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0. Introduction. A complex valued function ϕ defined on the dual Γ
of an infinite compact abelian group G is called an (Lp, Lq) multiplier if for
all f ∈ Lp(G), Mϕf ∈ Lq(G) where by Mϕf we mean the function whose
Fourier transform is given by M̂ϕf(χ) = ϕ(χ)f̂(χ) for χ ∈ Γ . The space
of (Lp, Lq) multipliers will be denoted by M(p, q). When µ is a bounded
Borel measure on G, then Mµ̂ ∈ M(p, p) (we will write µ ∈ M(p, p)). If a
multiplier ϕ ∈ M(2, p) for some p > 2 then ϕ is called Lp-improving . For
basic properties, and background information on Lp-improving multipliers
we refer the reader to [5] and [8].

In this paper we investigate the relationship between the size of the func-
tion ϕ and membership in M(2, p) for certain types of multipliers, furthering
the work of [2] and [5] in particular.

By a one-sided Riesz product we mean a multiplier ϕ given by

ϕ(χ) =
{∏

aεi
i if χ =

∏
χεi

i , εi = 0, 1,
0 otherwise

where {χi} is a dissociate subset of Γ and {ai} is a bounded sequence of
complex numbers. We will write ϕ =

∏
(1 + aiχi) for short. When χ2

i = 1
for all χi then a one-sided Riesz product is actually the Fourier transform of
a Riesz product; and like Riesz products, one-sided Riesz products exhibit
interesting phenomena. Extending work of Bonami [2], in Section 2 we
characterize certain (one-sided) Riesz products on T∞, D∞ and T which
belong to M(2, p). This characterization shows that the necessary conditions
on the size of (L2, Lp) multipliers which we obtain in Section 1 are best
possible, but are not sufficient even for (one-sided) Riesz products, answering
an open problem in [5].

In [8] (L2, Lp) multipliers are “almost” characterized. The necessary con-
ditions we establish are combined with this result to sharpen the known esti-
mates of the Λ(p) constants of sums of dissociate sets. The previously known
best estimates were developed in [2] by mainly combinatorial methods.
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1. Necessary conditions. As a preliminary result we obtain lower
bounds for Lp norms of Riesz products and one-sided Riesz products.

Lemma 1.1. Let {χi}∞1 be a dissociate subset of Γ such that χ2
i 6= 1.

For each p > 0 there are positive constants k = kp and c = cp < 1/2 such
that

N∏
i=1

(1 + (p− 1)|ci|2 − k|ci|3) ≤
∥∥∥ N∏

i=1

(1 + ciχi + ciχi)
∥∥∥

p
(a)

≤
N∏

i=1

(1 + (p− 1)|ci|2 + k|ci|3) ,

and
N∏

i=1

(1 + |ci|2p/4− k|ci|3) ≤
∥∥∥ N∏

i=1

(1 + ciχi)
∥∥∥

p
(b)

≤
N∏

i=1

(1 + |ci|2p/4 + k|ci|3)

whenever N ∈ N and {ci} is a sequence of complex numbers with |ci| ≤ c
for all i.

P r o o f. In what follows the constant k = kp may vary from one line to
another.

(a) The Taylor series expansion of (1 + x)p for |x| small yields that∥∥∥ N∏
i=1

(1 + ciχi + ciχi)
∥∥∥p

p

≥
∫ N∏

i=1

(
1 + p(ciχi + ciχi) +

p(p− 1)
2

(ciχi + ciχi)2 − k|ci|3
)

.

As {χi} is a dissociate set this integral equals
∏N

i=1(1+p(p−1)|ci|2−k|ci|3).
By taking pth roots and another application of Taylor series we obtain the
first inequality in (a). The other is similar.

For (b) first we observe that∥∥∥ N∏
i=1

(1 + ciχi)
∥∥∥

p
=

[ ∫ N∏
i=1

((1 + ciχi)(1 + ciχi))
p/2

]1/p

=
N∏

i=1

(1 + |ci|2)1/2

[ ∫ N∏
i=1

(
1 +

ciχi + ciχi

1 + |ci|2

)p/2]1/p

.

Using part (a) it follows that if constants |ci| are sufficiently small, than the
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integral in the line above dominates
N∏

i=1

(
1 +

(
p

2
− 1

)
|ci|2

(1 + |ci|2)2
− k|ci|3

)p/2

.

