COLLOQUIUM MATHEMATICUM
 VOL. LXIII $1992 \quad$ FASC. 2

finite-DIMENSIONAL IDEALS IN BANACH ALGEBRAS

BY
BERTRAM Y O OD (UNIVERSITY PARK, PENNSYLVANIA)

Let A be a semi-prime Banach algebra. By an ideal in A we shall always mean a two-sided ideal unless otherwise specified. Smyth [9] has shown that, for x in $A, x A$ is finite-dimensional if and only if $A x$ is finite-dimensional. Let F be the set of all x in A for which $x A$ is finite-dimensional. We extend Smyth's theorem as follows. Let K be any ideal in A. Then, for x in A, $x K$ is finite-dimensional if and only if $K x$ is finite-dimensional. Note that a distinction between this result and the Smyth case where $K=A$ is that x need not lie in K. Then we describe and study F and its role in Banach algebra theory.

Let Γ be the set of non-zero central idempotents p in the socle of A for which $p A$ is a simple algebra. All these are in F and F is the direct sum of the ideals $p A$ for p in Γ.

In the theory of commutative Banach algebras much attention is devoted to seeing when an ideal must be contained in a modular maximal ideal. We consider the non-commutative case where A has a dense socle and B is the completion of A in some normed algebra norm on A. An ideal W of B is contained in a modular maximal ideal of B if and only if W does not contain F. Easy examples show this can fail if A does not have a dense socle.

First we treat some preliminaries. Throughout A is a semi-prime Banach algebra over the complex field with socle S and center Z. For an ideal W in A let $L(W)=\{x \in A: x W=(0)\}$ and $R(W)=\{x \in A: W x=(0)\}$. Then $L(W)=R(W)$ by [3, p. 162]. Let W^{a} denote the common value of $L(W)$ and $R(W)$. The socle of W is $S \cap W=S W=W S$ (see [12, Lemma 3.10]). Each minimal right (left) ideal of A has the form $p A(A p)$ where p is an idempotent. Such an element p we call a minimal idempotent. An idempotent $q \neq 0$ is said to be a simple idempotent if $q A q$ is a simple algebra. Every minimal idempotent is simple. For a simple idempotent q and an ideal W either $q \in W$ or $q \in W^{a}$ by [13, Lemma 5.1].

We compare F with another notion of finite-dimensionality in Banach algebra theory which has been studied. In [11] Vala called an element $w \in A$ finite if the mapping $x \rightarrow x w x$ of A into A has finite-dimensional range. We
refer to [7] for further references and work on this notion. Let Φ be the set of all elements in A finite in the above sense. Of course $\Phi \supset F$. In [4, Theorem 7] it was shown that $\Phi=S$. In Corollary 1 below we see that if A is primitive and infinite-dimensional then $F=(0)$. On the other hand, $\Phi=S$ can be non-zero for such A as is the case for $B(X)$, the Banach algebra of all bounded linear operators on an infinite-dimensional Banach space X.

Lemma 1. F is the union of all the finite-dimensional ideals of A.
Proof. Let $x \in F$. By definition $x A(A x)$ is the linear span of a finite number of elements $x v_{1}, \ldots, x v_{n}\left(w_{1} x, \ldots, w_{r} x\right)$. For each a and b in A we have $x b=\sum_{k=1}^{n} \beta_{k} x v_{k}$ and $a x=\sum_{j=1}^{r} \alpha_{j} w_{j} x$ where the α_{j} and β_{k} are scalars. Then

$$
a x b=\sum_{j=1}^{r} \sum_{k=1}^{n} \alpha_{j} \beta_{k} w_{j} x v_{k}
$$

so that the $r n$ elements $w_{j} x v_{k}$ span $A x A$. Let V be the set of scalar multiples of x. Then x lies in the finite-dimensional ideal $V+x A+A x+A x A$.

