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FINITE-DIMENSIONAL IDEALS IN BANACH ALGEBRAS
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Let A be a semi-prime Banach algebra. By an ideal in A we shall always
mean a two-sided ideal unless otherwise specified. Smyth [9] has shown that,
for x in A, xA is finite-dimensional if and only if Ax is finite-dimensional.
Let F be the set of all x in A for which xA is finite-dimensional. We extend
Smyth’s theorem as follows. Let K be any ideal in A. Then, for x in A,
xK is finite-dimensional if and only if Kx is finite-dimensional. Note that
a distinction between this result and the Smyth case where K = A is that
x need not lie in K. Then we describe and study F and its role in Banach
algebra theory.

Let Γ be the set of non-zero central idempotents p in the socle of A for
which pA is a simple algebra. All these are in F and F is the direct sum of
the ideals pA for p in Γ .

In the theory of commutative Banach algebras much attention is devoted
to seeing when an ideal must be contained in a modular maximal ideal. We
consider the non-commutative case where A has a dense socle and B is the
completion of A in some normed algebra norm on A. An ideal W of B is
contained in a modular maximal ideal of B if and only if W does not contain
F . Easy examples show this can fail if A does not have a dense socle.

First we treat some preliminaries. Throughout A is a semi-prime Banach
algebra over the complex field with socle S and center Z. For an ideal W
in A let L(W ) = {x ∈ A : xW = (0)} and R(W ) = {x ∈ A : Wx = (0)}.
Then L(W ) = R(W ) by [3, p. 162]. Let W a denote the common value
of L(W ) and R(W ). The socle of W is S ∩ W = SW = WS (see [12,
Lemma 3.10]). Each minimal right (left) ideal of A has the form pA (Ap)
where p is an idempotent. Such an element p we call a minimal idempotent.
An idempotent q 6= 0 is said to be a simple idempotent if qAq is a simple
algebra. Every minimal idempotent is simple. For a simple idempotent q
and an ideal W either q ∈ W or q ∈ W a by [13, Lemma 5.1].

We compare F with another notion of finite-dimensionality in Banach
algebra theory which has been studied. In [11] Vala called an element w ∈ A
finite if the mapping x → xwx of A into A has finite-dimensional range. We
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refer to [7] for further references and work on this notion. Let Φ be the
set of all elements in A finite in the above sense. Of course Φ ⊃ F . In [4,
Theorem 7] it was shown that Φ = S. In Corollary 1 below we see that if
A is primitive and infinite-dimensional then F = (0). On the other hand,
Φ = S can be non-zero for such A as is the case for B(X), the Banach
algebra of all bounded linear operators on an infinite-dimensional Banach
space X.

Lemma 1. F is the union of all the finite-dimensional ideals of A.

P r o o f. Let x ∈ F . By definition xA (Ax) is the linear span of a finite
number of elements xv1, . . . , xvn (w1x, . . . , wrx). For each a and b in A we
have xb =

∑n
k=1 βkxvk and ax =

∑r
j=1 αjwjx where the αj and βk are

scalars. Then

axb =
r∑

j=1

n∑
k=1

αjβkwjxvk

so that the rn elements wjxvk span AxA. Let V be the set of scalar multiples
of x. Then x lies in the finite-dimensional ideal V + xA + Ax + AxA.

Conversely, if K is a finite-dimensional ideal then clearly zA is finite-
dimensional for each z ∈ K so that K ⊂ F .

Lemma 2. A finite-dimensional one-side ideal K of A is contained in a
finite-dimensional ideal of A.

P r o o f. Let v1, . . . , vn be a basis for K. Clearly K ⊂ F . By Lemma 1
each vj is contained in a finite-dimensional ideal Wj of A. Then K ⊂
W1 + . . . + Wn.

Theorem 1. Let I be an ideal of A and x ∈ A. The following statements
are equivalent.

