a point
a on Sd and write % for the geodesic distance, then Gd is the set of functions
ψµ,a( · ) defined by

(12) ψµ,a(σ) =
(
d(d− 2)

4

)(d−2)/4( √
µ2 − 1

µ− cos %(a, σ)

)(d−2)/2

,

µ ∈ [1,∞], σ ∈ Sd.
The two questions we are interested in are:
Q1: When G+

N,q reduces to the constant functions?
Q2: What is the role of G+

N,q, G2, Gd for describing the asymptotics of the
solutions of (1) and (2)?

Geometric aspects of Emden’s equations. The main result of this section
is the following [3]:

Theorem 1. Assume (M, g) is a compact Riemannian manifold without boun-
dary of dimension n ≥ 2, ∆g is the Laplace–Beltrami operator on M , q > 1, λ > 0
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and u is a positive solution of

(13) ∆gu+ uq − λu = 0 on M.

Assume also that the spectrum σ(R(x)) of the Ricci tensor R of the metric g
satisfies

(14) inf
x∈M

minσ(R(x)) ≥ n− 1
n

(q − 1)λ ,

(15) q ≤ (n+ 2)/(n− 2) .

Moreover , assume that one of the two inequalities (14), (15) is strict if (M, g) is
conformally diffeomorphic to (Sn, g0). Then u is constant with value λ1/(q−1).

P r o o f. The main tool for this proof is the Bochner–Lichnerowicz–Weitzen-
böck formula, which takes the following form when f is a 0-form:

(16) 1
2∆g(|∇f |2) = |Hess f |2 + 〈∇∆gf,∇f〉+R(∇f,∇f)

where Hess f is the second covariant derivative of f and 〈 , 〉 the scalar product
in TM associated with g.

For β ∈ R \ {0} we set u = v−β ; then v satisfies

(17) ∆gv = (β + 1)
|∇v|
v

2

+
1
β

(v1+β−βq − λv).

We take f = v in (16), multiply by vγ (γ ∈ R) and integrate over M ; we obtain

(18) A+B + C +D = 0

with

(19) A =
∫
M

vγ |Hess v|2 =
1
n

∫
M

vγ(∆gv)2 + J

where

(20) J =
∫
M

vγ
(
|Hess v|2 − 1

n
(∆gv)2

)
≥ 0

from Schwarz’ inequality, and

B =
∫
M

vγ〈∇∆gv,∇v〉,(21)

C = −1
2

∫
M

vγ∆g(|∇v|2),(22)

D =
∫
M

vγR(∇v,∇v).(23)
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After a lengthy computation we deduce from (17) that

(24) J − a
∫
M

vγ−2|∇v|4 − b
∫
M

vγ−β(q−1)|∇v|2

+
∫
M

vγ(R(∇v,∇v) + c|∇v|2) = 0

with

a =
1
2

(
γ2 + (3β + 2)γ + 2

n− 1
n

(β + 1)2
)
,(25)

b =
1
n

(
q(n− 1) +

γ

β

n+ 2
2

)
,(26)

c = λ

(
n− 1
n

+
γ

β

n+ 2
2n

)
.(27)

The proof of Theorem 1 then reduces to the search for β 6= 0 and γ such that

(28) a ≤ 0, b ≤ 0, inf
M

minσ(R(x)) ≥ −c.

Writing y = 1 + 1/β, δ = −γ/β (y 6= 1) implies that (28) becomes

(29) 2
n− 1
n

y2 − 2δy + δ2 − δ ≤ 0,

(30) 2q
n− 1
n+ 2

≤ δ,

(31)
2n
n+ 2

inf
M

minσ(R(x)) ≥ λ
(
δ − 2

n− 1
n+ 2

)
.

From (14) we see that there exists δ such that (30) and (31) hold. If (14) is strict
we can choose δ such that one of the two inequalities (30), (31) is strict. If (14) is
strict then δ = 2q(n− 1)/(n+ 2). In order to find y satisfying (29) we must have

(32) ∆′ =
δ

n
(2n− 2− (n− 2)δ) ≥ 0 .