Conversely, if K is a finite-dimensional ideal then clearly $z A$ is finitedimensional for each $z \in K$ so that $K \subset F$.

Lemma 2. A finite-dimensional one-side ideal K of A is contained in a finite-dimensional ideal of A.

Proof. Let v_{1}, \ldots, v_{n} be a basis for K. Clearly $K \subset F$. By Lemma 1 each v_{j} is contained in a finite-dimensional ideal W_{j} of A. Then $K \subset$ $W_{1}+\ldots+W_{n}$.

Theorem 1. Let I be an ideal of A and $x \in A$. The following statements are equivalent.
(a) $x I$ is finite-dimensional.
(b) Ix is finite-dimensional.
(c) $x \in F+I^{a}$.

Proof. Suppose (a). By Lemma 2, $x I$ is contained in a finite-dimensional ideal W. Now W is Artinian and semi-simple by [5, Theorem 1.3.1] so that by [5, Lemma 1.4.2] there is an idempotent $v \in W$ where $x I=v W=$ $v A$. Then as v is a left identity for $x I$ we have $(v x-x) I=(0)$. Hence $v x-x \in I^{a}$. However, $v \in F$ so that $x \in F+I^{a}$. Thus (a) implies (c). Conversely, if $x \in F+I^{a}$ then clearly $x I$ is finite-dimensional so that (a) and (c) are equivalent. Interchanging the roles of left and right we see in the same way that (b) and (c) are equivalent.

Lemma 3. $S=F \oplus\left(S \cap F^{a}\right)$.

Proof. A finite-dimensional ideal K in A is equal to its socle. Therefore $K \subset S$ and so, by Lemma $1, F \subset S$. This also follows from [4, Theorem 7] where it is shown that, for $x \in A$, we have $x \in S$ if and only if $x A x$ is finite-dimensional. Since each minimal idempotent of A is either in F or in F^{a} we have the given decomposition of S.

Lemma 4. Let q be an idempotent in $S \cap Z$. Then $q A$ is finite-dimensional.

Proof. As $q A$ is closed in A it is a Banach algebra. As $q \in Z, q A$ is an ideal in A and is therefore semi-prime. Moreover, $q A$ is its own socle. It follows by [10, Theorem 5] or [4, Theorem 11] that $q A$ is finite-dimensional.

Lemma 5. Let p be a minimal idempotent in F. Then $A p A=e A$ where $e \in S \cap Z$ and e is a simple idempotent. Moreover,

$$
(1-e)=\{x \in A: A x \subset(1-p) A\}=\{x \in A: x A \subset A(1-p)\}
$$

Proof. As in the proof of Lemma $1, A p A$ is finite-dimensional. Therefore $A p A$ is, by [5, p.20], semi-simple as well as semi-prime. Hence [5, p. 30] applies so that we can express $A p A=e A$ where e is a central idempotent. By Lemma 3 we have $e \in S$. Next we see that $A p A$ is a simple algebra. For if W is an ideal of $A p A$ then either $p \in W$ or $p \in W^{a}$. If $p \in W$ then $W=A p A$. If $p W=W p=(0)$, then $W^{2}=(0)$ and $W=(0)$. In summary, e is a simple central idempotent lying in S.

As $A=e A \oplus(1-e) A$ and $e A$ is simple we see that $(1-e) A$ is a modular maximal ideal of A. The set of $x \in A$ for which $A x \subset(1-p) A$ is the set union of all (two-sided) ideals of A contained in $(1-p) A$. Now

$$
(1-e) x=(1-p)(x-e x)
$$

so that $(1-e) A \subset(1-p) A$. As $(1-e) A$ is a maximal ideal we have

$$
(1-e) A=\{x \in A: A x \subset(1-p) A\} .
$$

Notation. For convenience we denote the set of non-zero simple idempotents of A which lie in $S \cap Z$ by Γ.

