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FINITE-DIMENSIONAL IDEALS IN BANACH ALGEBRAS
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Let A be a semi-prime Banach algebra. By an ideal in A we shall always
mean a two-sided ideal unless otherwise specified. Smyth [9] has shown that,
for x in A, xA is finite-dimensional if and only if Az is finite-dimensional.
Let F be the set of all x in A for which xA is finite-dimensional. We extend
Smyth’s theorem as follows. Let K be any ideal in A. Then, for = in A,
xK is finite-dimensional if and only if Kz is finite-dimensional. Note that
a distinction between this result and the Smyth case where K = A is that
x need not lie in K. Then we describe and study F' and its role in Banach
algebra theory.

Let I" be the set of non-zero central idempotents p in the socle of A for
which pA is a simple algebra. All these are in F' and F' is the direct sum of
the ideals pA for p in I'.

In the theory of commutative Banach algebras much attention is devoted
to seeing when an ideal must be contained in a modular maximal ideal. We
consider the non-commutative case where A has a dense socle and B is the
completion of A in some normed algebra norm on A. An ideal W of B is
contained in a modular maximal ideal of B if and only if W does not contain
F. Easy examples show this can fail if A does not have a dense socle.

First we treat some preliminaries. Throughout A is a semi-prime Banach
algebra over the complex field with socle S and center Z. For an ideal W
inAlet LW)={z € A:a2W =(0)} and R(W) ={x € A: Wx = (0)}.
Then L(W) = R(W) by [3, p. 162]. Let W% denote the common value
of L(W) and R(W). The socle of W is SNW = SW = WS (see [12,
Lemma 3.10]). Each minimal right (left) ideal of A has the form pA (Ap)
where p is an idempotent. Such an element p we call a minimal idempotent.
An idempotent g # 0 is said to be a simple idempotent if gAq is a simple
algebra. Every minimal idempotent is simple. For a simple idempotent ¢
and an ideal W either ¢ € W or ¢ € W* by [13, Lemma 5.1].

We compare F' with another notion of finite-dimensionality in Banach
algebra theory which has been studied. In [11] Vala called an element w € A
finite if the mapping ¢ — zwx of A into A has finite-dimensional range. We
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refer to [7] for further references and work on this notion. Let @ be the
set of all elements in A finite in the above sense. Of course @ D F. In [4,
Theorem 7] it was shown that & = S. In Corollary 1 below we see that if
A is primitive and infinite-dimensional then F' = (0). On the other hand,
& = S can be non-zero for such A as is the case for B(X), the Banach
algebra of all bounded linear operators on an infinite-dimensional Banach
space X.

LEMMA 1. F is the union of all the finite-dimensional ideals of A.

Proof. Let x € F. By definition zA (Az) is the linear span of a finite
number of elements zvy,...,zv, (w1z,...,w,z). For each a and b in A we
have xb = Y7/, Byavy and ax = 377 ajw;a where the a; and fj are

scalars. Then
T n
arb = Z Z o Brw; vy
j=1k=1

so that the rn elements w;zv;, span Az A. Let V be the set of scalar multiples
of . Then z lies in the finite-dimensional ideal V + zA + Ax + Az A.

Conversely, if K is a finite-dimensional ideal then clearly zA is finite-
dimensional for each z € K so that K C F.

LEMMA 2. A finite-dimensional one-side ideal K of A is contained in a
finite-dimensional ideal of A.

Proof. Let vy,...,v, be a basis for K. Clearly K C F. By Lemma 1
each v; is contained in a finite-dimensional ideal W; of A. Then K C
Wi+...+W,.

THEOREM 1. Let I be an ideal of A and x € A. The following statements
are equivalent.

(a) xI is finite-dimensional.
(b) Ix is finite-dimensional.
(c)x e F+ 1%

Proof. Suppose (a). By Lemma 2, xI is contained in a finite-dimen-
sional ideal W. Now W is Artinian and semi-simple by [5, Theorem 1.3.1] so
that by [5, Lemma 1.4.2] there is an idempotent v € W where 21 = vWW =
vA. Then as v is a left identity for #I we have (vx — z)I = (0). Hence
ve —x € I*. However, v € F so that x € F'+ I*. Thus (a) implies (c).
Conversely, if z € F + I® then clearly I is finite-dimensional so that (a)
and (c) are equivalent. Interchanging the roles of left and right we see in
the same way that (b) and (c) are equivalent.

LEMMA 3. S =F & (SN FY).
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Proof. A finite-dimensional ideal K in A is equal to its socle. Therefore
K C S and so, by Lemma 1, FF C S. This also follows from [4, Theorem
7] where it is shown that, for z € A, we have z € S if and only if xAx is
finite-dimensional. Since each minimal idempotent of A is either in F' or in
F% we have the given decomposition of S.

LEMMA 4. Let q be an idempotent in S N Z. Then qA is finite-dimen-
sional.