If n = 2 we always have ∆′ > 0.
If n ≥ 3, then ∆′ > 0 ⇔ δ < 2(n − 1)/(n − 2) and we are confronted with

three cases:

(i) q < (n + 2)/(n − 2) ⇔ 2(n − 1)q/(n + 2) < 2(n − 1)/(n + 2). Then we
can find δ such that 2(n− 1)q/(n+ 2) < δ < 2(n− 1)/(n+ 2), and we also find y.

(ii) q = (n+ 2)/(n− 2) and (M, g) = (Sn, kg0) for some k > 0, k ∈ C∞(M).
We take δ = 2(n− 1)/(n− 2), y = (n− 1)2/(n(n− 2)) 6= 1 and (14) is strict.
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(iii) q = (n + 2)/(n − 2) and (M, g) 6= (Sn, kg0). We take δ and y as in (ii).
Even if (14) is not strict we have

(33)
∫
M

vγ
(
|Hess v|2 − 1

n
(∆gv)2

)
> 0

unless v is constant, which ends the proof.

R e m a r k 1. When (M, g) = (SN−1, g0), our result reads

(34) λ(q − 1) ≤ N − 1, q ≤ (N + 1)/(N − 3)

with one inequality being strict.

An interesting consequence of Theorem 1 is that it gives improved estimates
for the value of

(35) Sλ,q = inf{Qλ,q(u) : u ∈W 1,2(M) \ {0}}
where

(36) Qλ,q(u) =
∫
M

(|∇u|2 + λu2)
/( ∫

M

|u|q+1
)2/(q+1)

.

The following result is a consequence of Theorem 1 of [3]:

Corollary 1. Assume (M, g) is a compact Riemannian manifold without
boundary of dimension n ≥ 2, and

(37) Λ = inf
x∈M

minσ(R(x)) > 0.

Assume 1 < q ≤ (n+ 2)/(n− 2).

(i) If 0 ≤ λ ≤ Λ then

(38) Sλ,q = λ(VolM)(q−1)/(q+1),

(ii) if λ > Λ then

(39) Λ(VolM)(q−1)/(q+1) < Sλ,q ≤ λ(VolM)(a−1)/(a+1).

R e m a r k 2. Similar results to Theorem 1 and Corollary 1 hold if ∂M is
not empty but convex and (15) holds with homogeneous Neumann boundary
conditions [10].

Open problems. Under what conditions on (M, g), λ > 0, q and α ≥ 0 is
any positive solution of

(40) divg(|∇ω|p−2∇ω) + ωq − λωp−1 = 0,

1 < p < q + 1 ≤ np/(n− p) (if n > p) or

(41) divg((α2ω2 + |∇ω|2)(p−2)/2∇ω) + ωq − λ(α2ω2 + |∇ω|2)(p−2)/2ω = 0

a constant?
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Analytic aspects of Emden’s equations. A natural way to study the
structure of the set of solutions of (1) or (2) is to study their asymptotics, the
isolated singularities for example: we assume that u is a solution of (1) (resp. (2))
in B1(0) \ {0} = {x ∈ RN : 0 < |x| < 1} and we write it as

(42) u(r, σ) = Ln(1/r2) + Ln(2/λ) + 2v(t, σ)

where t = Ln(1/r) (resp.

(43) u(r, σ) = r−2/(q−1)v(t, σ)

and t ∈ (0,∞)). In the case of equation (1) the function v defined by (42) satisfies

(44) vtt − vt +∆S2v + e2v − 1 = 0

on (0,∞)× S2, and in the case of (2) the function v defined by (43) satisfies

(45) vtt −
(
N − 2

q − 1
q + 1

)
vt +∆SN−1v − lv + v|v|q−1 = 0

on (0,∞)× S2. An important fact is that in (45) the coefficient of vt vanishes if
and only if q = (N + 2)/(N − 2). A general form for (44), (45) is

(46) φtt + aφt +∆gφ+ f(φ) = 0.