This estimate together with another application of Taylor series establishes
the lower bound for ||

∏N
i=1(1 + ciχi)||p, and similar arguments give the

upper bound.

R e m a r k. Of course, for any sequence {ci}, the L2 norms of
∏N

i=1(1 +
ciχi +ciχi) and

∏N
i=1(1+ciχi) are

∏N
i=1(1+2|ci|2)1/2 and

∏N
i=1(1+ |ci|2)1/2

respectively.

With the estimates of this lemma we can now obtain necessary quanti-
tative estimates for certain (L2, Lp) multipliers. First we consider the case
when the multiplier arises from a measure. Recall that a measure µ is tame
if for each ϕ ∈ ∆M(G) there exists a ∈ C and γ ∈ Γ such that ϕµ = aγ a.e.
dµ ([6, 6.1]). A Riesz product is an example of a tame measure.

Theorem 1.2. Let µ be a tame measure on a compact abelian group G
and assume µ ∈ M(2, p) for some p > 2. Suppose that Γ has no elements
of order 2. Then |ϕµ|2 ≤ 1/(p− 1) for all ϕ ∈ Γ \ Γ ⊂ ∆M(G).

Before proving this we state an immediate corollary and make some
initial remarks.

Corollary 1.3. If tame µ ∈ M(2, p) for p > 2 then

lim sup
χ∈Γ

|µ̂(χ)|2 ≤ 1
p− 1

||µ||2M(G) .

R e m a r k s . (1) For background information on ∆M(G) see [6].
(2) This result improves the estimate in [5] and [7] for tame measures,

and was shown by Bonami to be both necessary and sufficient for certain
Riesz products ([2, p. 376, 385]).

P r o o f o f T h e o r e m. Let ϕ ∈ Γ \ Γ and suppose ϕµ = zχdµ a.e.
where, without loss of generality, we may assume z 6= 0. Replacing µ by
γµ if necessary we may assume µ̂(1) 6= 0. Fix 0 < δ < |z|. Observe that
|µ̂((ϕχ)k)| = |µ̂((ϕχ)k)| = |zkµ̂(1)| for all non-negative integers k, thus we
may choose a dissociate set {χi}∞i=1 such that∣∣∣µ̂( ∏

χεi
i

)∣∣∣ ≥ (|z| − δ)
∑

|εi||µ̂(1)| whenever εi = 0,±1 .

For ε > 0 (and small), define the trigonometric polynomial fN,ε by

f̂N,ε(χ) =


(ε(|z| − δ))k

µ̂(χ)
if χ =

N∏
j=1

χ
εj

j , εj = 0,±1 and
N∑

j=1

|εj | = k,

0 otherwise.
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Then

µ ∗ fN,ε =
N∏

j=1

(1 + ε(|z| − δ)(χj + χj)) .

Thus

|f̂N,ε(χ)| ≤


εk

|z| − δ
if χ =

N∏
j=1

χ
εj

j , εj = 0,±1 and
N∑

j=1

|εj | = k,

0 otherwise
so

||fN,ε||2 ≤
1

|z| − δ
(1 + 2ε2)N/2 .

An application of the closed graph theorem shows that there is a constant
C such that ||µ ∗ f ||p ≤ C||f ||2 for all f ∈ L2. Together with Lemma 1.1
this shows that for all N and for all sufficiently small ε,

C ≥ ||µ ∗ fN,ε||p
||fN,ε||2

≥ 1
|z| − δ

[
1 + (p− 1)ε2(|z| − δ)2 − kε3(|z| − δ)3

(1 + 2ε2)1/2

]N

.

Hence for all small ε,

1 + (p− 1)ε2(|z| − δ)2 − kε3(|z| − δ)3 ≤ (1 + 2ε2)1/2 .

Letting ε → 0 we see that this can occur only if (p − 1)(|z| − δ)2 ≤ 1, but
as δ > 0 was arbitrary this implies that |z|2 ≤ 1/(p− 1) as desired.

Unlike measures, for general (L2, Lp) multipliers ϕ it is not necessary
that lim sup |ϕ(χ)| < ||ϕ||l∞ . Indeed, it is easy to see that the characteristic
function of a Sidon set is an (L2, Lp) multiplier for all p > 2 (cf. [8] or [12]).
However, in the next proposition we will prove that for one-sided Riesz
products a better estimate can be obtained, and we will prove an estimate
sharper than Corollary 1.3 for Riesz products.

