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1. Introduction. In [14]–[18] Yokoi studied what he called p-invariants
for certain real quadratic fields. It is the purpose of this paper to give a
complete generalization of these results to arbitrary real quadratic fields.
Moreover, the results herein allow us to generalize (and simplify the proofs
of) other results of Yokoi [19]–[20], including two statements equivalent to
the general Gauss conjecture concerning an infinitude of real quadratic fields
of class number h(d) = 1 for Q(

√
d).

We give bounds on the fundamental unit when our nd (see §3) for Q(
√

d)
is non-zero; and we use it to show that in this case there are only finitely
many such d with h(d) = 1. This allows us then to reformulate the Gauss
conjecture. Moreover, we prove that when nd 6= 0 then the Artin–Ankey–
Chowla conjecture and the Mollin–Walsh conjecture hold. We also show how
these results have applications for certain norm form equation solutions, and
we provide examples. Furthermore, we show how certain conditional results
of Yokoi which he showed to hold for all but finitely many values, in fact
hold for all values. Finally, we actually list all h(d) = 1 (with one possible
exception) when nd 6= 0 (see §3). This completes the task begun by Yokoi
[17]–[18].

2. Units. We begin with a motivation for the generalization (beyond a
mere generalization of Yokoi’s special prime case of p-invariants). In what
follows εd = (td + ud

√
d)/σ will be the fundamental unit of Q(

√
d), where

σ =
{

2 if d ≡ 1 (mod 4),
1 if d ≡ 2, 3 (mod 4).

Throughout the paper , d will be a positive square-free integer.

Theorem 2.1. (1) If εd = (u2n− a + u
√

d)/σ then d = u2n2 − 2an + b
with a2 − σ2N(εd) = bu2 where a ≥ 0 and b are unique.

(2) If d = u2n2 − 2an + b is square-free with a2 − σ2N(εd) = bu2 then
ε1 = (u2n− a + u

√
d)/σ = εt

d for some t ≥ 1.
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P r o o f. (1) Since td = u2
dn − a and ud = u we have σ2N(εd) = t2d −

u2
dd = (u2

dn− a)2 − u2
dd; whence d = u2

dn
2 − 2an + (a2 − σ2N(εd))/u2

d; i.e.,
d = u2n2 − 2an + b where u2b = a2 − σ2N(εd). By definition u = ud is the
smallest positive integer such that u2d is of the form l2 − σ2N(εd). This
makes a and b unique.

(2) N(ε1) = ((u2n− a)2 − u2d)/σ2 = N(εd). This makes ε1 a unit.

The following generalizes [20, Theorem 2, pp. 144–145]. In what follows,
an ERD-type (Extended Richaud–Degert type, see [2], [12] and [4]–[10]) is
of the form d = l2 + r where 4l ≡ 0 (mod r).

Corollary 2.1. Let d = p2n2 − 2an + b where n ≥ 0, p ≡ 3 (mod 4)
is prime and a2 + 4 = bp2 with p being the smallest positive integer such
that the latter occurs. Then Q(

√
d) is no t of ERD-type, N(εd) = −1 and

εd = ((p2n− a) + p
√

d)/2.

P r o o f. From Theorem 2.1(2), ε1 = ((p2n− a) + p
√

d)/2 is either εd or
a power of it. However, choosing p as the smallest value with a2 + 4 = bp2

forces p = ud. Clearly N(ε1) = −1. Moreover, a fundamental fact about
ERD-types is that N(εd) = −1 forces ud = 1 or 2.

In [20] Yokoi proved that the result held for all but finitely many d.
What the above shows is that a proper choice of p forces that finitely many
to be zero. In a similar fashion we could generalize [19, Theorem 1, p. 109].

Now we show that the converse of Theorem 2.1(1) fails without unique-
ness.

