# C OLLOQUIUM MATHEMATICUM <br> VOL. LXIII $1992 \quad$ FASC. 2 

# PSEUDOCOMPACTNESS - FROM COMPACTIFICATIONS <br> TO MULTIPLICATION OF BOREL SETS 

BY
ELIZA W A JCH (ŁÓDŹ)
0. Introduction. All the spaces considered below are assumed to be completely regular and Hausdorff. For a space $X$, denote by $K(X)$ the family of all compactifications of $X ; \beta X$ stands for the Čech-Stone compactification. If $\alpha X \in K(X)$, let $C_{\alpha}(X)$ stand for the set of those functions $f \in C^{*}(X)$ which are continuously extendable over $\alpha X$. For $f \in C_{\alpha}(X)$, let $f^{\alpha}$ be the continuous extension of $f$ over $\alpha X$ and, for $F \subset C_{\alpha}(X)$, let $F^{\alpha}=\left\{f^{\alpha}: f \in F\right\}$.

Suppose that $F \subset C^{*}(X)$. Define $Z_{F}(X)$ as the family of all sets of the form $\bigcap_{i=1}^{\infty} \bigcup_{j=1}^{n_{i}} f_{i, j}^{-1}\left(\left[a_{i, j} ; b_{i, j}\right]\right)$ where $f_{i, j} \in F$ and $a_{i, j} \leq b_{i, j}\left(a_{i, j}, b_{i, j} \in \mathbb{R}\right)$ for $i \in \mathbb{N}$ and $j=1, \ldots, n_{i}\left(n_{i} \in \mathbb{N}\right)$. Denote by $B_{F}(X)$ the smallest $\sigma$-algebra of subsets of $X$, containing $Z_{F}(X)$. Let $S_{F}(X)$ stand for the collection of all sets that are obtained from $Z_{F}(X)$ by the Souslin operation (cf. [11]). For $\alpha X \in K(X)$, put $Z_{\alpha}(X)=Z_{F}(X), B_{\alpha}(X)=B_{F}(X)$ and $S_{\alpha}(X)=S_{F}(X)$ with $F=C_{\alpha}(X)$.

Let $\mathcal{E}(X)$ be the family of all $F \subset C^{*}(X)$ such that the diagonal mapping $e_{F}=\Delta_{f \in F} f$ is a homeomorphic embedding. If $F \in \mathcal{E}(X)$, then the closure of $e_{F}(X)$ in $\mathbb{R}^{|F|}$ is a compactification of $X$ called generated by $F$ and denoted by $e_{F} X$. By a slight modification of the proof of Theorem 6 of [13] we get
0.1. Theorem. $F \subset C^{*}(X)$ is in $\mathcal{E}(X)$ if and only if $Z_{F}(X)$ is a closed base for $X$.

In the light of 0.1 , if $\alpha X \in K(X)$ and $F \subset C^{*}(X)$ are such that $Z_{F}(X)=$ $Z_{\alpha}(X)$, then $F \in \mathcal{E}(X)$. Unfortunately, from $Z_{F}(X)=Z_{\alpha}(X)$ we cannot deduce that $\alpha X$ is generated by $F$. For instance, if $X$ is Lindelöf, we have $Z_{\alpha}(X)=Z_{\beta}(X)$ for any $\alpha X \in K(X)$ (cf. [12, 3.10]). However, it was shown in $[12,3.4]$ that any compactification $\alpha X$ of a pseudocompact space $X$ is the Wallman-type compactification which arises from the normal base $Z_{\alpha}(X)$. This yields
0.2. Theorem. For any compactifications $\alpha X$ and $\gamma X$ of a pseudocompact space $X$, we have: $\alpha X \leq \gamma X$ if and only if $Z_{\alpha}(X) \subset Z_{\gamma}(X)$.