Proposition 1.4. Let {χn} be a dissociate set in Γ with χ2
n 6= 1 and let

1 < p < q < ∞. Suppose {rn} and {tn} are sets of complex numbers and let

ε(1)
n = max

(
|rn|2 −

p− 1
q − 1

, 0
)

, ε(2)
n = max

(
|tn|2 −

p

q
, 0

)
.

If either ϕ1 =
∏

(1 + rnχn + rnχn) or ϕ2 =
∏

(1 + tnχn) belong to M(p, q),
then

∑
n(ε(i)

n )3 < ∞ for i = 1, 2.
If , in addition, {χn} satisfies the further independence condition∏

χδn
n = 0 for δn = 0,±1,±2,±3 implies δn = 0 ,

then
∑

(ε(i)
n )2 < ∞ is a necessary condition.

R e m a r k. If |rn| ≤ 1/2 then ϕ1 is a measure, otherwise by ϕ1 we simply
mean the obvious multiplier.
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P r o o f. Note that a necessary condition for ϕ1 or ϕ2 to be an ele-
ment of M(p, q) is that {ε(i)

n } is a bounded sequence for i = 1, 2. Define
trigonometric polynomials f

(1)
N =

∏N
n=1(1 + cε

(1)
n (χn + χn)) and f

(2)
N =∏N

n=1(1 + cε
(2)
n χn) where c ≥ 0 is a small constant.

As ϕ1, ϕ2 ∈ M(p, q) the usual closed graph theorem argument shows that
for i = 1, 2, supN ||Mϕi

f
(i)
N ||q/||f (i)

N ||p < ∞. Thus for c chosen sufficiently
small, Lemma 1.1 implies that

∞ > sup
N

||Mϕ1f
(1)
N ||q

||f (1)
N ||p

≥ sup
N

N∏
n=1

(
1 + (q − 1)|cε(1)

n rn|2 − k|cε(1)
n rn|3

1 + (p− 1)|cε(1)
n |2 + k|cε(1)

n |3

)

= sup
N

N∏
n=1

(
1 +

(ε(1)
n )3((q − 1)c2 − kc3|rn|3)
(p− 1)|cε(1)

n |2 + k|cε(1)
n |3

)
,

which forces
∑

(ε(1)
n )3 < ∞. Similar arguments apply to

∑
(ε(2)

n )3.
If {χi} satisfies the stronger independence property, then Lemma 1.1 can

be improved. The stronger property implies that for every i,∫
χδ

i χ
3−δ
i

∏
j 6=i

χ
δj

j = 0 for δ = 0, 1, 2, 3 and δj = 0,±1,±2,±3 ,

thus arguments similar to Lemma 1.1, but taking the first four terms of the
Taylor series expansion, show that for ci sufficiently small

N∏
i=1

(1 + (p− 1)|ci|2 − k|ci|4) ≤
∥∥∥ N∏

i=1

(1 + ciχi + ciχi)
∥∥∥

p

≤
N∏

i=1

(1 + (p− 1)|ci|2 + k|ci|4)

and
N∏

i=1

(1 + |ci|2p/4− k|ci|4) ≤
∥∥∥ N∏

i=1

(1 + ciχi)
∥∥∥

p
≤

N∏
i=1

(1 + |ci|2p/4 + k|ci|4) .

If we take g
(1)
N =

∏N
n=1(1+

√
cε

(1)
n (χn+χn)) and g

(2)
N =

∏N
n=1(1+

√
cε

(2)
n χn),

then by estimating ||Mϕig
(i)
N ||q/||g(i)

N ||p with these sharper estimates we get
the necessary condition

∑
(ε(i)

n )2 < ∞ for i = 1, 2.

Corollary 1.5. Let {χi} be a dissociate subset of Γ and let ϕ =∏
(1 + aiχi) be a one-sided Riesz product. If ϕ ∈ M(2, p) then lim sup |ai|2

≤ 2/p.
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R e m a r k. This condition is both necessary and sufficient for certain
one-sided Riesz products (see [2, p. 389] and §2).

P r o o f. Assume {χi} = {χi}i∈J ∪ {χi}i∈K where χ2
i = 1 for i ∈ J and

χ2
i 6= 1 for i ∈ K. Let α =

∏
i∈J(1 + aiχi) and β =

∏
i∈K(1 + aiχi). By

duality M(2, p) = M(p′, 2) and as |α(χ)| and |β(χ)| are both dominated by
|ϕ(χ)| for all χ ∈ Γ it follows that α and β belong to M(2, p). But α is
actually a Riesz product so, by [5] or [7], lim supi∈J |ai|2 ≤ 2/p. By the
previous proposition lim supi∈K |ai|2 ≤ 2/p.