Example 2.1. Let d = 77 = 92−4 = u2n2−2an+ b where a = 2, b = 0,
n = 1, u = 9. We have N(ε77) = 1, ε77 = (9 +

√
77)/2, and

ε1 = (u2n− a + u
√

d)/2 = (79 + 9
√

77)/2 = ε2
77 .

However , if we require that u is the smallest positive value such that
u2d = l2 − 4 then we get u = 1 with 77 = u2n2 − 2an + b where n = 9,
a = 0, b = −4 and ε1 = ε77 = (9 +

√
77)/2.

R e m a r k 2.1. If we choose u to be the smallest positive value such
that u2b = a2 − σ2N(εd) in Theorem 2.1(2) then t = 1. This was the
essential problem with Yokoi’s choice of p in [19, Theorem 1, p. 109] and
[20, Theorem 2, p. 144]; i.e., that he did not choose the smallest such value
thereby allowing for the result to fail for finitely many values.

This motivates the following.

3. Generalized Yokoi p-invariants. The following generalizes Yokoi’s
special case of p-invariants for primes p ≡ 1 (mod 4) which he explored in
[14]–[18]. We shall have occasion to generalize all of these results while at
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the same time simplifying the proofs. Set

B = (2td/σ −N(εd)− 1)/u2
d .

The boundary B was explored in [4, Lemma 1.1, p. 40], [5, Lemma, p. 121]
and [16, Lemma 1, p. 494] (and which we feel was the motivation for Yokoi’s
special case).

Let nd be the nearest integer to B; i.e.,

nd =
{

[B] if B − [B] < 1/2,
[B] + 1 if B − [B] > 1/2

(where [x] is the greatest integer less than or equal to x. Note that B − [B]
can never be 1/2). Set

ad =
{

td − u2
dnd if B − [B] < 1/2,

u2
dnd − td if B − [B] > 1/2,

bd = (a2
d − σ2N(εd))/u2

d .

An easy check shows that in the case where p = d ≡ 1 (mod 4) is prime
they reduce to Yokoi’s concept of p-invariants. Moreover, our definition is
more explicit and revealing, which will allow us to provide simplified proofs
(over that of Yokoi) in our more general case.

First we generalize the main results of Yokoi in [14]. Moreover, Theo-
rem 3.1(2) shows that Yokoi’s claim that it holds for all but finitely many d
is in fact true but with the finitely many being 0.

Theorem 3.1. Let d be positive square-free. Then

(1) εd = (u2
dnd ± ad + ud

√
d)/σ, and

(2) d = u2
dn

2
d ± 2ad + bd.

P r o o f. (1) Since td = u2
dnd ± ad the result is clear.

(2) Since t2d − u2
dd = N(εd)σ2 we have u2

dd = t2d − N(εd)σ2 = (u2
dnd ±

ad)2 − N(εd)σ2 so d = u2
dn

2
d ± 2ad + bd. Uniqueness of representation is

clear.

Theorem 3.2. Let d > 0 be square-free and let ud > 2. Then the follow-
ing are equivalent.

(1) nd = 0,
(2) td > 4d/σ,
(3) u2

d > 16d/σ2.

P r o o f. From t2d−u2
dd = N(εd)σ2 we get (2td/σ)2 = 4N(εd)+(2/σ)2du2

d

so
((2td/σ)2 − (N(εd) + 1)2)/u2

d ≤ 4N(εd)/u2
d + (2/σ)2d

and
(2/σ)2d + (N(εd)− 1)/4 ≤ ((2td/σ)2 − (N(εd) + 1)2)/u2

d .
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(1)⇔(2). nd = 0 implies that (2td/σ −N(εd)− 1)/u2
d < 1/2. Thus

(2td/σ + N(εd) + 1)/2 > (2/σ)2d + (N(εd)− 1)/4 ;

i.e.,
td > (4/σ)d− (σ/4)(N(εd) + 3) .

However, a straightforward check shows that 4d/σ ≥ td > 4d/σ − (σ/4)×
(N(εd) + 3) cannot occur so 4d/σ < td.

