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HARMONIC FUNCTIONS AND HARDY SPACES
ON TREES WITH BOUNDARIES

BY

TADEUSZ P Y T L I K (WROC LAW)

1. Introduction. The theory of harmonic functions on trees with re-
spect to nearest neighbours transition operators (see [1], [4] and references
there) resembles the classical theory on the unit disk. In the present paper
we study harmonic functions on special subtrees, called horotrees because
they correspond rather to horodisks than to the whole disk. In the classi-
cal theory of harmonic functions there is no difference between disks and
horodisks, but in the case of trees the difference becomes essential. For the
whole tree, thanks to some additional restrictions on the transition operator,
the Poisson boundary coincides with the usual boundary Ω of the tree, and
hence it is a compact totally disconnected space. In our case the Poisson
boundary is a discrete topological space. For the case of horotrees the related
random walks are always transient. There is more freedom in the choice of
transition operators, and the guarantee that the space of harmonic func-
tions is nontrivial. The “full tree” case rather imitates Riemannian mani-
folds whose sectional curvature always stays between two negative constants,
while our case corresponds to a manifold with boundary whose sectional cur-
vature is still negative but can tend to zero far away from the boundary.

The paper is organized as follows: In §3 we prove the maximum prin-
ciple for the transition operator. In §4 we prove the Poisson representation
theorem for harmonic functions and give an explicit formula for the Poisson
kernel. Then in §5 we study the Hardy–Littlewood and the harmonic max-
imal operators and in the final section we give the atomic characterization
of the Hp spaces.

I wish to thank the authors of [3] who have suggested to me the study
of harmonic functions on horotrees and asked for a parallel theory to that
presented in [3].

1991 Mathematics Subject Classification: Primary 05C05; Secondary 31C05, 60J15,
42B30.

Key words and phrases: trees, harmonic functions, random walks, Hardy spaces.
This research was partially supported by the grant P 05/058.



264 T. PYTLIK

2. Harmonic functions. Let X be a homogeneous tree of degree q+1.
Fix a reference vertex x0 in X and a point ω in the boundary Ω of X. For
x ∈ X put

δx0,ω(x) = d(x, x′)− d(x0, x
′),

where x′ denote the confluence point of the geodesics [x, ω] and [x0, ω] and
d(·, ·) is the usual distance on X. The sets Hn(ω) = {x ∈ X : δx0,ω(x) = n}
and Dn(ω) = {x ∈ X : δx0,ω(x) ≤ n} are called respectively the horocycles
and horotrees with center ω. Any two horotrees are isomorphic; what is
more, there exists an automorphism of the tree X which maps one of them
onto the other.

Fix a horotree D. Then D = D0(ω) for some x0 ∈ X and ω ∈ Ω.
Denote by int D and ∂D the interior intD = D−1(ω) and the boundary
∂D = H0(ω) of D. Suppose we are given a transition matrix p on D
by assigning a positive number p(x, y) to each (oriented) edge (x, y) with
x ∈ intD. Let p(x, x) = 1 for x ∈ ∂D and p(x, y) = 0 for all other pairs
x, y in D. The transition matrix p gives rise to an operator ∆, called the
Laplace operator, which assigns to a function F on D a function ∆F by

∆F (x) =
∑
y∈D

p(x, y)F (y)− F (x) .

A function F on D will be called harmonic if ∆F = 0. The general
theory of harmonic functions on trees, as presented in [1], does not apply to
the case of a horotree because the latter contains, up to equivalence, only
one infinite geodesic.

The aim of this paper is to study harmonic functions on D when the
transition matrix p = {p(x, y)} satisfies the following assumptions:

(A1) p is stochastic, i.e.
∑

y p(x, y) = 1 for any x ∈ D.

(A2) p is isotropic, i.e. p(gx, gy) = p(x, y) for any x ∈ intD, y ∈ D and
g ∈ Aut(D).

The first assumption implies that any constant function is harmonic and
the second that p has a very simple form.

Lemma 1. The transition matrix p = {p(x, y)} satisfies the assumptions
(A1) and (A2) if and only if there exists a sequence α1, α2, . . . of positive
numbers such that

(1a) p(x, y) =
1

1 + αn

whenever x ∈ H−n(ω) for some n ≥ 1 and y = x is the unique neighbour of
x in H−n−1(ω), and

(1b) p(x, y) =
q−1αn

1 + αn
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when y is one of the other neighbours of x (y ∈ H−n+1(ω) in that case).