The major portion of our work deals with describing, in terms of $Z_{F}(X)$ and $B_{F}(X)$, as well as of $S_{F}(X)$, all the sets $F \subset C^{*}(X)$ which generate a fixed compactification of $X$. Our methods lead us to the problem of multiplying Borel sets. Namely, let $B(X)$ denote the smallest $\sigma$-algebra containing all open subsets of $X$. For $\sigma$-algebras $\mathcal{A}_{X}$ and $\mathcal{A}_{Y}$ of subsets of spaces $X$ and $Y$, respectively, let $\mathcal{A}_{X} \times \mathcal{A}_{Y}$ be the smallest $\sigma$-algebra of subsets of $X \times Y$ which contains all rectangles $C \times D$ with $C \in \mathcal{A}_{X}$ and $D \in \mathcal{A}_{Y}$. If $B(X \times Y)=B(X) \times B(Y)$, then we say that the Borel sets of $X$ and $Y$ multiply. We shall finish the paper with answering the question when the Borel sets of perfectly normal pseudocompact spaces multiply.

## 1. Subsets of $C^{*}(X)$ generating compactifications

1.1. Lemma. For any $\alpha X \in K(X)$ and $F \in \mathcal{E}(X)$ with $e_{F} X=\alpha X$, we have $Z_{F}(X)=Z_{\alpha}(X)$.

Proof. It suffices to show that if $A=f^{-1}(0)$ where $f \in C_{\alpha}(X)$ then $A \in Z_{F}(X)$. It follows from [13, Prop. 2 and Thm. 2] that, for any $i \in \mathbb{N}$, there exist $f_{i, j, k} \in F$ and real numbers $a_{i, j, k}<b_{i, j, k} \leq c_{i, j, k}<d_{i, j, k}(j=$ $\left.1, \ldots, m_{i} ; k=1, \ldots, n_{i}\right)$ such that

$$
\begin{aligned}
f^{-1}\left(\left[-\frac{1}{i+1} ; \frac{1}{i+1}\right]\right) & \subset B_{i}=\bigcup_{j=1}^{m_{i}} \bigcap_{k=1}^{n_{i}} f_{i, j, k}^{-1}\left(\left[b_{i, j, k} ; c_{i, j, k}\right]\right) \\
f^{-1}\left(\left(-\infty ;-\frac{1}{i}\right] \cup\left[\frac{1}{i} ; \infty\right)\right) & \subset \bigcap_{j=1}^{m_{i}} \bigcup_{k=1}^{n_{i}} f_{i, j, k}^{-1}\left(\left(-\infty ; a_{i, j, k}\right] \cup\left[d_{i, j, k} ; \infty\right)\right) .
\end{aligned}
$$

Then $A=\bigcap_{i=1}^{\infty} B_{i}$, hence $A \in Z_{F}(X)$ because $B_{i} \in Z_{F}(X)$ for $i \in \mathbb{N}$.
1.2. Lemma. Let $F \subset C^{*}(X)$ and $A \subset X$. Suppose that either $A$ is pseudocompact, or $X$ is pseudocompact and $A \in Z_{\beta}(X)$. Then $X \backslash A \in$ $S_{F}(X)$ if and only if $A \in Z_{F}(X)$.

Proof. Assume that $W=X \backslash A$ has the Souslin representation of the form $W=\bigcup_{\sigma \in \mathbb{N}^{\omega}} \bigcap_{n=1}^{\infty} A(\sigma \mid n)$ with $A(\sigma \mid n) \in Z_{F}(X)$ for all $\sigma \in \mathbb{N}^{\omega}$ and $n \in$ $\mathbb{N}$ (cf. [11]). Since any $z$-filter in a pseudocompact space has the countable intersection property (cf. $[8,5 \mathrm{H}]$ ), for any $\sigma \in \mathbb{N}^{\omega}$ there exists $m \in \mathbb{N}$ such that $\bigcap_{n=1}^{m} A(\sigma \mid n) \subset W$. Put $n(\sigma)=\min \left\{m \in \mathbb{N}: \bigcap_{n=1}^{m} A(\sigma \mid n) \subset W\right\}$ and $T_{m}=\left\{\sigma \in \mathbb{N}^{\omega}: n(\sigma)=m\right\}$ for $\sigma \in \mathbb{N}^{\omega}$ and $m \in \mathbb{N}$. Let $M=\{m \in \mathbb{N}$ : $\left.T_{m} \neq \emptyset\right\}$. Then

$$
W=\bigcup_{m \in M} \bigcup_{\sigma \in T_{m}} \bigcap_{n=1}^{m} A(\sigma \mid n)
$$