Corollary 1.6. A one-sided Riesz product ϕ maps L2 to Lp for some
p > 2 if and only if lim sup |ϕ(χ)| < 1.

P r o o f. Necessity has already been established. For sufficiency, assume
|ϕ(χi)| ≤ 1 − δ < 1 for all i ≥ k and let ϕ1 =

∏∞
i=k(1 + ϕ(χi)χi). Let ϕN

1

denote the composition of ϕ1 with itself N times. If N is chosen sufficiently
large, and µ is the Riesz product µ =

∏∞
i=k(1+(χi +χi)/4) then |ϕN

1 (χ)| ≤
|µ̂(χ)| for all χ ∈ Γ . By [13], µ ∈ M(2, p) for some p > 2, hence ϕN

1 ∈
M(2, p). An interpolation argument ([8, 1.3]) shows that ϕ1 ∈ M(2, q) for
some 2 < q ≤ p. As ϕ is a finite linear combination of translates of ϕ1, the
multiplier ϕ ∈ M(2, q).

2. Lp-Improving Riesz products and one-sided Riesz products.
Perhaps the most difficult problem in the study of (L2, Lp) multipliers, and
the one with the least satisfactory solutions, is of finding good (and practical)
sufficient conditions to describe the p > 2 for which a multiplier ϕ maps L2

to Lp. Other than for monotonic functions ([5, 2.2]), optimal sufficient
conditions are known only for certain (one-sided) Riesz products.

In Chapter 3 of [2], Bonami showed that the Riesz products
∏

(1 +
ren(χ)) on D∞ and

∏
(1 + 2r cos xj) on T∞ belong to M(p, q) if and only

if r2 ≤ (p− 1)/(q− 1), and for even integers p the one-sided Riesz products∏
(1 + reixj ) on T∞ belong to M(2, p) if and only if r2 ≤ 2/p. In con-

trast, our Proposition 1.4 shows that there are Riesz products µ satisfying
lim sup |µ̂|2 ≤ (p−1)/(q−1) but with µ 6∈ M(p, q), answering [5, 3.2(vi)], and
similarly that there are one-sided Riesz products ϕ with lim sup |ϕ|2 ≤ 2/p
but with ϕ 6∈ M(2, p). In this section we characterize a more general class of
Lp-improving (one-sided) Riesz products and as a corollary extend Bonami’s
result on one-sided Riesz products to all p > 2.

Theorem 2.1. Let p > 2 and let {rj} and {tj} be sequences of complex
numbers such that |tj |2 ≥ 2/p and |rj |2 ≥ 1/(p− 1). Let ϕ =

∏
(1 + tje

ixj )
be a one-sided Riesz product on T∞, and µ =

∏
(1 + rje

ixj + rje
−ixj ) be a

Riesz product on T∞. Then ϕ ∈ M(2, p) if and only if
∑

(|tj |2−2/p)2 < ∞,
and µ ∈ M(2, p) if and only if

∑
(|rj |2 − 1/(p− 1))2 < ∞.
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P r o o f. Notice that the characters defined on T∞ by (xk) 7→ eixj satisfy
the “further independence condition” of Proposition 1.4, thus necessity is
clear in both cases.

To prove sufficiency we need the following lemma which is a straightfor-
ward modification of [2, p. 374].

Lemma 2.2. Let ϕ =
∏

(1 + aje
ixj + bje

−ixj ) be a multiplier on T∞.
For each n let ϕn = 1 + aneixn + bne−ixn and let ||ϕn||p,q denote the norm
of ϕn as an operator from Lp to Lq. Then ϕ ∈ M(p, q) if and only if∏
||ϕn||p,q < ∞ and in this case ||ϕ||p,q ≤

∏
||ϕn||p,q.

P r o o f o f T h e o r e m 2.1 (ctd.). Sufficiency for one-sided Riesz prod-
ucts. Let p = 2s (so s > 1) and set εn = |tn|2 − 2/p. Let s0 = 1 and
let

sk =
s(s− 1) . . . (s− k + 1)

k!
if k 6= 0 .