P r o o f. Assume (A1) and (A2). The group Aut(D) acts transitively on
each of the horocycles Hn(ω), n ≤ 0, and also gx = gx for g ∈ Aut(D). It
follows that p(x, x) depends only on the index of the horocycle to which x
belongs. Moreover, any permutation of the set of neighbours 6= x of x can be
extended to an automorphism of D (which stabilizes x) so p(x, y) = const
when y varies, y 6= x.

On the other hand, any g ∈ Aut(D) preserves each Hn(ω), n ≤ 0. Thus
if p is defined by (1) it is g-invariant.

Example 1. Let the transition matrix be as in Lemma 1. Let β0 = 0
and βn+1 = 1+α1 +α1α2 + . . .+α1 · . . . ·αn =

∑n
k=0

∏k
i=0 αi (with α0 = 1)

for n = 0, 1, 2, . . . It is obvious that the following recurrence is then satisfied:

βn =
1

1 + αn
βn+1 +

αn

1 + αn
βn−1 .

It follows that the function F0 defined on D by F0(x) = βn for x ∈ H−n(ω)
is harmonic.

3. Maximum principle. From now on we always assume that the
transition matrix p satisfies (A1) and (A2).

Theorem 1 (Maximum principle). Assume additionally that

(A3) 1 + α1 + α1α2 + α1α2α3 + . . . =
∞∑

k=0

k∏
i=0

αi = ∞.

Let F be a real function bounded (from above) on D and suppose that
∆F ≥ 0 but F |∂D ≤ 0. Then F ≤ 0.

If (A3) is not satisfied then there exists a real bounded harmonic function
F0 on D such that F0(x) = 0 for x ∈ ∂D and F (x) > 0 for x ∈ intD.

P r o o f. To prove the second part of the theorem take F0 from Exam-
ple 1.

Let x0, x1, x2, . . . denote the sequence of vertices of the geodesic [x0, ω]
and let En for n = 0, 1, 2, . . . denote the (finite) subtree in D of those x
for which xn ∈ [x, ω]. The boundary ∂En is contained in ∂D ∪ {xn}. Let
Fn = F − β−1

n F0, where βn, F0 are as in Example 1 and F satisfies the
assumptions of the first part of the theorem (we may additionally assume
that F ≤ 1). Then ∆Fn ≥ 0 on En and Fn|∂En

≤ 0. The usual maximum
principle applied to the operator ∆ on the finite set En implies that Fn ≤ 0
on En. Fix x in D. Since x ∈ En for n large enough, say n ≥ n0, we have

0 ≥ F (x)− β−1
n F0(x) ≥ F (x)− βn0/βn .

But βn0/βn tends to zero as n →∞. Thus F (x) ≤ 0.
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4. The Poisson formula. The maximum principle implies that if
(A1)–(A3) are satisfied then any bounded harmonic function F on D is
uniquely determined by its restriction to the boundary ∂D. This allows us
to hope that there exists a reproducing kernel P : D×∂D → R (independent
of F ), called here the Poisson kernel, so that

(2) F (x) =
∑

y∈∂D

P (x, y)F (y) ,

the series being absolutely convergent. We give an explicit formula for P
and we show that (2) can also be used to produce harmonic functions.

Lemma 2. Let F be a harmonic function on D and let x ∈ H−k(ω),
k > 0. Then

F (x) = (βk/βk+1)F (x) + (1− βk/βk+1)q−k
∑

y∈∂D
d(y,x)=k

F (y) ,

where x is the predecessor of x, i.e. the unique neighbour of x in the geodesic
[x, ω].

P r o o f. Let E be the finite subtree in D consisting of x and all y in D
such that x ∈ [y, ω]. Consider a discrete parameter Markov chain (random
walk) X0, X1, X2, . . . on E with one-step transition probabilities {puv}u,v∈E ,
where puv = p(u, v) if u 6= x and where x is an absorbing barier; px̄x̄ = 1
and px̄v = 0 for v 6= x (we refer to [2] for basic notations and properties
of Markov chains). For m = 1, 2, . . . denote by p

(m)
uv the m-step transition

probabilities
p(m)

uv = P{Xm = v | X0 = u}.
Then since F is harmonic we have

F (x) =
∑
y∈E

p(m)
xy F (y), m = 1, 2, . . .