This implies that $W$ is a countable union of members of $Z_{F}(X)$. Let

$$
W=\bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=1}^{n_{i, j}} f_{i, j, k}^{-1}\left(\left[a_{i, j, k} ; b_{i, j, k}\right]\right)
$$

with $f_{i, j, k} \in F$ and $a_{i, j, k} \leq b_{i, j, k}\left(a_{i, j, k}, b_{i, j, k} \in \mathbb{R}\right)$. Using the countable intersection property of $z$-filters in pseudocompact spaces we deduce that for any $i \in \mathbb{N}$, there exists $m_{i} \in \mathbb{N}$ with

$$
A \subset A_{i}=\bigcup_{j=1}^{m_{i}} \bigcap_{k=1}^{n_{i, j}} \bigcup_{m=1}^{m_{i}} f_{i, j, k}^{-1}\left(\left(-\infty ; a_{i, j, k}-\frac{1}{m}\right] \cup\left[b_{i, j, k}+\frac{1}{m} ; \infty\right)\right)
$$

Then $A=\bigcap_{i=1}^{\infty} A_{i}$, so $A \in Z_{F}(X)$.
1.3. Theorem. Let $X$ be a pseudocompact space and let $F \in \mathcal{E}(X)$. For any $G \subset C(X)$ the following conditions are equivalent:
(i) $G \in \mathcal{E}(X)$ and $e_{F} X \leq e_{G} X$;
(ii) $Z_{F}(X) \subset Z_{G}(X)$;
(iii) $B_{F}(X) \subset B_{G}(X)$;
(iv) $S_{F}(X) \subset S_{G}(X)$.

Proof. That (iv) $\Rightarrow$ (ii) follows from 1.2. To show that (i) $\Leftrightarrow$ (ii), it suffices apply $0.1,0.2$ and 1.1 .
1.4. Definition. We shall say that sets $C, D \subset X$ are separated by a family $\mathcal{A}$ of subsets of $X$ if there exists $A \in \mathcal{A}$ such that either $C \subset A \subset X \backslash D$ or $D \subset A \subset X \backslash C$.
1.5. Theorem. Let $X$ be a pseudocompact space and let $F \in \mathcal{E}(X)$. A function $f \in C(X)$ is continuously extendable over $e_{F} X$ if and only if, for any real numbers $c<d$, the sets $C=f^{-1}((-\infty ; c])$ and $D=f^{-1}([d ; \infty))$ are separated by $S_{F}(X)$.

Proof. Suppose that $A \in S_{F}(X)$ and $C \subset A \subset X \backslash D$. Arguing similarly to the proof of 1.2 , we can show that there exist functions $f_{i, j, k} \in F$ and real numbers $a_{i, j, k} \leq b_{i, j, k}$ such that

$$
C \subset \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} \bigcup_{k=1}^{m_{i, j}} f_{i, j, k}^{-1}\left(\left[a_{i, j, k} ; b_{i, j, k}\right]\right) \subset X \backslash D
$$

Since any $z$-filter in $X$ has the countable intersection property, there exist positive integers $n_{i}$ and $p$ such that

$$
C \subset \bigcup_{i=1}^{p} \bigcap_{j=1}^{n_{i}} \bigcup_{k=1}^{m_{i, j}} \bigcap_{n=1}^{n_{i}} f_{i, j, k}^{-1}\left(\left[a_{i, j, k}-\frac{1}{n+1} ; b_{i, j, k}+\frac{1}{n+1}\right]\right)
$$

$$
D \subset \bigcap_{i=1}^{p} \bigcup_{j=1}^{n_{i}} \bigcap_{k=1}^{m_{i, j}} \bigcup_{n=1}^{n_{i}} f_{i, j, k}^{-1}\left(\left(-\infty ; a_{i, j, k}-\frac{1}{n}\right] \cup\left[b_{i, j, k}+\frac{1}{n} ; \infty\right)\right)
$$

Theorem 4 of [4] completes the proof.
1.6. Corollary. Suppose that $X$ is pseudocompact, $F \in \mathcal{E}(X)$ and $G \subset C(X)$. Then the following conditions are equivalent:
(i) $G \in \mathcal{E}(X)$ and $e_{F} X \leq e_{G} X$;
(ii) any two disjoint members of $Z_{F}(X)$ are separated by $S_{G}(X)$;
(iii) for any function $f \in F$ and real numbers $c<d$, the sets $f^{-1}((-\infty ; c])$ and $f^{-1}([d ; \infty))$ are separated by $S_{G}(X)$.