Thus sk =
(

s
k

)
if s is an integer (where

(
s
k

)
= 0 if k > s). One can easily

check that 0 ≤ sk ≤ sk/k! if k ≤ [s] + 1 and |sk| ≤ s[s]+1/(k(k − 1)) if
k > [s] + 1.

Certainly the assumption that
∑

ε2
n < ∞ implies that εn → 0 so we

may choose N so that for all n > N we have |tn| < 1, sk(1/s + εn)k < 3/4
if k = 2, 3, . . . , [s], and εn < ε = ε(s) where 0 < ε ≤ 1− 1/s will be specified
later.

It is easy to see that if ϕn = 1 + tneix then

||ϕn||2,p = sup
b

||1 + btneix||p
||1 + beix||2

.

Claim. For |r| ≤ 1 and any complex number b with |b| > 1, |1+ breix| ≤
|b̄ + reix|.

To prove this observe that

|b̄ + reix|2 − |1 + breix|2 = |b|2 − 1 + |r|2 − |br|2 .

The latter expression is a decreasing function of |r|2, whose value at |r|2 = 1
is zero. This proves the claim.

From this inequality we see that if |b| > 1 and |tn| ≤ 1 then

||1 + btneix||p ≤ ||b̄ + tneix||p = |b| ||1 + b̄−1tneix||p .

As ||1+beix||2 = |b| ||1+ b̄−1eix||2 and |b̄−1| < 1 it follows that in computing
||ϕn||2,p, for n ≥ N , we need only take the supremum over b ∈ C with
|b| ≤ 1. By taking limits we may further reduce to

||ϕn||2,p = sup
|b|<1

||1 + btneix||p
||1 + beix||2

.
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Thus we now assume |b| < 1 and n ≥ N . Compute the Taylor series expan-
sion for

(1 + btneix)s =
∞∑

k=0

sk(btn)keikx

(of course the sum terminates at k = s if s is an integer). Since |btneix| ≤
|b| < 1 this series converges uniformly so

||1 + btneix||pp = ||(1 + btneix)s||22 =
∞∑

k=0

s2
k|btn|2k ,

and this series converges absolutely. Also,

||1 + beix||p2 = (1 + |b|2)s =
∞∑

k=0

sk|b|2k ,

and this series converges absolutely as well.
We must estimate

||1 + btneix||pp
||1 + beix||p2

=
∑∞

k=0 s2
k|btn|2k∑∞

k=0 sk|b|2k

= 1 +
s2|b|2εn + |b|4

∑∞
k=2 sk|b|2(k−2)(sk(1/s + εn)k − 1)

(1 + |b|2)s
.

We break the infinite sum into two terms:

(i)
[s]∑

k=2

sk|b|2(k−2)(sk(1/s + εn)k − 1)

(If [s] = 1 this term is not present.)

(ii)
∞∑

k=[s]+1

sk|b|2(k−2)(sk(1/s + εn)k − 1)

(If s is an integer this term is not present.)

In (i) the choice of n ≥ N ensures that sk(1/s + εn)k − 1 < −1/4, and
as sk > 0 for k = 2, . . . , [s] the first sum is at most −s2/4 if [s] 6= 1.

Sum (ii) we further break down as
∞∑

k=[s]+1

sk|b|2(k−2)(sks−1 − 1) +
∞∑

k=[s]+1

s2
k|b|2(k−2)((1/s + εn)k − s−k) .

By the mean-value theorem and the assumption that εn ≤ ε ≤ 1− 1/s,

(1/s + εn)k − s−k ≤ εnk(1/s + εn)k−1 ≤ εk .
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Thus for some constant C1(s),
∞∑

k=[s]+1

s2
k|b|2(k−2)((1/s + εn)k − s−k) ≤

∞∑
k=[s]+1

(
s[s]+1

k(k − 1)

)2

|b|2(k−2)εk

≤ |b|2([s]−1) ≤ C1(s) .

Clearly {sk(sks−k−1)}∞k=[s]+1 is an alternating sequence tending to zero,
with first term negative. We claim that it is a (strictly) decreasing se-
quence (in absolute value). To prove this we first remark that as sk+1/sk =
(s− k)/(k + 1) it suffices to show that for k ≥ [s] + 1,

sk

sk

(
k + 1 +

(k − s)2

(k + 1)s

)
< s + 1 .

