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PSEUDOCOMPACTNESS — FROM COMPACTIFICATIONS
TO MULTIPLICATION OF BOREL SETS

BY

ELIZA W A J C H ( LÓDŹ)

0. Introduction. All the spaces considered below are assumed to
be completely regular and Hausdorff. For a space X, denote by K(X)
the family of all compactifications of X; βX stands for the Čech–Stone
compactification. If αX ∈ K(X), let Cα(X) stand for the set of those
functions f ∈ C∗(X) which are continuously extendable over αX. For
f ∈ Cα(X), let fα be the continuous extension of f over αX and, for
F ⊂ Cα(X), let Fα = {fα : f ∈ F}.

Suppose that F ⊂ C∗(X). Define ZF (X) as the family of all sets of the
form

⋂∞
i=1

⋃ni

j=1 f−1
i,j ([ai,j ; bi,j ]) where fi,j ∈ F and ai,j ≤ bi,j (ai,j , bi,j ∈ R)

for i ∈ N and j = 1, . . . , ni (ni ∈ N). Denote by BF (X) the smallest
σ-algebra of subsets of X, containing ZF (X). Let SF (X) stand for the
collection of all sets that are obtained from ZF (X) by the Souslin operation
(cf. [11]). For αX ∈ K(X), put Zα(X) = ZF (X), Bα(X) = BF (X) and
Sα(X) = SF (X) with F = Cα(X).

Let E(X) be the family of all F ⊂ C∗(X) such that the diagonal mapping
eF = ∆f∈F f is a homeomorphic embedding. If F ∈ E(X), then the closure
of eF (X) in R|F | is a compactification of X called generated by F and
denoted by eF X. By a slight modification of the proof of Theorem 6 of [13]
we get

0.1. Theorem. F ⊂ C∗(X) is in E(X) if and only if ZF (X) is a closed
base for X.

In the light of 0.1, if αX ∈ K(X) and F ⊂ C∗(X) are such that ZF (X) =
Zα(X), then F ∈ E(X). Unfortunately, from ZF (X) = Zα(X) we cannot
deduce that αX is generated by F . For instance, if X is Lindelöf, we have
Zα(X) = Zβ(X) for any αX ∈ K(X) (cf. [12, 3.10]). However, it was shown
in [12, 3.4] that any compactification αX of a pseudocompact space X is the
Wallman-type compactification which arises from the normal base Zα(X).
This yields

0.2. Theorem. For any compactifications αX and γX of a pseudocom-
pact space X, we have: αX ≤ γX if and only if Zα(X) ⊂ Zγ(X).
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The major portion of our work deals with describing, in terms of ZF (X)
and BF (X), as well as of SF (X), all the sets F ⊂ C∗(X) which generate
a fixed compactification of X. Our methods lead us to the problem of
multiplying Borel sets. Namely, let B(X) denote the smallest σ-algebra
containing all open subsets of X. For σ-algebras AX and AY of subsets
of spaces X and Y , respectively, let AX ×AY be the smallest σ-algebra of
subsets of X × Y which contains all rectangles C × D with C ∈ AX and
D ∈ AY . If B(X × Y ) = B(X)× B(Y ), then we say that the Borel sets of
X and Y multiply. We shall finish the paper with answering the question
when the Borel sets of perfectly normal pseudocompact spaces multiply.

1. Subsets of C∗(X) generating compactifications

1.1. Lemma. For any αX ∈ K(X) and F ∈ E(X) with eF X = αX, we
have ZF (X) = Zα(X).

P r o o f. It suffices to show that if A = f−1(0) where f ∈ Cα(X) then
A ∈ ZF (X). It follows from [13, Prop. 2 and Thm. 2] that, for any i ∈ N,
there exist fi,j,k ∈ F and real numbers ai,j,k < bi,j,k ≤ ci,j,k < di,j,k (j =
1, . . . ,mi; k = 1, . . . , ni) such that

f−1

([
− 1

i + 1
;

1
i + 1

])
⊂ Bi =

mi⋃
j=1

ni⋂
k=1

f−1
i,j,k([bi,j,k; ci,j,k]) ,

f−1

((
−∞;−1

i

]
∪

[
1
i
;∞

))
⊂

mi⋂
j=1

ni⋃
k=1

f−1
i,j,k((−∞; ai,j,k] ∪ [di,j,k;∞)) .