Proof. It suffices to apply 1.5 and [13, Thm. 2]
1.7. ThEOREM. Let $X$ be pseudocompact. Then a set $F \subset C(X)$ belongs to $\mathcal{E}(X)$ if and only if, for any closed set $A \subset X$ and any $x \in X \backslash A$, the sets $\{x\}$ and $A$ are separated by $S_{F}(X)$.

Proof. Consider any zero-set $A \subset X$ and any $x \in X \backslash A$. If $A$ and $\{x\}$ are separated by $S_{F}(X)$ then arguing similarly to the proof of 1.5 , we can show that there exists $Z \in Z_{F}(X)$ with $A \subset Z \subset X \backslash\{x\}$. Now use 0.1.
1.8. Theorem. A Tikhonov space $X$ is pseudocompact if and only if $Z_{\alpha}(X) \neq Z_{\beta}(X)$ for any $\alpha X \in K(X)$ with $\alpha X \neq \beta X$.

Proof. Suppose that $X$ is not pseudocompact. In view of [7, 3.10E] there exists a nonempty zero-set $Z$ in $\beta X$ with $Z \subset \beta X \backslash X$. If $\alpha X$ is obtained from $\beta X$ by identifying the set $Z$ with a point, then $Z_{\alpha}(X)=$ $Z_{\beta}(X)$. Theorem 0.2 concludes the proof.

It was noticed in [12, 3.10] that $Z_{\alpha}(X)=Z_{\beta}(X)$ for any $\alpha X \in K(X)$ if and only if either $|\beta X \backslash X| \leq 1$ or $X$ is Lindelöf. Let us give an example of a locally compact space $X$ that is neither Lindelöf nor almost compact (cf. [8, 6J]) but $B_{\alpha}(X)=B_{\beta}(X)$ for any $\alpha X \in K(X)$.
1.9. Example. Consider the interval $(-2 ;-1]$ with the usual topology and the space of ordinals $\left[0 ; \omega_{1}\right)$ with the order topology. Let $X$ be their free union. Then $B_{\omega}(X)=B_{\beta}(X)$ with $\omega X$ standing for the one-point compactification.

For $\alpha X \in K(X)$, we denote by $w\left(S_{\alpha}(X)\right)$ the smallest infinite cardinal $\kappa$ for which there exists a family $\mathcal{A} \subset S_{\alpha}(X)$ such that $|\mathcal{A}| \leq \kappa$ and any member of $S_{\alpha}(X)$ is obtained from $\mathcal{A}$ by the Souslin operation. Let $w\left(B_{\alpha}(X)\right)$ stand for the smallest infinite cardinal $\kappa$ for which there exists $\mathcal{A} \subset B_{\alpha}(X)$ such that $|\mathcal{A}| \leq \kappa$ and $B_{\alpha}(X)$ is the $\sigma$-algebra generated by $\mathcal{A}$. Finally, let $w\left(Z_{\alpha}(X)\right)$ be the smallest infinite cardinal $\kappa$ for which there
exists $\mathcal{A} \subset Z_{\alpha}(X)$ such that $|\mathcal{A}| \leq \kappa$ and $Z_{\alpha}(X)$ is the smallest family containing $\mathcal{A}$ and closed under finite unions and countable intersections.
1.10. Theorem. For any compactification $\alpha X$ of a pseudocompact space $X$, we have $w(\alpha X)=w\left(S_{\alpha}(X)\right)=w\left(B_{\alpha}(X)\right)=w\left(Z_{\alpha}(X)\right)$.