Conversely, if td > 4d/σ then

td + (N(εd) + 1)/4 > (2td/σ)2d + (N(εd) + 1)/4

> (2/σ)2 + 4N(εd)/u2
d ≥ ((2td/σ)2 − (N(εd) + 1)2)/u2

d

since ud > 2. Hence

1≥((td+(N(εd) + 1))/4)/((2td/σ)+N(εd) + 1)>(2td/σ − (N(εd) + 1))/u2
d,

which implies nd = 0.
(2)⇔(3). td > 4d/σ and N(εd)σ2 = t2d−u2

dd if and only if u2
d > 16d/σ2−

N(εd)σ2/d. Since d > σ2 (unless d = 2, 3 for which the theorem trivially
holds) we get u2

d > 16d/σ2.

We get as an immediate result

Corollary 3.1. If nd 6= 0 then εd < 8d/σ2.

We may now use the above to prove

Theorem 3.3. If nd 6=0 then there are only finitely many d with h(d)=1 .

P r o o f. By Corollary 3.1 we have log εd < log(8d/σ2); i.e., we have a
bound for the regulator which allows us to invoke the result of Tatuzawa [13]
in the same fashion as we did in [8]. A similar argument to that in [8] yields
that only finitely many d have h(d) = 1.

The above generalizes results of Yokoi [14] and [16]–[18]. The following
generalizes Yokoi [14].

Theorem 3.4. Let d0 be a fixed positive square-free integer. Then there
are only finitely many d with ud = ud0 and h(d) = 1.

P r o o f. If nd 6= 0 we are done by Theorem 3.3. If nd = 0 and ud0 > 2
then by Theorem 3.2, u2

d = u2
d0

> 16d/σ2 so clearly there are finitely many
such d. (Here h(d) = 1 is not needed.) If ud0 ≤ 2 then d = l2 + r where
|r| ∈ {1, 4} by [2] and [12]. This case, and the general ERD case in fact,
were handled in [8].

Let

(G1) There exist infinitely many real quadratic fields K = Q(
√

d) with
h(d) = 1 (Gauss conjecture).
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(G2) There exist infinitely many d with nd = 0 and h(d) = 1.

(G3) For a given n0 ∈ N0 there exists at least one real quadratic field
with h(d) = 1 and ud ≥ n0.

Theorem 3.5. (G1)⇔(G2)⇔(G3).

P r o o f. The equivalence of (G1) and (G2) follows from Corollary 3.1
and the equivalence of (G1) and (G3) follows from Theorems 3.3–3.4.

In order to set the stage for the generalization of [14, Theorem 2, p. 637]
we need the following:

Definition. For a positive square-free integer d, the equation x2−dy2 =
±4t, for t any positive integer, is said to have a trivial solution (u, v) in
rational integers if t = m2 and m divides both u and v. Any other rational
integer solution is called nontrivial .

The following result is proved in [4]. B is as defined above.

Lemma 3.1. If there is a nontrivial solution to x2−dy2 = N(εd)σ2t then
t ≥ B.

Theorem 3.6. Let pd be the least prime which splits in Q(
√

d). If nd 6= 0
then h(d) ≥ log nd/ log pd.

P r o o f. Clearly there is a nontrivial solution to x2−dy2 = N(εd)σ2p
h(d)
d ;

so by Lemma 3.1, p
h(d)
d ≥ B. Thus h(d) ≥ log B/ log pd ≥ log nd/ log pd.

The above generalizes [14, Theorem 2, p. 637]. Moreover, it shows that
Yokoi’s requirement that pd be odd is unnecessary. Indeed, if nd 6= 0 for
d ≡ 1 (mod 8) then we see that nd = 1 or 2 since 2 splits in Q(

√
d). On

the other hand, if ad = 0 then nd = td/u2
d forcing ud = 1 or 2; i.e., d is of

narrow Richaud–Degert (R–D) type d = l2 + r where |r| ∈ {1, 4}. In fact,
we have the following

Theorem 3.7. If nd ≥
√

d− 1/2 where d ≡ 1 (mod 4) then h(d) = 1 if
and only if d is of narrow R–D type.