Theorem 2. F is the algebraic direct sum of the ideals $e A$ for $e \in \Gamma$.
Proof. Let $x \in F$. We can, by Lemma 3, write

$$
x=\sum_{j=1}^{r} p_{j} x_{i}
$$

where each p_{j} is a minimal idempotent in F and $x_{j} \in A$. By Lemma 5 each $p_{j} x_{j}$ can be expressed as some $e_{j} w_{j}$ where $e_{j} \in \Gamma$ and $w_{j} \in A$. Thus F is contained in the algebraic sum of the $e A, e \in \Gamma$. Next we know by Lemma 4 that each such $e A$ lies in F. Inasmuch as $e_{1} e_{2}=0$ for two different elements of Γ, the algebraic sum of the $e A, e \in \Gamma$, is direct.

Corollary 1. For an infinite-dimensional primitive Banach algebra A we have $F=(0)$.

Proof. By [8, Cor. 2.4.5] the center Z of A is either (0) or is the set of scalar multiples of non-zero idempotent p. If $Z=(0)$ then $F=(0)$ by Theorem 2. Suppose $p \neq 0$. Let $I_{1}=p A, I_{2}=(1-p) A$. These are ideals in A and $I_{1} I_{2}=(0)$. As A is primitive and $I_{1} \neq(0)$ we have $I_{2}=(0)$. But then p is the identity for A. As A is infinite-dimensional, $p \notin F$. Thus F cannot have any non-zero central idempotent and, by Theorem $2, F=(0)$ in this case also.

Corollary 2. Any ideal K of A which does not contain F is contained in a modular maximal ideal of A.

Proof. Since K does not contain F there is an idempotent $p \in \Gamma$ where $p \notin K$ by Theorem 2. As p is a simple idempotent ($p A p=p A$ is a simple algebra) we have $p \in K^{a}$ by [13, Lemma 5.1]. Therefore $K \subset(1-p) A$. However, from $A=p A \oplus(1-p) A$ we see that $(1-p) A$ is a modular maximal ideal.

In particular, if F is dense then any proper closed ideal is contained in a modular maximal ideal. This is the case, for example, for the group algebra of a compact group, where the multiplication is convolution (see [6, Theorem 15]).

As in [8, p. 59] by the strong radical of an algebra we mean the intersection of its modular maximal ideals.

Theorem 3. Suppose that A has dense socle. Let B be the completion of A in the normed algebra norm $|x|$. Then the modular maximal ideals of B are the ideals $(1-q) B$ for $q \in \Gamma$. Moreover, the strong radical of B is the left annihilator in B and also the right annihilator in B of F.

Proof. To avoid confusion we state that the sets Γ and F of Theorem 3 refer to the Banach algebra A. Let $p \in \Gamma$. As $p A$ is finite-dimensional, $p A=p B$. Also p lies in the center of B. From $B=p B \oplus(1-p) B$ and the fact that $p B$ is a simple algebra we see that $(1-p) B$ is a modular maximal ideal of B.

We shall show that every modular maximal ideal M of B is of the form $(1-q) B$ for some $q \in \Gamma$. Let ν be the embedding map of A into B, let π be the natural homomorphism of B onto B / M and let α be the composite map of ν followed by π. Note that ν need not be continuous. However, $\nu(A)$ is dense in B and π is continuous so that $\alpha(A)$ is dense in B / M. Consider the separating set Σ in B / M corresponding to the map α. That is, Σ is the set of elements $\pi(w)$ in $B / M, w \in B$, for which there is a sequence $\left\{x_{n}\right\}$ in A where

$$
\left\|x_{n}\right\| \rightarrow 0 \quad \text { and } \quad\left|\alpha\left(x_{n}\right)-\pi(w)\right| \rightarrow 0
$$