Proof. As gA is closed in A it is a Banach algebra. As g € Z, qA is
an ideal in A and is therefore semi-prime. Moreover, qA is its own socle. It
follows by [10, Theorem 5] or [4, Theorem 11] that gA is finite-dimensional.

LEMMA 5. Let p be a minimal idempotent in F'. Then ApA = eA where
e € SNZ and e is a simple idempotent. Moreover,

(l-e)={rcA: Az Cc(1-pAt={xcA:zAC A1 -Dp)}.

Proof. As in the proof of Lemma 1, ApA is finite-dimensional. There-
fore ApA is, by [5, p.20], semi-simple as well as semi-prime. Hence [5, p. 30]
applies so that we can express ApA = eA where e is a central idempotent.
By Lemma 3 we have e € S. Next we see that ApA is a simple algebra.
For if W is an ideal of ApA then either p € W or p € W°. If p € W then
W = ApA. If pW = Wp = (0), then W? = (0) and W = (0). In summary,
e is a simple central idempotent lying in S.

As A=eA®(1—e)A and eA is simple we see that (1 —e)A is a modular
maximal ideal of A. The set of z € A for which Az C (1 — p)A is the set
union of all (two-sided) ideals of A contained in (1 — p)A. Now

(1—e)x=(1-p)(z—ex)
so that (1 —e)A C (1 —p)A. As (1 —e)A is a maximal ideal we have
(1—e)A={rxecA:AxC (1—-p)A}.
NOTATION. For convenience we denote the set of non-zero simple idem-
potents of A which liein SN Z by I'.
THEOREM 2. F' is the algebraic direct sum of the ideals eA fore € I.

Proof. Let x € F. We can, by Lemma 3, write

T
xr = E pjxi
Jj=1

where each p; is a minimal idempotent in F’ and x; € A. By Lemma 5 each
pjx; can be expressed as some e;w; where e; € I' and w; € A. Thus F' is
contained in the algebraic sum of the eA, e € I'. Next we know by Lemma 4
that each such eA lies in F'. Inasmuch as ejes = 0 for two different elements
of I', the algebraic sum of the eA, e € I', is direct.
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COROLLARY 1. For an infinite-dimensional primitive Banach algebra A
we have F' = (0).

Proof. By [8, Cor. 2.4.5] the center Z of A is either (0) or is the set
of scalar multiples of non-zero idempotent p. If Z = (0) then F' = (0) by
Theorem 2. Suppose p # 0. Let I; = pA, I = (1 — p)A. These are ideals
in A and I1I; = (0). As A is primitive and I; # (0) we have Iy = (0). But
then p is the identity for A. As A is infinite-dimensional, p ¢ F. Thus F
cannot have any non-zero central idempotent and, by Theorem 2, F' = (0)
in this case also.

COROLLARY 2. Any ideal K of A which does not contain F is contained
i a modular mazimal ideal of A.

Proof. Since K does not contain F there is an idempotent p € I" where
p ¢ K by Theorem 2. As p is a simple idempotent (pAp = pA is a simple
algebra) we have p € K® by [13, Lemma 5.1]. Therefore K C (1 — p)A.
However, from A = pA & (1 — p)A we see that (1 — p)A is a modular
maximal ideal.

In particular, if F' is dense then any proper closed ideal is contained
in a modular maximal ideal. This is the case, for example, for the group
algebra of a compact group, where the multiplication is convolution (see [6,
Theorem 15]).

As in [8, p. 59] by the strong radical of an algebra we mean the intersec-
tion of its modular maximal ideals.

THEOREM 3. Suppose that A has dense socle. Let B be the completion
of A in the normed algebra norm |z|. Then the modular maximal ideals of
B are the ideals (1 — q)B for q € I'. Moreover, the strong radical of B is
the left annihilator in B and also the right annihilator in B of F.

Proof. To avoid confusion we state that the sets I' and F' of Theorem
3 refer to the Banach algebra A. Let p € I'. As pA is finite-dimensional,
pA = pB. Also p lies in the center of B. From B = pB & (1 — p)B and the
fact that pB is a simple algebra we see that (1 — p)B is a modular maximal
ideal of B.

We shall show that every modular maximal ideal M of B is of the form
(1 —q)B for some q € I'. Let v be the embedding map of A into B, let 7 be
the natural homomorphism of B onto B/M and let a be the composite map
of v followed by 7. Note that v need not be continuous. However, v(A) is
dense in B and 7 is continuous so that a(A) is dense in B/M. Consider the
separating set X' in B/M corresponding to the map «. That is, X' is the set
of elements m(w) in B/M, w € B, for which there is a sequence {z,} in A
where

|zn|| = 0 and |a(z,) — m(w)| — 0.
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As ¥ is an ideal in B/M which is simple then either X' = (0) or ¥ = B/M.
We cannot have X' = B/M for it is known [2, Theorem 1] that X cannot
possess a non-zero idempotent but B/M has an identity. Consequently,
Y = (0) and so « is a continuous homomorphism of A onto a dense subset
of B/M. By hypothesis the socle S of A is dense in A so that «(S) is dense
in B/M. Hence there is a minimal idempotent f of A where a(f) # 0. As
fAf is the set of scalar multiples of f, a(f)(B/M)a(f) is the set of scalar
multiples of a(f). As B/M is simple and «(f) is a minimal idempotent in
B/M, it follows that B/M is equal to its socle. Therefore by [10, Theorem 5]
we see that B/M is finite-dimensional.

