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AN EQUATIONAL BASIS IN FOUR VARIABLES
FOR THE THREE-ELEMENT TOURNAMENT

BY

G. GR ÄT ZE R, A. K I S IELEWICZ, AND B. WOLK (WINNIPEG)

1. Introduction. As in E. Fried [1] and H. L. Skala [3], we can associate
with a tournament 〈T ;<〉 (T with a binary relation < such that for all
a, b ∈ T exactly one of a = b, a < b, and b < a holds) an algebra 〈T ;∧,∨〉
by the rule: if x < y, then x = x ∧ y = y ∧ x and y = x ∨ y = y ∨ x, and
x = x ∧ x = x ∨ x for all x.

In this algebra 〈T ;∧,∨〉, neither ∧ nor ∨ is associative unless 〈T ;<〉 is a
chain, that is, < is transitive. However, the two operations are idempotent,
commutative; the absorption identities hold, and a weak form of the asso-
ciative identities holds. In E. Fried and G. Grätzer [2], such algebras were
named “weakly associative lattices.”

More formally, following E. Fried [1] and H. L. Skala [3], an algebra
〈A;∧,∨〉 is called a weakly associative lattice (WA-lattice) iff it satisfies the
following set of identities:

x ∧ x = x,(1)
x ∨ x = x (idempotency) ;
x ∧ y = y ∧ x,(2)
x ∨ y = y ∨ x (commutativity);
x ∧ (x ∨ y) = x,(3)
x ∨ (x ∧ y) = x (absorption identities) ;
((x ∧ z) ∨ (y ∧ z)) ∨ z = z,(4)
((x ∨ z) ∧ (y ∨ z)) ∧ z = z (weak associativity) .

Define “dual” to mean interchanging ∧ and ∨. The dual of a WA-lattice
is a WA-lattice. The set of identities (1)–(4) is self-dual (i.e., the dual of
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every identity in the set (1)–(4) is in the set). For a polynomial p, we denote
by p̃ its dual.

The smallest example of a nontransitive tournament is the three-element
cycle 〈{0, 1, 2};<〉 in which 0 < 1, 1 < 2, and 2 < 0. In the corresponding
algebra Z, neither ∧ nor ∨ is associative.

Z plays the same role for tournaments as the two-element lattice does
for distributive lattices. A tournament (algebra) 〈T ;∧,∨〉 is not a chain iff
it contains Z as a subalgebra.

Let Z be the variety generated by Z. Note that Z is self-dual: if an
algebra is in Z, so is its dual.

Let L be a WA-lattice, a, b ∈ L. We denote by Θ(a, b) the smallest con-
gruence relation in L under which a and b are congruent. The following is a
description of Θ(a, b) in any L ∈ Z (E. Fried and G. Grätzer [2, Theorem 1]):

Characterization Theorem of Θ(a, b) in Z. Let L ∈ Z, let a, b, c, d
∈ L, and let a ≤ b, c ≤ d. Then c ≡ d (Θ(a, b)) iff the following two
equations hold :

a ∧ (c ∧ b) = a ∧ (d ∧ b), (a ∨ c) ∨ b = (a ∨ d) ∨ b .

One of the main results of E. Fried and G. Grätzer [2] is a characterization
of Z in terms of Θ(a, b); we will need this in our proof:

Characterization Theorem of Z. Let K be a variety of WA-lattices
in which for any A ∈ K, a, b, c, d ∈ A, a ≤ b, c ≤ d, and c ≡ d (Θ(a, b))
imply that a∧ (c∧ b) = a∧ (d∧ b), and (a∨ c)∨ b = (a∨d)∨ b. Then K ⊆ Z.

In E. Fried and G. Grätzer [2], a finite set of identities was exhibited
that form an equational basis of Z. The identities are in five variables;
so from this result we can conclude that if every five-generated subalgebra
of an algebra belongs to Z, then so does the algebra. The question was
raised whether “five” could be improved to “four.” (“Three” is obviously
impossible, since every three-variable identity that holds in Z also holds in
any tournament.) In this paper, we answer this question in the affirmative.

2. The identities. We build our identities from the following polyno-
mial:

r(x, y, z) = (x ∧ y) ∧ ((x ∨ y) ∧ z),
and its dual. We consider the following identities:

r(x, y, z ∧ t) = (r(x, y, z) ∧ r̃(x, y, t)) ∧ (r(x, y, t) ∧ r̃(x, y, z)) ,(5)
r(x, y, z ∨ t) = [(r(x, y, z) ∨ r̃(x, y, t)) ∧ (r(x, y, t) ∨ r̃(x, y, z))](6)

∧ (r(x, y, z) ∨ r(x, y, t)) ,

and their duals (7) and (8), respectively.
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Lemma. Identities (5)–(8) hold in Z.