As Σ is an ideal in B / M which is simple then either $\Sigma=(0)$ or $\Sigma=B / M$. We cannot have $\Sigma=B / M$ for it is known [2, Theorem 1] that Σ cannot possess a non-zero idempotent but B / M has an identity. Consequently, $\Sigma=(0)$ and so α is a continuous homomorphism of A onto a dense subset of B / M. By hypothesis the socle S of A is dense in A so that $\alpha(S)$ is dense in B / M. Hence there is a minimal idempotent f of A where $\alpha(f) \neq 0$. As $f A f$ is the set of scalar multiples of $f, \alpha(f)(B / M) \alpha(f)$ is the set of scalar multiples of $\alpha(f)$. As B / M is simple and $\alpha(f)$ is a minimal idempotent in B / M, it follows that B / M is equal to its socle. Therefore by [10, Theorem 5] we see that B / M is finite-dimensional.

By the proof of Lemma $5, A f A$ is a simple algebra. Now $(A f A) \cap M$ is an ideal in $A f A$ which cannot be $A f A$ since $f \notin M$. Therefore $(A f A) \cap M=(0)$ so that α is a one-to-one mapping when its domain is restricted to $A f A$. But $\alpha(A f A)$ is a linear subspace of the finite-dimensional B / M. Hence $\operatorname{Af} A$ is finite-dimensional and, in particular, $f \in F$. By Lemma 5 there is some $q \in \Gamma$ with $A f A=q A$. As $q A$ is finite-dimensional, $q A=q B$. Also $q M=(0)$ or $q M=q B$. In the latter case we would have $q \in M$, which is not so. Therefore $q M=(0)$ and so $M \subset(1-q) B$. Note that $(1-q) B$ is a proper modular ideal of B and M is a modular maximal ideal of B. Hence $M=(1-q) B$.

The strong radical R of B is the intersection of the ideals $(1-p) B=$ $B(1-p)$ for $p \in \Gamma$. As F is the direct sum of the $p A=p B$ for $p \in \Gamma$, by Theorem 2, we get $F R=R F=(0)$. Suppose $w \in B$ and $w F=(0)$. Then, for any $p \in \Gamma, w p A=(0)$. But $w p \in B p=A p \subset A$ and A is semi-prime. Therefore $w p=0$ and so $w \in(1-p) B$. Hence $w \in R$. This concludes the proof of Theorem 3.

Corollary 3. Suppose that A has a dense socle that B is its completion in some normed algebra norm on A. An ideal W of B is contained in a modular maximal ideal of B if and only if W does not contain F.

Proof. Suppose that W fails to contain F. Then, by Theorem 2, there is some $p \in \Gamma$ with $p \notin W$. As $p A=p B$ is simple and $p W \neq p B$ we get $p W=(0)$ and $W \subset(1-p) B$. But $(1-p) B$ is a modular maximal ideal of B.

Conversely, if W is contained in a modular maximal ideal of B then, by Theorem 3, there is some $q \in \Gamma$ so that $W \subset(1-q) B$. Then $q W=(0)$ so that $q \notin W$ and so W does not contain F.

In particular, if $F=(0)$ in A then B cannot have a modular maximal ideal.

We point out that the conclusion of Theorem 4 can fail if the hypothesis of a dense socle is dropped. For let A be the commutative Banach algebra of all continuous functions on $[0,1]$. Then $F=(0)$ yet A has modular maximal ideals.

Lemma 6. The following statements are equivalent. (1) $F=F^{a a}$, (2) F is closed and (3) F is finite-dimensional.

Proof. Clearly (3) and (1) each imply (2). Inasmuch as F is equal to its socle, by [10, Theorem 3], (2) implies (3). Assume (3). By [5, p. 30], F has an identity element w which lies in the center of A. Then as $A=w A \oplus(1-w) A$ and $F^{a}=(1-w) A$ we get $A=F \oplus F^{a}$. Suppose $z \in F^{a a}$ and $z=u+v$ where $u \in F$ and $v \in F^{a}$. Then $z-u=v$ where $z-w \in F^{a a}$ and $v \in F^{a}$. Hence $v=0$ and $z \in F$. Thus (3) implies (1).