Since |sks−k| ≤ 1/(k(k − 1)) and k2 + 1 + s + k2/s ≤ 2k(k + 1),

sk

sk

(
k + 1 +

(k − s)2

(k + 1)s

)
≤ 1

k(k − 1)

(
2k(k + 1)

k + 1

)
=

2
k − 1

< s + 1 ,

as desired. Hence the first sum in (ii) is at most the sum of its first two
terms, which is at most |b|2([s]−1)C2(s) where C2(s) < 0. If ε > 0 is chosen
so that εC1(s) < |C2(s)|/2 then sum (ii) is negative, and more specifically,
if [s] = 1 then (ii) is at most C2(s)/2.

Combining (i) and (ii) we get
∞∑

k=2

sk|b|2(k−2)(sk(1/s + εn)k − 1) ≤ C3(s) ≡
{
−s2/4 if [s] 6= 1,
C2(s)/2 if [s] = 1.

Thus for |b| < 1 and n ≥ N ,

||1 + btneix||pp
||1 + beix||p2

≤ 1 +
s2|b|2εn + |b|4C3(s)

(1 + |b|2)s
.

If |b|2 ≤ 2s2εn/|C3(s)| then clearly

||1 + btneix||pp
||1 + beix||p2

≤ 1 + ε2
nC4(s)

for C4(s) = 2s4/|C3(s)|, while if 2s2εn/|C3(s)| ≤ |b|2 < 1,

||1 + btneix||pp
||1 + beix||p2

≤ 1 +
s2|b|2(εn − 2εn)

(1 + |b|2)s
≤ 1 .

Thus ||ϕn||2,p ≤ (1 + ε2
nC4(s))1/p whenever n ≥ N . As ||ϕn||2,p < ∞ for all

n,
∏
||ϕn||2,p < ∞ when

∑
ε2

n < ∞. By Lemma 2.2, ϕ ∈ M(2, p).

Sufficiency for Riesz products. The proof is similar to that for one-sided
Riesz products so only the main ideas will be sketched.
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Let ϕn = 1 + rneix + rne−ix. We need to bound ||ϕn||2,p. Since µ ∈
M(2, p) if and only if

∏
(1 + |rn|(eixn + e−ixn)) ∈ M(2, p), without loss of

generality we may assume rn ≥ 0. Since this operator maps real-valued
functions to real-valued functions, Bonami [2, p. 377] has shown that

||ϕn||2,p = sup
b∈R

||1 + brn cos x||p
||1 + b cos x||2

.

For 0 ≤ r ≤ 1 and |b| > 1

|1 + br cos x| ≤ |b + r cos x| = |b| |1 + rb−1 cos x| .

This simple inequality shows that whenever rn ≤ 1 then in computing
||ϕn||2,p we may restrict ourselves to |b| ≤ 1. Choose N so that rn < 1
for n ≥ N and let p = 2s.

The power series expansion of (1 + x)2s converges uniformly on [−α, α]
for any α < 1, thus for n ≥ N and |b| ≤ 1

||1 + brn cos x||pp =
∞∑

k=0

2π∫
0

(2s)k(brn)k cosk x dx

= 1 +
∞∑

k=1

(2s)2k(brn)2k (2k − 1)(2k − 3) . . . 1
2k(2k − 2) . . . 2

.

and the latter series converges absolutely. (Of course, this is a finite sum if
2s is an integer.) It follows that

||1 + brn cos x||pp
||1 + b cos x||p2

= 1 +

∞∑
k=1

sk

2k
b2k

[(
1

2s− 1
+ εn

)k (2s− 1)(2s− 3) . . . (2s− 2k + 1)
k!

− 1
]

(1 + b2/2)s
.

Let

ak(s) ≡ ak ≡
1

(2s− 1)k

(2s− 1) . . . (2s− 2k + 1)
k!

.

When s ≥ 3/2 then (2s− 1) ≥ 2 and with this observation it is not hard to
show that |ak| ≤ 1/k. (It is helpful to consider the cases [2s] an even or odd
integer separately.) Also, {sk(ak − 1)/2k}∞k=[s]+1 is an alternating sequence
which is decreasing (in absolute value) to zero and with first term negative.
Thus arguments similar to those used for the one-sided Riesz products show
that ||ϕn||2,p ≤ (1 + C(s)ε2

n)1/p for n ≥ N .
When 1 < s < 3/2, the factors (2s)2k are negative for k ≥ 2. Thus

||1 + brn cos x||pp ≤ 1 + (2s)2(brn)2/2 .
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Hence
||1 + brn cos x||pp
||1 + b cos x||p2

≤ 1 +
1
42s(2s− 1)b2εn −

∑∞
k=2 sk(b2/2)k

(1 + b2/2)s
.