Theorem 2. Assume (M, g) is a compact manifold without boundary , ∆g is
the Laplace–Beltrami operator on M , f is a C1,γ real function for some γ ∈ (0, 1)
and a 6= 0. If φ is any solution of (46) uniformly bounded on (0,∞) ×M , then
there exists a compact and connected subset ξ of the set E of C2 solutions of

(47) ∆gω + f(ω) = 0

on M such that φ(t, · ) converges to ξ as t tends to ∞ in the C2(M)-topology.

P r o o f. From the boundedness of φ and the regularity theory of elliptic equa-
tions there exists k1 > 0 such that

(48)
∣∣∣∣ ∂α∂tα∇βφ

∣∣∣∣ ≤ k1

on [1,∞) ×M , for any α + |β| ≤ 3. Therefore the ω-limit set ξ of the positive
trajectory of φ defined by

(49) ξ =
⋂
t>0

⋃
τ≥t

φ(τ, · )
C2

is a nonempty compact connected subset of C2(M).
Multiplying (46) by φt and integrating on M yields

(50) a
T∫

1

∫
M

φ2
t =

[ ∫
M

(
1
2
|∇φ|2 − 1

2
φ2
t − F (φ)

)]t=T
t=1
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for any T > 1, where F (r) =
∫ r
0
f(s) ds. From the boundedness of φ and a 6= 0

we see that

(51)
∞∫
1

∫
M

φ2
t <∞.

From this estimate and (46) we deduce that

(52)
∞∫
1

∫
M

φ2
tt <∞,

which implies

(53) lim
t→∞

(‖φt(t, · )‖L2(M) + ‖φtt(t, · )‖L2(M)) = 0

by using the uniform continuity of φt and φtt. Therefore

(54) ξ ⊂ E = {ω ∈ C2(M) : ∆gω + f(ω) = 0},
which ends the proof.

The main problem is now to prove that ξ reduces to a single element. Thanks
to Simon’s results [13]–[15] we know two cases where this holds:

Theorem 3. Assume the hypotheses of Theorem 2 to hold and let f be a
real-analytic function in some neighborhood of the closure of the range of φ. Then
there exists ω ∈ E such that φ(t, · ) converges to ω in the Ck(M)-topology , for
any k ∈ N.

The proof [3], [14], [15] is an application of a very deep and difficult result of
[13].

Theorem 4. Assume the hypotheses of Theorem 2 and that there exists ω ∈ ξ
such that E is hyperbolic near ω, that is, E ∩ O is a d-dimensional manifold for
some neighborhood O of ω and

(55) dim Ker(∆g + f ′(ω)I) = d.

Then φ(t, · ) converges to ω in the C2(M)-topology.

R e m a r k 3. The boundedness assumption upon φ has the following meaning
for equations (1) and (2):

(56) u(x)− Ln(1/|x|2) ∈ L∞loc(B1(0))

for (1), and

(57) |x|2/(q−1)u(x) ∈ L∞loc(B1(0))

for (2). In the case of (1) no estimate of type (56) is known. In the case of (2)
estimate (57) is only known when u ≥ 0 and q < (N + 2)/(N − 2) ([3], [9]).

R e m a r k 4. The hyperbolicity assumption in Theorem 4 is not easy to check
in general. In the particular case of the set Gd (d ≥ 2) this hyperbolicity property
can be checked thanks to the transitivity of the conformal group action.
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We now give some applications of Theorems 3–4 [3].

Theorem 5. Assume u is a solution of (1) in B1(0) \ {0} such that

(58) |x|2eu(x) ≤ k

for some constant k and any 0 < |x| ≤ 1/2. Then either

(i) u is a smooth solution of (1) in B1(0), or
(ii) there exists γ < 0 such that

(59) −∆u = λeu + 4πγδ0

in D′(B1(0)) and

(60) lim
x→0
|x|u(x) = γ,

or
(iii) there exists ω ∈ G2 such that

(61) lim
r→0

(
u(r, · )− Ln

1
r2

)
= Ln

2
λ

+ 2ω( · )

in the Ck(S2)-topology, for any k ∈ N.