P r o o f. This is immediate from [5, Theorem, p. 121] and [10, Lemma 2.3,
p. 148].

R e m a r k 3.1. We found all (except possibly one value) h(d) = 1 for the
more general ERD-types in [8]. We already know from Theorem 3.3 that
when nd 6= 0 there are only finitely many d with h(d) = 1. In the case nd ≥
(
√

d− 1)/2 we found the finitely many in [10], with one possible exception.
Moreover, given the results in [7] and [9]–[10], this possible exceptional value
would be a counterexample to the Riemann hypothesis.

Theorem 3.6 can be generalized if we know that h(d) is odd.
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Theorem 3.8. Let pd be the least noninert prime in Q(
√

d). If nd 6= 0
and h(d) is odd then h(d) ≥ log nd/ log pd.

P r o o f. Since h(d) is odd pd may be ramified and we still have a non-
trivial solution to x2 − dy2 = N(εd)σ2p

h(d)
d .

Corollary 3.2. If d 6≡ 5 (mod 8), nd 6= 0 and h(d) is odd then nd = 1
or 2.

P r o o f. 2 is noninert so the result follows.

On the other hand, if d ≡ 5 (mod 8) we have

Theorem 3.9. If d = pq ≡ 5 (mod 8) where p < q both primes with
p ≡ q ≡ 3 (mod 4) and td > u2

dp + 1 then d = p2u2
d ± 4p (an ERD-type).

P r o o f. By [1, Corollary, p. 189] there is a nontrivial solution to x2 −
dy2 = ±4p. If x2 − dy2 = −4p then by [11, Theorem 108, p. 205], 0 <
y ≤ ud

√
4p/

√
2(tp − 1) <

√
2; whence, y = 1 and d = x2 + 4p. On the

other hand, if x2 − dy2 = 4p then by [11, Theorem 108a, p. 206], 0 < y ≤
ud

√
4p/

√
2(td + 1) <

√
2, so again y = 1 and d = x2 − 4p.

Moreover, we may invoke Lemma 3.1 to get p ≥ (td−2)/u2
d so u2

dp+1 ≥
td − 1 > u2

dp whence td = u2
dp + 2 and so εd = (u2

dp + 2 + ud

√
d)/2. Thus

x = pud and d = p2u2
d ± 4p.

R e m a r k 3.2. If h(d) = 1 in Theorem 3.9 then we note that we have
found all such d (with one possible exception) in [8]. Moreover, it is well
known (e.g. see Hasse [3]) that if h(d) is odd and d is not prime with d ≡ 1
(mod 4) then d must equal pq with p ≡ q ≡ 3 (mod 4). We already know
that since the hypothesis of Theorem 3.9 forces nd 6= 0 there can only be
finitely many d with h(d) = 1 from Theorem 3.3 (compare with Remark 3.1).

Now we exhibit a result which is related to Theorem 3.9 and general-
izes [19, Proposition 1, p. 107] and [19, Lemma 3, p. 108]. Moreover, the
following proof is more revealing as we shall illustrate.

Proposition 3.1. If N(εd) = 1, ud ≡ 0 (mod n) for some n ≥ 1 and
g = gcd(u2

d, td ± σ) then td = n2
dmg ± σ and (ud/n)2d = n2m2g2 ± 2σmg

where all proper divisors of m divide d.