For each $x \in A$ let $L_{x}\left(R_{x}\right)$ be the operator on A defined by $L_{x}(y)=$ $x y\left(R_{x}(y)=y x\right)$. Set

$$
\begin{aligned}
& N_{l}=\left\{x \in A: L_{x} \text { is a compact operator }\right\}, \\
& N_{r}=\left\{x \in A: R_{x} \text { is a compact operator }\right\} .
\end{aligned}
$$

In [14, Theorem 4.3] the author showed that if A has dense socle then $N_{l}=A$ if and only if $N_{r}=A$. Later Smyth [9] gave an independent proof of this result. Moreover, he gave an example where $N_{l}=A$ and $N_{r} \neq A$. An open question is to determine just when $N_{l}=N_{r}$. We make a small advance in the following result.

Theorem 4. Suppose either $S^{a}=(0)$ or A is semi-simple. If F is finite-dimensional then $N_{l}=N_{r}=F$.

Proof. By the Riesz-Schauder theory each of N_{l} and N_{r} have F as its socle. Suppose $S^{a}=(0)$. Then every non-zero left or right ideal of A contains a minimal idempotent of A [13, Lemma 3.1]. In particular, this shows that $N_{l} F^{a}=(0)=N_{r} F^{a}$. Hence $N_{l} \subset F^{a a}$ and $N_{r} \subset F^{a a}$. Thus if F is finite-dimensional we have $F=N_{l}=F^{a a}=N_{r}$ by Lemma 6 .

Suppose that A is semi-simple. By [1, Theorem 7.2] each of N_{l} and N_{r} is a modular annihilator algebra. As N_{l} and N_{r} are also semi-simple it follows from [12, p. 38] that the annihilator of the socle of $N_{l}\left(N_{r}\right)$ in $N_{l}\left(N_{r}\right)$ is (0). Hence, arguing as above we see that $N_{l} \subset F^{a a}$ and $N_{r} \subset F^{a a}$. Thus, in this case also, the conclusion follows.

REFERENCES

[1] B. Barnes, Modular annihilator algebras, Canad. J. Math. 18 (1966), 566-578.
[2] -, Some theorems concerning the continuity of algebra homomorphisms, Proc. Amer. Math. Soc. 18 (1967), 1035-1037.
[3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York 1973.
[4] L. Dalla, S. Giotopoulos and N. Katseli, The socle and finite-dimensionality of a semiprime Banach algebra, Studia Math. 92 (1989), 201-204.
[5] I. N. Herstein, Noncommutative Rings, Carus Math. Monographs 15, Math. Assoc. America, 1968.
[6] I. Kaplansky, Dual rings, Ann. of Math. 49 (1948), 689-701.
[7] J. Puhl, The trace of finite and nuclear elements in Banach algebras, Czechoslovak Math. J. 28 (1978), 656-676.
[8] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton 1960.
[9] M. R. F. Smyth, On problems of Olubummo and Alexander, Proc. Royal Irish Acad. 80A (1980), 69-74.
[10] A. W. Tullo, Conditions on Banach algebras which imply finite-dimensionality, Proc. Edinburgh Math. Soc. 20 (1976), 69-74.
[11] K. Vala, Sur les éléments compacts d'une algèbre normée, Ann. Acad. Sci. Fenn. Ser. A I Math. 407 (1967), 1-7.
[12] B. Yood, Ideals in topological rings, Canad. Math. J. 16 (1964), 28-45.
[13] -, Closed prime ideals in topological rings, Proc. London Math. Soc. (3) 24 (1972), 307-323.
[14] -, On the strong radical of certain Banach algebras, Proc. Edinburgh Math. Soc. 21 (1978), 81-85.

DEPARTMENT OF MATHEMATICS
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA 16802
U.S.A.