Then A =
⋂∞

i=1 Bi, hence A ∈ ZF (X) because Bi ∈ ZF (X) for i ∈ N.

1.2. Lemma. Let F ⊂ C∗(X) and A ⊂ X. Suppose that either A is
pseudocompact , or X is pseudocompact and A ∈ Zβ(X). Then X \ A ∈
SF (X) if and only if A ∈ ZF (X).

P r o o f. Assume that W = X \ A has the Souslin representation of the
form W =

⋃
σ∈Nω

⋂∞
n=1 A(σ|n) with A(σ|n) ∈ ZF (X) for all σ ∈ Nω and n ∈

N (cf. [11]). Since any z-filter in a pseudocompact space has the countable
intersection property (cf. [8, 5H]), for any σ ∈ Nω there exists m ∈ N such
that

⋂m
n=1 A(σ|n) ⊂ W . Put n(σ) = min{m ∈ N :

⋂m
n=1 A(σ|n) ⊂ W} and

Tm = {σ ∈ Nω : n(σ) = m} for σ ∈ Nω and m ∈ N. Let M = {m ∈ N :
Tm 6= ∅}. Then

W =
⋃

m∈M

⋃
σ∈Tm

m⋂
n=1

A(σ|n) .



PSEUDOCOMPACTNESS 305

This implies that W is a countable union of members of ZF (X). Let

W =
∞⋃

i=1

∞⋂
j=1

ni,j⋃
k=1

f−1
i,j,k([ai,j,k; bi,j,k])

with fi,j,k ∈ F and ai,j,k ≤ bi,j,k (ai,j,k, bi,j,k ∈ R). Using the countable
intersection property of z-filters in pseudocompact spaces we deduce that
for any i ∈ N, there exists mi ∈ N with

A ⊂ Ai =
mi⋃
j=1

ni,j⋂
k=1

mi⋃
m=1

f−1
i,j,k

((
−∞; ai,j,k −

1
m

]
∪

[
bi,j,k +

1
m

;∞
))

.

Then A =
⋂∞

i=1 Ai, so A ∈ ZF (X).

1.3. Theorem. Let X be a pseudocompact space and let F ∈ E(X). For
any G ⊂ C(X) the following conditions are equivalent :

(i) G ∈ E(X) and eF X ≤ eGX;
(ii) ZF (X) ⊂ ZG(X);
(iii) BF (X) ⊂ BG(X);
(iv) SF (X) ⊂ SG(X).

P r o o f. That (iv)⇒(ii) follows from 1.2. To show that (i)⇔(ii), it suffices
apply 0.1, 0.2 and 1.1.

1.4. Definition. We shall say that sets C,D ⊂ X are separated by a
familyA of subsets of X if there exists A ∈ A such that either C ⊂ A ⊂ X\D
or D ⊂ A ⊂ X \ C.

1.5. Theorem. Let X be a pseudocompact space and let F ∈ E(X).
A function f ∈ C(X) is continuously extendable over eF X if and only if ,
for any real numbers c < d, the sets C = f−1((−∞; c]) and D = f−1([d;∞))
are separated by SF (X).

P r o o f. Suppose that A ∈ SF (X) and C ⊂ A ⊂ X\D. Arguing similarly
to the proof of 1.2, we can show that there exist functions fi,j,k ∈ F and
real numbers ai,j,k ≤ bi,j,k such that

C ⊂
∞⋃

i=1

∞⋂
j=1

mi,j⋃
k=1

f−1
i,j,k([ai,j,k; bi,j,k]) ⊂ X \D .

Since any z-filter in X has the countable intersection property, there exist
positive integers ni and p such that

C ⊂
p⋃

i=1

ni⋂
j=1

mi,j⋃
k=1

ni⋂
n=1

f−1
i,j,k

([
ai,j,k −

1
n + 1

; bi,j,k +
1

n + 1

])
,
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D ⊂
p⋂

i=1

ni⋃
j=1

mi,j⋂
k=1

ni⋃
n=1

f−1
i,j,k

((
−∞; ai,j,k −

1
n

]
∪

[
bi,j,k +

1
n

;∞
))

.