(a) xI is finite-dimensional.
(b) Ix is finite-dimensional.
(c) x ∈ F + Ia.

P r o o f. Suppose (a). By Lemma 2, xI is contained in a finite-dimen-
sional ideal W . Now W is Artinian and semi-simple by [5, Theorem 1.3.1] so
that by [5, Lemma 1.4.2] there is an idempotent v ∈ W where xI = vW =
vA. Then as v is a left identity for xI we have (vx − x)I = (0). Hence
vx − x ∈ Ia. However, v ∈ F so that x ∈ F + Ia. Thus (a) implies (c).
Conversely, if x ∈ F + Ia then clearly xI is finite-dimensional so that (a)
and (c) are equivalent. Interchanging the roles of left and right we see in
the same way that (b) and (c) are equivalent.

Lemma 3. S = F ⊕ (S ∩ F a).
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P r o o f. A finite-dimensional ideal K in A is equal to its socle. Therefore
K ⊂ S and so, by Lemma 1, F ⊂ S. This also follows from [4, Theorem
7] where it is shown that, for x ∈ A, we have x ∈ S if and only if xAx is
finite-dimensional. Since each minimal idempotent of A is either in F or in
F a we have the given decomposition of S.

Lemma 4. Let q be an idempotent in S ∩ Z. Then qA is finite-dimen-
sional.

P r o o f. As qA is closed in A it is a Banach algebra. As q ∈ Z, qA is
an ideal in A and is therefore semi-prime. Moreover, qA is its own socle. It
follows by [10, Theorem 5] or [4, Theorem 11] that qA is finite-dimensional.

Lemma 5. Let p be a minimal idempotent in F . Then ApA = eA where
e ∈ S ∩ Z and e is a simple idempotent. Moreover ,

(1− e) = {x ∈ A : Ax ⊂ (1− p)A} = {x ∈ A : xA ⊂ A(1− p)} .

P r o o f. As in the proof of Lemma 1, ApA is finite-dimensional. There-
fore ApA is, by [5, p.20], semi-simple as well as semi-prime. Hence [5, p. 30]
applies so that we can express ApA = eA where e is a central idempotent.
By Lemma 3 we have e ∈ S. Next we see that ApA is a simple algebra.
For if W is an ideal of ApA then either p ∈ W or p ∈ W a. If p ∈ W then
W = ApA. If pW = Wp = (0), then W 2 = (0) and W = (0). In summary,
e is a simple central idempotent lying in S.

As A = eA⊕ (1−e)A and eA is simple we see that (1−e)A is a modular
maximal ideal of A. The set of x ∈ A for which Ax ⊂ (1 − p)A is the set
union of all (two-sided) ideals of A contained in (1− p)A. Now

(1− e)x = (1− p)(x− ex)

so that (1− e)A ⊂ (1− p)A. As (1− e)A is a maximal ideal we have

(1− e)A = {x ∈ A : Ax ⊂ (1− p)A} .

Notation. For convenience we denote the set of non-zero simple idem-
potents of A which lie in S ∩ Z by Γ .

Theorem 2. F is the algebraic direct sum of the ideals eA for e ∈ Γ .

P r o o f. Let x ∈ F . We can, by Lemma 3, write

x =
r∑

j=1

pjxi

where each pj is a minimal idempotent in F and xj ∈ A. By Lemma 5 each
pjxj can be expressed as some ejwj where ej ∈ Γ and wj ∈ A. Thus F is
contained in the algebraic sum of the eA, e ∈ Γ . Next we know by Lemma 4
that each such eA lies in F . Inasmuch as e1e2 = 0 for two different elements
of Γ , the algebraic sum of the eA, e ∈ Γ , is direct.
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Corollary 1. For an infinite-dimensional primitive Banach algebra A
we have F = (0).