P r o o f. It is known that εd = γ/γ where γ = (td + σ + ud

√
d)/σ (e.g.

see [1, Theorem 2, p. 185]), when N(εd) = 1.
Moreover, N((td±σ+ud

√
d)/σ) = 2±2td/σ; whence, whenever a prime

p satisfies g ≡ 0 (mod p) then 2 ± td/σ ≡ 0 (mod p2). (Note that in the
case p = σ = 2, we cannot have td ≡ 0 (mod 4) and ud ≡ 2 (mod 4) since
that would imply that −1 ≡ (ud/2)2 (mod 4).) Hence, whenever p properly
divides td ± σ then p does not divide ud. Since t2 ≡ σ2 (mod p) means
u2

dd ≡ 0 (mod p), this implies that d ≡ 0 (mod p). Since n2 must divide
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only one of (td + σ)/g or (td − σ)/g we get t2 ± σ = n2mg where proper
divisors of m divide d. Finally,

u2
dd = t2d − σ2 = n2(n2m2g2 ± 2σmg) .

In the proof of Proposition 3.1 we see the importance of td ± σ when
N(εd) = 1. We can use it to generalize [1, Theorem 7, p. 188] for example.

Proposition 3.2. If d = p1p2p3 ≡ 1 (mod 4) and N(εd) = 1 where the
pi’s are distinct primes then x2 − dy2 = ±4pi for some i ∈ {1, 2, 3}.

P r o o f. Let γ = (td + 2 + ud

√
d)/2, and set

g =
{

gcd(td + 2, ud) if 2 - ud,
gcd((td + 2)/2, ud/2) if 2 |ud.

Thus (α) = ((td + 2 + ud

√
d)/(2g)) must have divisors which divide d; i.e.,

(α) must be an ideal containing only the ramified primes ℘i where ℘i | pi in
OK , the ring of integers of K = Q(

√
d).

If α = (1) then α is a unit, whence εd = γ/γ = α/α = α2/(αα) = α2,
contradicting that εd is fundamental. A similar argument dismisses (α) =
℘1℘2℘3. Hence (α) is one of ℘i℘j or ℘k where i, j, k ∈ {1, 2, 3}. If it is ℘1℘2,
say, then since (

√
d) = ℘1℘2℘3 we get ℘3 ∼ (1) where ∼ denotes equivalence

in the class group. Thus x2 − dy2 = ±4p3 has a solution.

The above result has a more general formulation and a simple proof based
upon continued fractions. (However, we do not get the generator α out of it.)

First we need some notation. Let

wd =
{

(1 +
√

d)/2 if d ≡ 1 (mod 4),√
d if d ≡ 2, 3 (mod 4),

and let k be the period length of the continued fraction expansion of wd

denoted by 〈a, a1, . . . , ak〉. Then a0 = a = [wd]. Also ai = [(Pi +
√

d)/Qi]
for i ≥ 1 where (P0, Q0) = (1, 2) if d ≡ 1 (mod 4) and (P0, Q0) = (0, 1) if
d ≡ 2, 3 (mod 4). Finally, Pi+1 = aiQi−Pi for i ≥ 0 and Qi+1Qi = d−P 2

i+1

for i ≥ 0.

Proposition 3.3. Let d ≡ 1 (mod 4) be a positive square-free integer
with N(εd) = 1. Then for some proper divisor d′ > 1 of d we have a solution
of x2 − dy2 = ±4d′.

P r o o f. Since N(εd) = 1 it is well known (e.g. see [9]) that the period of
wd must be even. Thus Pk/2 = Pk/2+1 so by the preamble to the proposition

d = P 2
k/2+1 + Qk/2+1Qk/2 = (ak/2Qk/2/2)2 + Qk/2+1Qk/2

so (Qk/2/2) | d. Clearly Qk/2 6= 2 and Qk/2/2 6= d. The result now follows
from the fact that the principal reduced ideals have norm Qi/2 for some i
(e.g. see [9]).
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T a b l e 3.1 (h(d) = 1 with nd 6= 0)