Theorem 4 of [4] completes the proof.

1.6. Corollary. Suppose that X is pseudocompact , F ∈ E(X) and
G ⊂ C(X). Then the following conditions are equivalent :

(i) G ∈ E(X) and eF X ≤ eGX;
(ii) any two disjoint members of ZF (X) are separated by SG(X);
(iii) for any function f ∈ F and real numbers c < d, the sets f−1((−∞; c])

and f−1([d;∞)) are separated by SG(X).

P r o o f. It suffices to apply 1.5 and [13, Thm. 2]

1.7. Theorem. Let X be pseudocompact. Then a set F ⊂ C(X) belongs
to E(X) if and only if , for any closed set A ⊂ X and any x ∈ X \ A, the
sets {x} and A are separated by SF (X).

P r o o f. Consider any zero-set A ⊂ X and any x ∈ X \A. If A and {x}
are separated by SF (X) then arguing similarly to the proof of 1.5, we can
show that there exists Z ∈ ZF (X) with A ⊂ Z ⊂ X \ {x}. Now use 0.1.

1.8. Theorem. A Tikhonov space X is pseudocompact if and only if
Zα(X) 6= Zβ(X) for any αX ∈ K(X) with αX 6= βX.

P r o o f. Suppose that X is not pseudocompact. In view of [7, 3.10E]
there exists a nonempty zero-set Z in βX with Z ⊂ βX \ X. If αX is
obtained from βX by identifying the set Z with a point, then Zα(X) =
Zβ(X). Theorem 0.2 concludes the proof.

It was noticed in [12, 3.10] that Zα(X) = Zβ(X) for any αX ∈ K(X) if
and only if either |βX \ X| ≤ 1 or X is Lindelöf. Let us give an example
of a locally compact space X that is neither Lindelöf nor almost compact
(cf. [8, 6J]) but Bα(X) = Bβ(X) for any αX ∈ K(X).

1.9. Example. Consider the interval (−2;−1] with the usual topology
and the space of ordinals [0; ω1) with the order topology. Let X be their
free union. Then Bω(X) = Bβ(X) with ωX standing for the one-point
compactification.

For αX ∈ K(X), we denote by w(Sα(X)) the smallest infinite cardi-
nal κ for which there exists a family A ⊂ Sα(X) such that |A| ≤ κ and
any member of Sα(X) is obtained from A by the Souslin operation. Let
w(Bα(X)) stand for the smallest infinite cardinal κ for which there exists
A ⊂ Bα(X) such that |A| ≤ κ and Bα(X) is the σ-algebra generated by
A. Finally, let w(Zα(X)) be the smallest infinite cardinal κ for which there
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exists A ⊂ Zα(X) such that |A| ≤ κ and Zα(X) is the smallest family
containing A and closed under finite unions and countable intersections.

1.10. Theorem. For any compactification αX of a pseudocompact space
X, we have w(αX) = w(Sα(X)) = w(Bα(X)) = w(Zα(X)).

P r o o f. By [2, 4.2], there exists F ∈ E(X) with |F | ≤ w(αX) and
eF X = αX. According to 1.1, w(Zα(X)) ≤ |F | + ω = w(αX). For κ ≥ ω,
let A ⊂ Sα(X) with |A| ≤ κ be such that each member of Sα(X) is obtained
from A by the Souslin operation. For A ∈ A, choose a collection HA =
{HA(σ|n) : σ ∈ Nω and n ∈ N} ⊂ Zα(X) with A =

⋃
σ∈Nω

⋂∞
n=1 HA(σ|n).

To each H ∈ HA assign some gA,H ∈ Cα(X) such that H = g−1
A,H(0).

The collection G = {gA,H : A ∈ A and H ∈ HA} satisfies |G| ≤ κ and
SG(X) = Sα(X). In view of 1.3, G ∈ E(X) and eGX = αX. Hence
w(αX) ≤ w(Sα(X)). The obvious inequalities w(Sα(X)) ≤ w(Bα(X)) ≤
w(Zα(X)) complete the proof.