Proof. By [2, 4.2], there exists $F \in \mathcal{E}(X)$ with $|F| \leq w(\alpha X)$ and $e_{F} X=\alpha X$. According to 1.1, $w\left(Z_{\alpha}(X)\right) \leq|F|+\omega=w(\alpha X)$. For $\kappa \geq \omega$, let $\mathcal{A} \subset S_{\alpha}(X)$ with $|\mathcal{A}| \leq \kappa$ be such that each member of $S_{\alpha}(X)$ is obtained from $\mathcal{A}$ by the Souslin operation. For $A \in \mathcal{A}$, choose a collection $\mathcal{H}_{A}=$ $\left\{H_{A}(\sigma \mid n): \sigma \in \mathbb{N}^{\omega}\right.$ and $\left.n \in \mathbb{N}\right\} \subset Z_{\alpha}(X)$ with $A=\bigcup_{\sigma \in \mathbb{N}^{\omega}} \bigcap_{n=1}^{\infty} H_{A}(\sigma \mid n)$. To each $H \in \mathcal{H}_{A}$ assign some $g_{A, H} \in C_{\alpha}(X)$ such that $H=g_{A, H}^{-1}(0)$. The collection $G=\left\{g_{A, H}: A \in \mathcal{A}\right.$ and $\left.H \in \mathcal{H}_{A}\right\}$ satisfies $|G| \leq \kappa$ and $S_{G}(X)=S_{\alpha}(X)$. In view of 1.3, $G \in \mathcal{E}(X)$ and $e_{G} X=\alpha X$. Hence $w(\alpha X) \leq w\left(S_{\alpha}(X)\right)$. The obvious inequalities $w\left(S_{\alpha}(X)\right) \leq w\left(B_{\alpha}(X)\right) \leq$ $w\left(Z_{\alpha}(X)\right)$ complete the proof.
2. Multiplication of Borel sets. Let $X$ and $Y$ be Tikhonov spaces. For $\alpha X \in K(X)$ and $\gamma Y \in K(Y)$, denote by $\alpha \times \gamma(X \times Y)$ the compactification $\alpha X \times \gamma Y$ of $X \times Y$. If $f \in C(X)$ and $g \in C(Y)$, we put $f_{X}(x, y)=f(x)$ and $g_{Y}(x, y)=g(y)$ for any $(x, y) \in X \times Y$.
2.1. Lemma. If $F \in \mathcal{E}(X)$ generates $\alpha X$ and $G \in \mathcal{E}(Y)$ generates $\gamma Y$, then $H=\left\{f_{X}: f \in F\right\} \cup\left\{g_{Y}: g \in G\right\}$ generates $\alpha X \times \gamma Y$.

Proof. By [3, 2.3], it suffices to observe that $H \subset C_{\alpha \times \gamma}(X \times Y)$, and $H^{\alpha \times \gamma}$ separates points of $\alpha X \times \gamma Y$.
2.2. Theorem. For any $\alpha X \in K(X)$ and $\gamma Y \in K(Y)$, we have $B_{\alpha}(X) \times$ $B_{\gamma}(Y)=B_{\alpha \times \gamma}(X \times Y)$.

Proof. Note that, in the light of 1.1 and 2.1, the $\sigma$-algebra $B_{\alpha \times \gamma}(X \times Y)$ is generated by all the sets $f_{X}^{-1}(0) \cap g_{Y}^{-1}(0)=f^{-1}(0) \times g^{-1}(0)$ with $f \in$ $C_{\alpha}(X)$ and $g \in C_{\gamma}(Y)$.

It was shown in [1] that if $X \times Y$ is either Lindelöf or pseudocompact, then $B_{\beta}(X) \times B_{\beta}(Y)=B_{\beta}(X \times Y)$. Observe that this fact follows immediately from Glicksberg's theorem (cf. [7, 3.12.20(c)]), Theorem 3.10 of [12] and our Theorem 2.2.
2.3. Theorem. Suppose that $X$ is a countably compact space such that $B(X) \subset S_{\beta}(X)$. Then $X$ is perfectly normal.

Proof. In view of 1.2 , each closed subset of $X$ is a zero-set, which implies the perfect normality of $X$.
2.4. Theorem. Let $X$ and $Y$ be perfectly normal pseudocompact spaces. Then $B(X) \times B(Y)=B(X \times Y)$ if and only if $X \times Y$ is perfectly normal.