d log εd d log εd d log εd

2 0.881373587 93 3.3661046429 573 6.6411804655

3 1.866264041 101 2.9982229503 677 3.9516133361

5 0.4812118251 133 5.1532581804 717 5.4847797157

6 2.2924316696 141 5.2469963702 773 4.9345256863

7 2.7686593833 149 4.1111425009 797 5.9053692725

11 2.9932228461 157 5.3613142065 917 7.0741160992

13 1.1947632173 167 5.8171023021 941 7.0343887062

14 3.4000844141 173 2.5708146781 1013 6.8276304083

17 2.0947125473 197 3.3334775869 1077 5.8888702849

21 1.5667992370 213 4.2902717358 1133 4.6150224728

23 3.8707667003 227 6.1136772851 1253 5.1761178117

29 1.6472311464 237 4.3436367167 1293 7.4535615360

33 3.8281684713 269 5.0999036060 1493 7.7651450829

37 2.4917798526 293 2.8366557290 1613 7.9969905191

38 4.3038824281 317 4.4887625925 1757 6.9137363626

41 4.1591271346 341 5.6240044731 1877 7.3796325418

47 4.5642396669 398 6.6821070271 2453 8.1791997198

53 1.9657204716 413 4.1106050108 2477 6.4723486834

61 3.6642184609 437 3.0422471121 2693 8.3918567515

62 4.8362189128 453 5.0039012599 3053 8.1550748053

69 3.2172719712 461 5.8999048596 3317 8.5642675624

77 2.1846437916 509 6.8297949062 3533 7.7985232220

83 5.0998292455 557 5.4638497592

The following examples illustrate Propositions 3.1–3.3.

Example 3.1. Let d = 215. Then td = 44, σ = 1, N(εd) = 1, ud = nd =
3 and m = 5. Thus td = 44 = n2

dm− 1 and d = n2
dm

2 − 2m = 152 − 10.

Example 3.2. Let d = 357 = 3 · 7 · 17. Then x2 − 357y2 = −22 · 17
has solution (17, 1) = (x, y) since ℘17 dividing 17 is principal, but ℘3 6∼ 1
and ℘7 6∼ 1 while ℘3℘7 ∼ 1 with x2 − 357y2 = −22 · 21 having solution
(x, y) = (21, 1). Here h(357) = 2 and both ℘3, ℘7 are ambiguous ideals.
Here td = 19 and ud = 1.

R e m a r k 3.3. If ud = p = n in Proposition 3.1 then d is clearly of
ERD type. However, if ud is composite we may have non-ERD types such
as d = 158 with N(εd) = 1 and nd = 0. Here ud = 616.

On the other hand, if N(εd) = −1 and ud = p or 2p for p > 2 prime
then d is not ERD type. If it were then d = l2 + r where |r| ∈ {1, 4} since
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N(εd) = −1. In this case ud = 1 or 2. This generalizes Yokoi [20, Lemma 3,
p. 143].

The following application of Theorem 3.2 has ramifications concerning
certain conjectures in the literature. Moreover, it generalizes Yokoi [18,
Corollary 2.2].

Theorem 3.10. If d > 0 is square-free and nd 6= 0 then ud 6≡ 0 (mod d).

P r o o f. ud > 2 may be assumed. By Theorem 3.2, u2
d ≤ 4d. Also if

ud ≡ 0 (mod d) then u2
d ≥ d2. Thus 4d ≥ u2

d ≥ d2 > 4d, a contradiction.
In particular, the Artin–Ankeny–Chowla conjecture holds if nd 6= 0, i.e.,

up 6≡ 0 (mod p) when p ≡ 1 (mod 4) is prime. Moreover, the Mollin–Walsh
conjecture [6] that there does not exist any square-free d ≡ 7 (mod 8) with
ud ≡ 0 (mod d) holds when nd 6= 0.

In Table 3.1 we list all h(d) = 1 (with one possible exception) when
nd 6= 0. This completes Yokoi’s result (where he assumed d to be a prime
congruent to 1 modulo 4). Here we used the techniques of [8] and the bound
in Corollary 3.1.
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