For the exterior problem we have

Theorem 6. Assume u is a solution of (1) in RN \B1(0) such that (58) holds
for |x| ≥ 2 and some constant k. Then there exists ω ∈ G2 such that

(62) lim
r→∞

(
u(r, · )− Ln

1
r2

)
= Ln

2
λ

+ 2ω( · )

in the Ck(S2)-topology , for any k ∈ N.

Theorem 7. Assume 1 < q < (N + 2)/(N − 2), λ is such that

(63) λ < l =
2

q − 1

(
N − 2q

q − 1

)
and u is a nonnegative solution of

(64) −∆u = uq +
λ

|x|2
u

in B1(0). Then either

(i) there exists ω ∈ C∞(SN−1) such that

(65) −∆SN−1ω + (l − λ)ω − ωq = 0

on SN−1 and

(66) lim
r→0

r2/(q−1)u(r, · ) = ω( · )

in the Ck(SN−1)-topology , or
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(ii) there exists γ ≥ 0 such that

(67) lim
x→0

u(x)/µ(x) = γ

where

(68) µ(x) = |x|(2−N+
√

(N−2)2−4λ)/2.

Soliton solutions. In the particular case of (2) with q = (N + 2)/(N−2) the
method developed in Theorems 2–4 does not work. If we study the more general
conformally invariant equation

(69) −∆u = |u|4/(N−2)u+
λ

|x|2
u

in an N -dimensional domain we first notice that the quantity

(70) A(r) = r−1
∫
|x|=r

(
|Du|2|x|2 − 2(Du · x)2 − (N − 2)u(Du · x)

− λ

|x|2
u2 − N − 2

N
|u|2N/(N−2)

)
dS

is independent of r (this corresponds to the fact that the coefficient of vt in (45)
is zero). It is interesting to notice the existence of soliton solutions of (69), that
is, solutions of the form

(71) u(r, σ) = r−(N−2)/2ω(e−(Ln r)A(σ))

where A is a skew-symmetric matrix. If LA is the Lie derivative associated with
the vector field σ 7→ A(σ), then ω satisfies

(72) ∆SN−1ω + LALAω + |ω|4/(N−2)ω −
((

N − 2
2

)2

− λ
)
ω = 0

on SN−1, which is the Euler–Lagrange equation of the functional

(73) JA(ω) =
1
2

∫
SN−1

(
|∇ω|2 + (LAω)2 +

((
N − 2

2

)2

− λ
)
ω2

−N − 2
N
|u|2N/(N−2)

)
dσ

defined on W 1,2(SN−1).
A natural problem is to study the existence of nontrivial or non-A-invariant

solutions of (72). By using the method of Theorem 1 we can prove the following
result:

Theorem 8. Assume λ ≥ (2−N)/4. Then any positive solution of (72) is a
constant.



508 L. VÉRON

R e m a r k 5. In the particular case where λ = 0, Theorem 8 is a consequence
of the very deep results contained in [4].

By using the Lyusternik–Schnirelmann theory [12] we can prove the follow-
ing [3]:

Theorem 9. There exist infinitely many different solutions of (72), all corre-
sponding to different critical values of JA.

Our conjecture concerning the role of the solutions of (72) is the following:

Assume u is a nonnegative solution of (69) in B1(0) \ {0}. Then either

(i) there exists a skew-symmetric matrix A and a nonconstant positive solu-
tion of (72) on SN−1 such that

(74) lim
r→0

(r(N−2)/2u(r, σ)− ω(e−(Ln r)A(σ)) = 0,

or
(ii) there exists a nonnegative solution ψ of

(75) ψrr + ψ(N+2)/(N−2) −
(
N − 2

2

)2

− λψ = 0

such that

(76) lim
r→0

r(N−2)/2(u(r, σ)− ψ(r)) = 0.

A similar conjecture can be made for the solutions of

(77) ∆u = |u|4/(N−2)u− λ

|x|2
u

in a punctured ball (notice that all the solutions are uniformly bounded by
C|x|(2−N)/2 near 0).
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