Proof. Since $X$ is first-countable, the space $X \times Y$ is countably compact (cf. [7, 3.10.15]). It follows from 2.2 and Glicksberg's theorem that $B(X) \times$ $B(Y)=B_{\beta}(X \times Y)$. Therefore our proposition is a consequence of 2.3 .

It is well known that every countably compact Hausdorff space with diagonal of type $G_{\delta}$ is metrizable (cf. [5]); however, a pseudocompact perfect space with a $G_{\delta}$ diagonal need not be metrizable (cf. $[8,5 \mathrm{I}]$ ). In the case of pseudocompactness we get the following metrization theorem:
2.5. Theorem. A pseudocompact space $X$ is metrizable if and only if $X \times X \backslash \Delta \in S_{\beta}(X \times X)$, where $\Delta=\{(x, y) \in X \times X: x=y\}$.

Proof. Let $X \times X \backslash \Delta \in S_{\beta}(X \times X)$. It follows from 1.2 that $\Delta$ is a zero-set in $X \times X$; thus $X$ is first-countable. Hence $X \times X$ is pseudocompact (cf. [7, 3.10.28]). Consequently, $\Delta \in Z_{\beta \times \beta}(X \times X)$. By 1.1 and 2.1, $\Delta=$ $\bigcap_{i=1}^{\infty} \bigcup_{j=1}^{n_{i}} f_{i, j}^{-1}(0) \times g_{i, j}^{-1}(0)$ for some $f_{i, j}, g_{i, j} \in C(X)$. Then the family $H=\left\{f_{i, j}, g_{i, j}: i \in \mathbb{N}, j \in\left\{1, \ldots, n_{i}\right\}\right\}$ separates points of $X$, which implies the metrizability of $X$.
2.6. Corollary. Let $X$ be a perfectly normal pseudocompact space. Then $B(X \times X)=B(X) \times B(X)$ if and only if $X$ is metrizable.

Denote by $P(Y)$ the collection of all subsets of $Y$. There exists a pseudocompact space $Z$ such that $|Z|=2^{\omega}, B(Z)=P(Z)$ and $B(Z \times Z)=$ $P(Z \times Z)$, any subset of $Z$ is of type $G_{\delta}$ but $Z$ fails to be countably compact (cf. [8, 5I]). If we assume CH then $B(Z \times Z)=B(Z) \times B(Z)$ (cf. [9, Thm. $12.5(\mathrm{ii})$, p. 73] or [10, Thm. 2]). Under the assumption of the negation of CH , it depends on one's set theory whether $B(Z \times Z)=B(Z) \times B(Z)$ (cf. [9, Thm. 12.8 , p. 76] and [6]). The above remarks show that, in Corollary 2.6, the assumption of perfect normality cannot be weakened to perfectness.

## REFERENCES

[1] A. G. Babiker and J. D. Knowles, Functions and measures on product spaces, Mathematika 32 (1985), 60-67.
[2] B. J. Ball and S. Yokura, Compactifications determined by subsets of $C^{*}(X)$, Topology Appl. 13 (1982), 1-13.
[3] -, -, Compactifications determined by subsets of $C^{*}(X)$, II, ibid. 15 (1983), 1-6.
[4] J. L. Blasco, Hausdorff compactifications and Lebesgue sets, ibid., 111-117.
[5] J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 993-998.
[6] K. Ciesielski and F. Galvin, Cylinder problem, Fund. Math. 127 (1987), 171-176.
[7] R. Engelking, General Topology, PWN, Warszawa 1977.
[8] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York 1976.
[9] K. Kunen, Inaccessibility properties of cardinals, PhD Thesis, Stanford University, Palo Alto 1968.
[10] B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614-617.
[11] C. A. Rogers and J. E. Jayne, K-analytic sets, in: Analytic Sets, Academic Press, London 1980, 1-181.
[12] E. Wajch, Complete rings of functions and Wallman-Frink compactifications, Colloq. Math. 56 (1988), 281-290.
[13] -, Compactifications and L-separation, Comment. Math. Univ. Carolinae 29 (1988), 477-484.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF LÓDŹ
BANACHA 22
90-238 LÓDŹ, POLAND