2. Multiplication of Borel sets. Let X and Y be Tikhonov spaces.
For αX ∈ K(X) and γY ∈ K(Y ), denote by α×γ(X×Y ) the compactifica-
tion αX×γY of X×Y . If f ∈ C(X) and g ∈ C(Y ), we put fX(x, y) = f(x)
and gY (x, y) = g(y) for any (x, y) ∈ X × Y .

2.1. Lemma. If F ∈ E(X) generates αX and G ∈ E(Y ) generates γY ,
then H = {fX : f ∈ F} ∪ {gY : g ∈ G} generates αX × γY .

P r o o f. By [3, 2.3], it suffices to observe that H ⊂ Cα×γ(X × Y ), and
Hα×γ separates points of αX × γY .

2.2. Theorem. For any αX ∈ K(X) and γY ∈ K(Y ), we have Bα(X)×
Bγ(Y ) = Bα×γ(X × Y ).

P r o o f. Note that, in the light of 1.1 and 2.1, the σ-algebra Bα×γ(X× Y )
is generated by all the sets f−1

X (0) ∩ g−1
Y (0) = f−1(0) × g−1(0) with f ∈

Cα(X) and g ∈ Cγ(Y ).

It was shown in [1] that if X×Y is either Lindelöf or pseudocompact, then
Bβ(X)×Bβ(Y ) = Bβ(X × Y ). Observe that this fact follows immediately
from Glicksberg’s theorem (cf. [7, 3.12.20(c)]), Theorem 3.10 of [12] and our
Theorem 2.2.

2.3. Theorem. Suppose that X is a countably compact space such that
B(X) ⊂ Sβ(X). Then X is perfectly normal.

P r o o f. In view of 1.2, each closed subset of X is a zero-set, which
implies the perfect normality of X.

2.4. Theorem. Let X and Y be perfectly normal pseudocompact spaces.
Then B(X)×B(Y ) = B(X × Y ) if and only if X × Y is perfectly normal.
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P r o o f. Since X is first-countable, the space X×Y is countably compact
(cf. [7, 3.10.15]). It follows from 2.2 and Glicksberg’s theorem that B(X)×
B(Y ) = Bβ(X × Y ). Therefore our proposition is a consequence of 2.3.

It is well known that every countably compact Hausdorff space with
diagonal of type Gδ is metrizable (cf. [5]); however, a pseudocompact perfect
space with a Gδ diagonal need not be metrizable (cf. [8, 5I]). In the case of
pseudocompactness we get the following metrization theorem:

2.5. Theorem. A pseudocompact space X is metrizable if and only if
X ×X \∆ ∈ Sβ(X ×X), where ∆ = {(x, y) ∈ X ×X : x = y}.

P r o o f. Let X × X \∆ ∈ Sβ(X × X). It follows from 1.2 that ∆ is a
zero-set in X×X; thus X is first-countable. Hence X×X is pseudocompact
(cf. [7, 3.10.28]). Consequently, ∆ ∈ Zβ×β(X × X). By 1.1 and 2.1, ∆ =⋂∞

i=1

⋃ni

j=1 f−1
i,j (0) × g−1

i,j (0) for some fi,j , gi,j ∈ C(X). Then the family
H = {fi,j , gi,j : i ∈ N, j ∈ {1, . . . , ni}} separates points of X, which implies
the metrizability of X.

2.6. Corollary. Let X be a perfectly normal pseudocompact space.
Then B(X ×X) = B(X)×B(X) if and only if X is metrizable.

Denote by P (Y ) the collection of all subsets of Y . There exists a pseu-
docompact space Z such that |Z| = 2ω, B(Z) = P (Z) and B(Z × Z) =
P (Z×Z), any subset of Z is of type Gδ but Z fails to be countably compact
(cf. [8, 5I]). If we assume CH then B(Z × Z) = B(Z)×B(Z) (cf. [9, Thm.
12.5(ii), p. 73] or [10, Thm. 2]). Under the assumption of the negation of CH,
it depends on one’s set theory whether B(Z×Z) = B(Z)×B(Z) (cf. [9, Thm.
12.8, p. 76] and [6]). The above remarks show that, in Corollary 2.6, the
assumption of perfect normality cannot be weakened to perfectness.
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