The limit limm→∞ p
(m)
xy exists. Indeed, let p∗uv denote the hitting probability

p∗uv = P{Xm = v for some m > 0 | X0 = u}

=
∞∑

m=1

P{Xk 6= v, 0 < k < m; Xm = v | X0 = u}.

If v = x or v ∈ E ∩ ∂D = {y ∈ ∂D : d(y, x) = k} then v is an absorbing
state for the random walk, p

(m)
uv increases in that case and

lim
m→∞

p(m)
uv = p∗uv.

Any other state v in E is nonrecurrent (i.e. p∗uv < 1), hence
∑∞

m=1 p
(m)
uv < ∞
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and in particular, limm→∞ p
(m)
uv = 0. All this together gives

F (x) = p∗xx̄F (x) +
∑

y∈E∩∂D

p∗xyF (y).

The numbers p∗xy, y ∈ E∩∂D, are all equal by (A2) and their sum is 1−p∗xx̄.
To finish the proof we only have to show that

(3) p∗xx̄ = βk/βk+1.

Write
p∗xx̄ = pxx̄ +

∑
y 6=x̄

p∗xyp∗yx̄.

The sum here can be taken only over the neighbours of x. Now p∗yx̄ = p∗yxp∗xx̄

because a random walk starting at y 6= x and visiting x has to visit x in
between. Thus

(4) p∗xx̄ = pxx̄

/(
1−

∑
y 6=x

pxyp∗yx

)
.

But x = y with y ∈ H−(k−1)(ω) and (3) follows from (4) by induction
on k.

Lemma 3. The Poisson kernel has the form

(5) P (x, y) =
∞∑

n=k

βk(β−1
n − β−1

n+1)mn,x(y), x ∈ H−k(ω), y ∈ ∂D,

where

mn,x =
{

q−n if d(y, x) ≤ 2n− k,
0 otherwise.

For k = 0, (5) has to be read

P (x, y) = m0,x(y) = δx,y.

P r o o f. Let xk, xk+1, . . . be the sequence of vertices in the geodesic [x, ω],
i.e. xk = x and xn+1 = xn for n ≥ k. Let F be a bounded harmonic function
on D. Lemma 2 applied successively to F and xn, n = k, k +1, . . . , N , gives

F (x) =
N∑

n=k

βk(β−1
n − β−1

n+1)mn,x(y)F (y) + (βk/βN+1)F (xN ).

This is because {y ∈ ∂D : d(y, x) ≤ 2n − k} = {y ∈ ∂D : d(y, xn) = n}.
Since β−1

N+1 tends to zero (assumption (A2)), the series converges.

Theorem 2 (Poisson formula). Let f be a bounded function on the bound-
ary ∂D. Define a function F on D by the formula

F (x) =
∑

y∈∂D

P (x, y)f(y),
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where P (x, y) is the Poisson kernel given by (5). Then F is a bounded
harmonic function. Any bounded harmonic function F on D is of that form.

P r o o f. The second part of the theorem is just Lemma 3. To prove
the first it suffices to observe that any of the functions P (·, y), y ∈ ∂D, is
harmonic. This can be shown by general arguments but it is much simpler
to read it off from (5) just because mn,x̄ = mn,x for n > k and

∑
v 6=x̄ mn,v =

qmn,x.

5. Maximal functions. The Poisson formula implies that any bounded
function f on ∂D has a unique extension to a bounded harmonic function
F on D. Define the maximal function Mf of f on ∂D by

Mf(y) = sup
x∈[y,ω]

|F (x)|,

where, as before, [y, ω] stands for the geodesic from y to ω. We will prove
that the operator f → Mf is bounded on each of the spaces `p(∂D), p > 1.

For y ∈ ∂D put B(y, n) = {v ∈ ∂D : d(v, y) ≤ 2n} (the distance of two
vertices in ∂D is always an even number). Then |B(y, n)| = qn. The sets
of type B(y, n) will be called intervals. For a locally bounded function f on
∂D let f∗ denote the Hardy–Littlewood maximal function

f∗(y) = sup
n

1
|B(y, n)|

∣∣∣ ∑
v∈B(y,n)

f(v)
∣∣∣ .