Since {sk/2k} is an alternating sequence which is decreasing (in absolute
value) to zero and with first term positive, the same sort of arguments as
before again prove that ||ϕn||2,p ≤ (1 + C(s)ε2

n)1/p for n ≥ N .
Since ϕn ∈ M(2, p) for all n we can conclude (in either case) that ϕ ∈

M(2, p) when
∑

ε2
n < ∞.

An obvious corollary to this theorem is

Corollary 2.3. The one-sided Riesz product ϕ =
∏

(1 + reixj ) belongs
to M(2, p) if and only if |r| ≤

√
2/p.

The next corollary is in the same spirit as [2, p. 387].

Corollary 2.4. Let 1 < p ≤ 2 < q < ∞ and

|rn|2 =
p− 1
q − 1

+ εn

where εn ≥ 0. Then the Riesz product µ on T∞ given by µ =
∏

(1 +
2rj cos xj) belongs to M(p, q) if and only if

∑
ε2

n < ∞.

P r o o f. First we prove sufficiency. Let tn = rn/
√

p− 1, ν1 =
∏

(1 +
2
√

p− 1 cos xj) and ν2 =
∏

(1 + 2tn cos xj). Clearly µ is the composition of
the multipliers ν1 and ν2. Since |tn|2 = r2

n/(p− 1) ≥ 1/(q − 1) and∑ (
|tn|2 −

1
q − 1

)2

=
1

(p− 1)2
∑ (

|rn|2 −
p− 1
q − 1

)2

< ∞ ,

by the theorem ν2 ∈ M(2, q). If 1/p + 1/p′ = 1 then p− 1 = 1/(p′ − 1), so
ν1 ∈ M(2, p′) = M(p, 2). Therefore µ ∈ M(p, q).

Necessity follows from Proposition 1.4.

Example 2.5. Let 1 < p ≤ 2 < q < ∞. The multiplier on T∞ given by

ϕ =
∏

(1 + 2
√

an cos xn) where an =
p− 1
q − 1

+
1√
n

does not belong to M(p, q) but does belong to M(s, t) for all 1 < s ≤ 2 <
t < ∞ satisfying (p− 1)/(q − 1) < (s− 1)/(t− 1).

P r o o f. By the previous corollary ϕ 6∈M(p, q). Suppose (s−1)/(t − 1)
> (p − 1)/(q − 1). Let ϕ1 =

∏
(1 + 2

√
s− 1 cos xn) and ϕ2 =

∏
(1 +

2
√

an/(s− 1) cos xn). Clearly ϕ1 ∈ M(s, 2) and as an/(s − 1) < 1/(t − 1)
for n sufficiently large, ϕ2 ∈ M(2, t). Since ϕ is the composition of ϕ1

and ϕ2, we see that ϕ ∈ M(s, t).
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Just as in [2, pp. 392–393] the following is another consequence of The-
orem 2.1:

Corollary 2.6. Let p > 2 and let {ni} be a lacunary sequence of positive
integers satisfying ni+1/ni ≥ 3. Then ϕ =

∏
(1 + reinjx) ∈ M(2, p) if

|r| ≤
√

1/2p, and if in addition
∑

ni/ni+1 < ∞, then ϕ ∈ M(2, p) if and
only if |r| ≤

√
2/p.

We will omit the proofs as they are similar to the corresponding results
in [2].

Let en be the character on D∞ given by en((xj)) = xn. Similar argu-
ments to those used in Theorem 2.1 enable one to prove

Proposition 2.7. Let 1 < p ≤ 2 < q < ∞ and let |rn|2 =(p−1)/(q− 1)
+ εn with εn ≥ 0. Then the Riesz product µ =

∏
(1 + rnen(x)) on D∞

belongs to M(p, q) if and only if
∑

ε2
n < ∞.

We leave the details to the reader.

3. Computation of Λ(p) constants. Let p > 2. A subset E of Γ is
called a Λ(p) set if there is a constant Cp such that ||f ||p ≤ Cp||f ||2 for all
f ∈ {g ∈ L2 : supp ĝ ⊆ E}. The least such constant Cp is called the Λ(p)
constant of E and is denoted by Λ(E, p). For standard results on Λ(p) sets
see [10] or [15].