P r o o f. These identities were checked with a computer program. For
the reader’s convenience, we show a quick way to check them by hand. Let
a, b, and c be three distinct elements of Z. It is easily verified that

a ∧ (b ∧ c) = a ∨ (b ∨ c) = a .

Therefore, if a 6= b in Z, then a∧ b < a∨ b, r(a, b, z) = a∧ b, and r̃(a, b, z) =
a∨b, for all values of z in Z. This reduces the identities to relations involving
only the two elements x = a and y = b, which are easily verified.

Otherwise, x = y. If {x, z, t} is contained in a two-element subset of
Z, then the result follows easily since we work in a distributive lattice. Let
{x, z, t} = {0, 1, 2}. Since the 3-cycle 0 → 1 → 2 → 0 is an automorphism
of Z, we can assume that x = 0. Each identity is symmetric in z and t;
therefore, it suffices to take z = 1 and t = 2. A check of this single case
completes the proof.

Let K be the class of weakly associative lattices satisfying the identities
(5)–(8). Then the Lemma can be restated as follows: Z ⊆ K.

3. The Theorem. Our main result is the following:

Theorem. Identities (1)–(8) define Z.

P r o o f. Let A ∈ K and a, b ∈ A. Consider a binary relation ∼ on A
defined as follows: for c, d ∈ A, let c ∼ d iff

(∗) r(a, b, c) = r(a, b, d) and r̃(a, b, c) = r̃(a, b, d).

This is clearly an equivalence relation, and a ∼ b holds. We show that ∼
has the Substitution Property. Indeed, if c ∼ d, then for all e ∈ A,

r(a, b, c ∧ e) = r(a, b, d ∧ e) , r̃(a, b, c ∧ e) = r̃(a, b, d ∧ e) ,

r(a, b, c ∨ e) = r(a, b, d ∨ e) , r̃(a, b, c ∨ e) = r̃(a, b, d ∨ e) .

To prove the first equation, compute:

r(a, b, c ∧ e) = (by (5))
(r(a, b, c) ∧ r̃(a, b, e)) ∧ (r(a, b, e) ∧ r̃(a, b, c)) = (by (∗))
(r(a, b, d) ∧ r̃(a, b, e)) ∧ (r(a, b, e) ∧ r̃(a, b, d)) = (by (5))
r(a, b, d ∧ e) .

The other three proofs are similar. Thus, ∼ is a congruence relation on A.
Now let c ≡ d (Θ(a, b)). Since a ∼ b and ∼ is a congruence relation, it

follows that c ∼ d; therefore, (∗) holds. If, in addition, a ≤ b and c ≤ d,
then (∗) simplifies to a ∧ (b ∧ c) = a ∧ (b ∧ d) and b ∨ (a ∨ c) = b ∨ (a ∨ d).
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Thus, in view of the Characterization Theorem of Z, quoted in §2, this
proves that K ⊆ Z; since by the Lemma, K ⊇ Z, this completes the proof
of the Theorem.

Corollary 1. Let A be an algebra. If every four-generated subalgebra
of A belongs to Z, then so does A.

The identities (1)–(8) correspond closely to the identities defining dis-
tributive lattices. The identities (1)–(4) define WA-lattices, and (5)–(8) are
the distributive identities. One difference shows up in (1)–(4): for lattices,
we have three identites for ∨, the three dual ones for ∧, and these two sets of
identities are connected by the two absorption identities. For WA-lattices,
weak associativity involves both operations. We can remedy this situation
for Z.

Consider the identities:

(4′)
(x ∧ z) ∧ (x ∧ (y ∧ z)) = (x ∧ z) ∧ ((x ∧ y) ∧ z)) ,

(x ∨ z) ∨ (x ∨ (y ∨ z)) = (x ∨ z) ∨ ((x ∨ y) ∨ z)) .

It is easy to see that (4′) holds in Z, and therefore in Z. The role of (4)
is to ensure that a∨ b is the least upper bound of a and b (in the sense that
a ≤ a ∨ b, b ≤ a ∨ b, and if a ≤ d and b ≤ d, then a ∨ b ≤ d); and dually.
This readily follows also from (4′).

Corollary 2. The identities (1)–(3), (4′), (5)–(8) define Z.

Finally, we would like to point out a curiosity. The set of identities in
[2] characterizing Z is equivalent to the identities (1)–(8) in this paper. The
proof of the equivalence uses the Characterization Theorem of Z from [2],
a result that cannot be proved without some form of the Axiom of Choice.
It would be interesting to find a direct equational theoretic proof of the
equivalence. The existence of such a proof is known.
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