Lemma 4. The maximal operator f → f∗ is of weak type (1, 1).

P r o o f. Fix s > 0 and put As = {y ∈ ∂D : f∗(y) > s}. We have to
show that |As| ≤ ‖f‖1/s. If y ∈ As then there exists an index ny so that

1
|B(y, ny)|

∣∣∣ ∑
v∈B(y,ny)

f(v)
∣∣∣ > s.

Since any two intervals in ∂D are either disjoint or included one in the
other, we can find a (finite) family I of pairwise disjoint intervals so that
As ⊆

⋃
y∈I B(y, ny). But then

s|As| ≤
∑
y∈I

s|B(y, ny)| ≤
∑
y∈I

∑
v∈B(y,ny)

|f(v)|

≤
∑

v∈∂D

|f(v)| = ‖f‖1 .

Theorem 3. Let f be a bounded function on ∂D. Then

Mf(y) ≤ f∗(y), y ∈ ∂D.

It follows that the maximal operator f → Mf is of weak type (1, 1) and
strong type (p, p) for any p > 1.
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P r o o f. Let x ∈ [y, ω] ∩H−k(ω). Then

F (x) =
∑

v∈∂D

P (x, v)f(v) =
∞∑

n=k

βk(β−1
n − β−1

n+1)
∑

v∈∂D

mn,x(v)f(v)(6)

=
∞∑

n=k

βk(β−1
n − β−1

n+1)
1

|B(y, n)|
∑

v∈B(y,n)

f(v).

Hence

|F (x)| ≤
∞∑

n=k

βk(β−1
n − β−1

n+1)f
∗(y) = f∗(y).

The second part of the theorem follows from Lemma 4 and the Marcinkiewicz
interpolation theorem.

R e m a r k s. 1. The maximal operator f → Mf is not `1 bounded. If
v, w ∈ ∂D then

Mδv(w) =
∞∑

n=k

βk

(
β−1

n − β−1
n+1

)
q−n ≥ q−k βk+1 − βk

βk+1
,

where k = d(v, w)/2. This gives

‖Mδv‖1 ≥
q − 1

q

∞∑
k=1

βk+1 − βk

βk+1
= ∞.

2. In fact, a stronger result is true. If f ∈ `1(∂D) and
∑

v∈∂D f(v) 6= 0
then ‖Mf‖1 = ∞. To see this use (6) with k large enough.

3. Assume that infn αn > 1. Then the maximal operators f → f∗ and
f → Mf are equivalent (cf. [3, Theorem 4]). Indeed, let y ∈ ∂D and let
[y, ω] = {y0, y1, . . .}. Then

β−1
k F (yk)− β−1

k+1F (yk+1) =
(
β−1

k − β−1
k+1

) 1
|B(y, k)|

∑
v∈B(y,k)

f(v).

Hence

f∗(y) ≤ sup
k

∣∣∣∣ βk+1

βk+1 − βk
F (yk)− βk

βk+1 − βk
F (yk+1)

∣∣∣∣
≤ sup

k

βk+1 + βk

βk+1 − βk
Mf(y) ≤ 1 + r

1− r
Mf(y)

with 1/r = infn αn.
4. If αn ≡ 1 then the maximal functions δ∗v and Mδv are not equivalent.



270 T. PYTLIK

Indeed, if w ∈ ∂D and d(w, v) = 2m then δ∗v(w) = q−m but

Mδv(w) = sup
k

∑
n≥m,n≥k

k

n(n + 1)
q−n =

∑
n≥m

m

n(n + 1)
q−n

<
q

(m + 1)(q − 1)
· q−m.

6. Hardy spaces Hp. Consider the following question: what conditions
on a bounded function f on ∂D ensure that the restriction F |H−k

of its
harmonic extension F to any horocycle H−k, k = 0, 1, 2, . . . , is a p-summable
function? Clearly, since f = F |H0 , f itself must be p-summable. For p ≥ 1
a necessary and sufficient condition is f ∈ `p(∂D), but the case 0 < p < 1
is much more subtle. Generally, the answer depends on the choice of the
transition matrix p. But even the Dirac functions δv may not be admissible
(see Remark 4). Nevertheless, there is still a very large class of positive
examples. By using the inequalities

sup
n

∥∥F |H−k

∥∥
p
≤

∥∥Mf
∥∥

p
≤

∥∥f∗
∥∥

p

one can construct many of them, even without looking at the Poisson for-
mula.