Let {χi} ⊆ Γ be a dissociate set. Sets of the form{∏
χεi

i :
∑

|εi| ≤ n, εi = 0,±1 (or εi = 0, 1)
}

are well known examples of Λ(p) sets for all 2 < p < ∞, but are not Sidon
sets. Using mainly combinatorial methods Bonami found estimates for the
Λ(p) constants of such sets [2, Ch. 2]. She then used her estimates in the
proof of her result for (L2, Lp) one-sided Riesz products. Here we take the
opposite approach and use the earlier results of this paper to improve upon
Bonami’s estimates of Λ(p) constants (when they are not already optimal).
The connection between the two subjects is due to the following theorem
which almost characterizes (L2, Lp) multipliers.

Theorem 3.1 ([8]). Let ϕ be a bounded function on Γ and for each ϕ > 0
let E(ϕ) = {χ : |ϕ(χ)| ≥ ε}. If ϕ ∈ M(2, p) for some p > 2, then for each
ε > 0, E(ε) is a Λ(p) set and Λ(E(ε), p) ≤ ||ϕ||2,pε

−1. If E(ε) is a Λ(p) set
for every ε > 0 and Λ(E(ε), p) = O(ε−1), then ϕ ∈ M(2, r) for all r < p.

Before applying this theorem it is convenient to establish some notation.

Notation. Let

Tk =
{

(ni) ∈
∑

Z : ni = 0,±1,
∑

|ni| = k
}

,
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T+
k =

{
(ni) ∈

∑
Z : ni = 0, 1,

∑
|ni| = k

}
,

Γk =
{

(εi) ∈
∑

Z(2) :
∑

εi = k
}

.

Given E ⊆ Z let

Ek =
{∑

εini : εi = 0,±1, ni ∈ E,
∑

|εi| = k
}

,

E+
k =

{∑
εini : εi = 0, 1, ni ∈ E,

∑
|εi| = k

}
.

Given two real-valued functions, F and G, defined on N× (2,∞), we will
say that F is exactly dominated by G if for every 2 < p < ∞, F (k, p) ≤
G(k, p) for all k ∈ N, and for every 2 < q < p, lim supk F (k, p)/G(k, q) = ∞.

Proposition 3.2. Let p > 2. Then both Λ(Tk, p) and Λ(Γk, p) are exactly
dominated by (p− 1)k/2, and Λ(T+

k , p) is exactly dominated by (p/2)k/2.

P r o o f. Let ϕ =
∏

(1 +
√

2/peixj ) be a one-sided Riesz product on T∞.
Then ϕ is an (L2, Lp) multiplier and

E((2/p)k/2, ϕ) ≡
{

(ni) ∈
∑

Z : |ϕ((ni))| ≥ (2/p)k/2
}

=
k⋃

j=1

T+
j .

The proof of Theorem 2.1 shows that ||ϕ||2,p = 1, thus Theorem 3.1 gives
Λ(T+

k , p) ≤ (p/2)k/2. Suppose lim supk Λ(T+
k , p) ≤ C(q/2)k/2 for some 2 <

q < p. As T+
k is a Λ(p) set for every k there is a constant C1 such that

Λ
( k⋃

j=1

T+
k , p

)
≤ k sup

1≤j≤k
Λ(T+

j , p) ≤ C1(q/2)k/2 ,

Let ϕ1 =
∏

(1 +
√

2/qeixj ). Since E((2/q)k/2, ϕ1) ⊆
⋃k

j=1 T+
k the converse

direction of Theorem 3.1 tells us ϕ1 ∈ M(2, r) for every r < p. But this is
false for r > q.

The estimates of the Λ(p) constants for the sets Tk and Γk follow similarly
from Theorem 3.1 and [2, p. 376, 385].

Proposition 3.3. Let E = {ni} be a lacunary set of positive integers
satisfying ni+1/ni ≥ 3 for all i.

(a) Λ(E+
k , p) ≤ (2p)k/2 and Λ(Ek, p) ≤ (4(p− 1))k/2 for all k ∈ N.

(b) If
∑

ni/ni+1 < ∞, then for some constant C, Λ(E+
k , p) and Λ(Ek, p)

are exactly dominated by C(p/2)k/2 respectively.

P r o o f. The proof is similar using Corollary 2.6 and [2, pp. 392–393]. We
remark that in (a) the (L2, Lp) operator norm of the appropriate multiplier
can be shown to be 1.
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