P r o o f. By [8, Cor. 2.4.5] the center Z of A is either (0) or is the set
of scalar multiples of non-zero idempotent p. If Z = (0) then F = (0) by
Theorem 2. Suppose p 6= 0. Let I1 = pA, I2 = (1 − p)A. These are ideals
in A and I1I2 = (0). As A is primitive and I1 6= (0) we have I2 = (0). But
then p is the identity for A. As A is infinite-dimensional, p 6∈ F . Thus F
cannot have any non-zero central idempotent and, by Theorem 2, F = (0)
in this case also.

Corollary 2. Any ideal K of A which does not contain F is contained
in a modular maximal ideal of A.

P r o o f. Since K does not contain F there is an idempotent p ∈ Γ where
p 6∈ K by Theorem 2. As p is a simple idempotent (pAp = pA is a simple
algebra) we have p ∈ Ka by [13, Lemma 5.1]. Therefore K ⊂ (1 − p)A.
However, from A = pA ⊕ (1 − p)A we see that (1 − p)A is a modular
maximal ideal.

In particular, if F is dense then any proper closed ideal is contained
in a modular maximal ideal. This is the case, for example, for the group
algebra of a compact group, where the multiplication is convolution (see [6,
Theorem 15]).

As in [8, p. 59] by the strong radical of an algebra we mean the intersec-
tion of its modular maximal ideals.

Theorem 3. Suppose that A has dense socle. Let B be the completion
of A in the normed algebra norm |x|. Then the modular maximal ideals of
B are the ideals (1 − q)B for q ∈ Γ . Moreover , the strong radical of B is
the left annihilator in B and also the right annihilator in B of F .

P r o o f. To avoid confusion we state that the sets Γ and F of Theorem
3 refer to the Banach algebra A. Let p ∈ Γ . As pA is finite-dimensional,
pA = pB. Also p lies in the center of B. From B = pB ⊕ (1− p)B and the
fact that pB is a simple algebra we see that (1− p)B is a modular maximal
ideal of B.

We shall show that every modular maximal ideal M of B is of the form
(1− q)B for some q ∈ Γ . Let ν be the embedding map of A into B, let π be
the natural homomorphism of B onto B/M and let α be the composite map
of ν followed by π. Note that ν need not be continuous. However, ν(A) is
dense in B and π is continuous so that α(A) is dense in B/M . Consider the
separating set Σ in B/M corresponding to the map α. That is, Σ is the set
of elements π(w) in B/M , w ∈ B, for which there is a sequence {xn} in A
where

‖xn‖ → 0 and |α(xn)− π(w)| → 0 .
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As Σ is an ideal in B/M which is simple then either Σ = (0) or Σ = B/M .
We cannot have Σ = B/M for it is known [2, Theorem 1] that Σ cannot
possess a non-zero idempotent but B/M has an identity. Consequently,
Σ = (0) and so α is a continuous homomorphism of A onto a dense subset
of B/M . By hypothesis the socle S of A is dense in A so that α(S) is dense
in B/M . Hence there is a minimal idempotent f of A where α(f) 6= 0. As
fAf is the set of scalar multiples of f , α(f)(B/M)α(f) is the set of scalar
multiples of α(f). As B/M is simple and α(f) is a minimal idempotent in
B/M , it follows that B/M is equal to its socle. Therefore by [10, Theorem 5]
we see that B/M is finite-dimensional.

By the proof of Lemma 5, AfA is a simple algebra. Now (AfA)∩M is an
ideal in AfA which cannot be AfA since f 6∈ M . Therefore (AfA)∩M = (0)
so that α is a one-to-one mapping when its domain is restricted to AfA.
But α(AfA) is a linear subspace of the finite-dimensional B/M . Hence
AfA is finite-dimensional and, in particular, f ∈ F . By Lemma 5 there is
some q ∈ Γ with AfA = qA. As qA is finite-dimensional, qA = qB. Also
qM = (0) or qM = qB. In the latter case we would have q ∈ M , which is
not so. Therefore qM = (0) and so M ⊂ (1− q)B. Note that (1− q)B is a
proper modular ideal of B and M is a modular maximal ideal of B. Hence
M = (1− q)B.