Following the classical definition, for 0 < p < 1, let

Hp(∂D) = {f : f∗ ∈ `p(∂D)}.

It is a proper linear subspace in `p(∂D) and consists of functions with mean
value zero (cf. Remark 2). Continuing the analogy to the classical case,
define a p-atom to be a function a on ∂D such that there exists an interval
B = B(y, n) = {v ∈ ∂D : d(v, y) ≤ 2n} with supp a ⊂ B,

∑
v∈∂D a(v) = 0

and supv |a(v)| ≤ |B|−1/p.

Lemma 5. Let a be a p-atom. Then a∗ ∈ `p(∂D) and

‖a∗‖p ≤ 1.

P r o o f. It is clear that a∗(y) ≤ ‖a‖∞ < |B|−1/p. But if y 6∈ B then each
of the intervals B(y, n) is either disjoint from B or contains it. However, in
both cases

∑
v∈B(y,n) a(v) = 0. Therefore a∗(y) = 0 outside B. This proves

the claim.

Theorem 4 (Characterization of Hp). Let 0 < p ≤ 1. A function f on
∂D belongs to Hp if and only if it has an atomic decomposition

(7) f =
∑

n

λnan,

where a1, a2, . . . are p-atoms and
∑

n |λn|p < ∞.
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P r o o f. We construct a sequence of functions f0, f1, f2, . . . on ∂D as
follows. Put f0 = f . If fk is already known let sk = ‖fk‖∞ and let

Ak = {y ∈ ∂D : f∗k (y) > sk/2}.
For y in Ak denote by ny the greatest natural number n so that

1
|B(y, n)|

∣∣∣ ∑
v∈B(y,n)

f(v)
∣∣∣ > sk/2.

Then Ak =
⋃

y∈Ak
B(y, ny). Consider the set

A′k =
⋃

y∈Ak

B(y, ny + 1).

It is clear that A′k ⊃ Ak, but note that |A′k| ≤ q|Ak|. Following the idea of
the proof of Lemma 4 we find a (unique) finite subset Ik in Ak such that⋃

y∈Ik

B(y, ny + 1) = A′k

and the intervals are mutually disjoint. Put fk+1 = fk outside A′k, and on
each of the intervals B(y, ny + 1), y ∈ Ik, let fk+1 take the constant value

γy =
1

|B(y, ny + 1)|
∑

v∈B(y,ny+1)

f(v).

Note, and this is important for the construction, that γy ≤ sk/2. To any y in
Ik we assign a function ay on ∂D which, being zero outside, on B(y, ny +1)
coincides with the function λ−1

y (fk − γy), where

λy = |B(y, ny + 1)|1/p4sk.

It is easy to check that any ay, y ∈ Ik, is a p-atom and that

(8) fk = fk+1 +
∑
y∈Ik

λyay.

By the construction we have sk+1 ≤ sk/2,

(9) f∗k+1(v) ≤ min{sk+1, f
∗
k}, v ∈ ∂D,

and ∥∥∥ ∑
y∈Ik

λyay

∥∥∥p

p
≤

∑
y∈Ik

|λy|p ≤ 4psp
k

∑
y∈Ik

|B(y, ny + 1)|

= 4psp
k|A

′
k| ≤ 4pqsp

k|Ak| < ∞.

It is now easy to deduce from (8) and (9) that

f =
∞∑

k=0

∑
y∈Ik

λyay
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and that
∞∑

k=0

∑
y∈Ik

|λy|p ≤ 4pq

∞∑
k=0

sp
k | {v ∈ ∂D : f∗(v) > sk/2} |

≤ 8pq(2p − 1)−1‖f∗‖p
p.

The proof in the opposite direction is much easier. If f has the form (7)
then f∗ ≤

∑
n |λn|a∗n and ‖f∗‖p

p ≤
∑

n |λ|p‖a∗‖p
p < ∞ because the pth

power is concave. Consequently, f ∈ Hp.
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