By the proof of Lemma 5, Af A is a simple algebra. Now (AfA)NM is an
ideal in A f A which cannot be Af A since f ¢ M. Therefore (AfA)NM = (0)
so that « is a one-to-one mapping when its domain is restricted to AfA.
But a(AfA) is a linear subspace of the finite-dimensional B/M. Hence
AfA is finite-dimensional and, in particular, f € F. By Lemma 5 there is
some q € I' with AfA = qA. As gA is finite-dimensional, gA = ¢B. Also
gM = (0) or ¢gM = ¢B. In the latter case we would have ¢ € M, which is
not so. Therefore ¢M = (0) and so M C (1 — q)B. Note that (1 —¢)B is a
proper modular ideal of B and M is a modular maximal ideal of B. Hence
M= (1-q)B.

The strong radical R of B is the intersection of the ideals (1 — p)B =
B(1 —p) for p e I'. As F is the direct sum of the pA = pB for p € I', by
Theorem 2, we get FR = RF = (0). Suppose w € B and wF = (0). Then,
for any p € I', wpA = (0). But wp € Bp = Ap C A and A is semi-prime.
Therefore wp = 0 and so w € (1 — p)B. Hence w € R. This concludes the
proof of Theorem 3.

COROLLARY 3. Suppose that A has a dense socle that B is its completion
in some normed algebra norm on A. An ideal W of B is contained in a
modular mazimal ideal of B if and only if W does not contain F'.

Proof. Suppose that W fails to contain F'. Then, by Theorem 2, there
is some p € I' with p € W. As pA = pB is simple and pW # pB we get
pW = (0) and W C (1—p)B. But (1—p)B is a modular maximal ideal of B.

Conversely, if W is contained in a modular maximal ideal of B then, by
Theorem 3, there is some g € I' so that W C (1 — ¢)B. Then ¢/ = (0) so
that ¢ ¢ W and so W does not contain F.

In particular, if F' = (0) in A then B cannot have a modular maximal
ideal.

We point out that the conclusion of Theorem 4 can fail if the hypothesis
of a dense socle is dropped. For let A be the commutative Banach algebra of
all continuous functions on [0,1]. Then F' = (0) yet A has modular maximal
ideals.
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LEMMA 6. The following statements are equivalent. (1) F' = F**, (2) F
is closed and (3) F is finite-dimensional.

Proof. Clearly (3) and (1) each imply (2). Inasmuch as F' is equal
to its socle, by [10, Theorem 3], (2) implies (3). Assume (3). By [5, p.
30], F has an identity element w which lies in the center of A. Then as
A=wA® (1l —-w)Ad and F* = (1 —w)A we get A = F' & F*. Suppose
z € F* and z = u+ v where u € F' and v € F*. Then z —u = v where
z—w € F* and v € F*. Hence v =0 and z € F. Thus (3) implies (1).
For each x € A let L, (R;) be the operator on A defined by L,(y) =
xy (Rz(y) = yx). Set
Ny ={z € A: L, is a compact operator},
N, ={x € A: R, is a compact operator} .

In [14, Theorem 4.3] the author showed that if A has dense socle then
N; = A if and only if N, = A. Later Smyth [9] gave an independent proof
of this result. Moreover, he gave an example where N; = A and N, # A.
An open question is to determine just when N; = N,.. We make a small
advance in the following result.

THEOREM 4. Suppose either S* = (0) or A is semi-simple. If F is
finite-dimensional then Ny = N, = F.

Proof. By the Riesz—Schauder theory each of N; and N, have F' as
its socle. Suppose S® = (0). Then every non-zero left or right ideal of A
contains a minimal idempotent of A [13, Lemma 3.1]. In particular, this
shows that N;F* = (0) = N,.F*. Hence N; C F*® and N, C F**. Thus if
F is finite-dimensional we have F' = N; = F%* = N,. by Lemma 6.

Suppose that A is semi-simple. By [1, Theorem 7.2] each of N; and N,. is
a modular annihilator algebra. As N; and NV, are also semi-simple it follows
from [12, p. 38] that the annihilator of the socle of N; (N,) in N; (N,) is
(0). Hence, arguing as above we see that Ny C F** and N, C F**. Thus,
in this case also, the conclusion follows.
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