The strong radical R of B is the intersection of the ideals (1 − p)B =
B(1 − p) for p ∈ Γ . As F is the direct sum of the pA = pB for p ∈ Γ , by
Theorem 2, we get FR = RF = (0). Suppose w ∈ B and wF = (0). Then,
for any p ∈ Γ , wpA = (0). But wp ∈ Bp = Ap ⊂ A and A is semi-prime.
Therefore wp = 0 and so w ∈ (1 − p)B. Hence w ∈ R. This concludes the
proof of Theorem 3.

Corollary 3. Suppose that A has a dense socle that B is its completion
in some normed algebra norm on A. An ideal W of B is contained in a
modular maximal ideal of B if and only if W does not contain F .

P r o o f. Suppose that W fails to contain F . Then, by Theorem 2, there
is some p ∈ Γ with p 6∈ W . As pA = pB is simple and pW 6= pB we get
pW = (0) and W ⊂ (1−p)B. But (1−p)B is a modular maximal ideal of B.

Conversely, if W is contained in a modular maximal ideal of B then, by
Theorem 3, there is some q ∈ Γ so that W ⊂ (1− q)B. Then qW = (0) so
that q 6∈ W and so W does not contain F .

In particular, if F = (0) in A then B cannot have a modular maximal
ideal.

We point out that the conclusion of Theorem 4 can fail if the hypothesis
of a dense socle is dropped. For let A be the commutative Banach algebra of
all continuous functions on [0,1]. Then F = (0) yet A has modular maximal
ideals.
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Lemma 6. The following statements are equivalent. (1) F = F aa, (2) F
is closed and (3) F is finite-dimensional.

P r o o f. Clearly (3) and (1) each imply (2). Inasmuch as F is equal
to its socle, by [10, Theorem 3], (2) implies (3). Assume (3). By [5, p.
30], F has an identity element w which lies in the center of A. Then as
A = wA ⊕ (1 − w)A and F a = (1 − w)A we get A = F ⊕ F a. Suppose
z ∈ F aa and z = u + v where u ∈ F and v ∈ F a. Then z − u = v where
z − w ∈ F aa and v ∈ F a. Hence v = 0 and z ∈ F . Thus (3) implies (1).

For each x ∈ A let Lx (Rx) be the operator on A defined by Lx(y) =
xy (Rx(y) = yx). Set

Nl = {x ∈ A : Lx is a compact operator} ,

Nr = {x ∈ A : Rx is a compact operator} .

In [14, Theorem 4.3] the author showed that if A has dense socle then
Nl = A if and only if Nr = A. Later Smyth [9] gave an independent proof
of this result. Moreover, he gave an example where Nl = A and Nr 6= A.
An open question is to determine just when Nl = Nr. We make a small
advance in the following result.

Theorem 4. Suppose either Sa = (0) or A is semi-simple. If F is
finite-dimensional then Nl = Nr = F .

P r o o f. By the Riesz–Schauder theory each of Nl and Nr have F as
its socle. Suppose Sa = (0). Then every non-zero left or right ideal of A
contains a minimal idempotent of A [13, Lemma 3.1]. In particular, this
shows that NlF

a = (0) = NrF
a. Hence Nl ⊂ F aa and Nr ⊂ F aa. Thus if

F is finite-dimensional we have F = Nl = F aa = Nr by Lemma 6.
Suppose that A is semi-simple. By [1, Theorem 7.2] each of Nl and Nr is

a modular annihilator algebra. As Nl and Nr are also semi-simple it follows
from [12, p. 38] that the annihilator of the socle of Nl (Nr) in Nl (Nr) is
(0). Hence, arguing as above we see that Nl ⊂ F aa and Nr ⊂ F aa. Thus,
in this case also, the conclusion follows.
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