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Let Lp
[−1,1], 1 ≤ p < ∞, be the class of real p-integrable functions on

[−1, 1], L∞[−1,1] = C[−1,1] the class of all real continuous functions on [−1, 1].
Denote by Cr

[−1,1] the space of real functions on [−1, 1] which have r contin-
uous derivatives, and by C∞

[−1,1] the space of real functions on [−1, 1] which
are infinitely differentiable.

For f ∈ Lp
[−1,1], let En(f)p be the best approximation to f by polyno-

mials of degree n in Lp space.
Our works [1], [5] concern the divergence phenomena of trigonometric

Lagrange interpolation approximations in comparison with best approxima-
tions in Lp space; the paper [1] contains the following theorem:

Let 1 ≤ p < ∞. Suppose that {Xn}, Xn = {xn,j}2n
j=0, is a given sequence

of real distinct (by a 6= b we mean that a 6≡ b (mod 2π)) nodes and {λn}
is any given positive decreasing sequence. Then there exists an infinitely
differentiable function f with period 2π such that

lim sup
n→∞

‖f − LX
n (f)‖Lp

[0,2π]

λ−1
n E∗

n(f)p

> 0 ,

where LX
n (f, x) is the n-th trigonometric Lagrange interpolating polynomial

of f(x) with nodes Xn and E∗
n(f)p is the best approximation to f by trigono-

metric polynomials of degree n.
Here and throughout, we write

‖f‖Lp

[a,b]
=

( b∫
a

|f(x)|pdx
)1/p

, 1 ≤ p < ∞ ,

‖f‖[a,b] = ‖f‖L∞[a,b]
= max

a≤x≤b
|f(x)| ,
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‖f‖Lp = ‖f‖Lp

[−1,1]
, 1 ≤ p < ∞ .

In spite of this counterexample, there do exist several positive results
in this direction. For example, in [2], V. P. Motorny̆ı discussed the rate
of convergence of the Ln(f, x) to f(x) in L1, expressed in terms of the
sequence of best approximations of the function in L1; he proved that if f is
absolutely continuous with period 2π, f ′ ∈ L1

[0,2π], and E0
n(f ′)1 is the best

approximation to f ′ by trigonometric polynomials of degree n with mean
value zero in L1, then

‖f − Ln(f)‖L1
[0,2π]

= O(n−1 log nE0
n(f ′)1) ,

where Ln(f, x) is the nth trigonometric Lagrange interpolating polynomial
to f with nodes xn,j = 2jπ/(2n + 1) for j = 0, 1, . . . , 2n.

In Lp space for 1 < p < ∞, K. I. Oskolkov [3] showed the following better
estimate. Let f be absolutely continuous with period 2π, and f ′ ∈ Lp

[0,2π]

for 1 < p < ∞; then

‖f − Ln(f)‖Lp

[0,2π]
= O(n−1E∗

n(f ′)p) .

One might ask what happens to other interpolation operators? More
generally, to “interpolation type” operators? In this paper, by “interpolation
type” operators we mean operators Ir

n(f,X, x) of the form

Ir
n(f,X, x) =

r∑
k=0

nk∑
j=1

f (k)(xk
n,j)l

k
n,j(x)

for f ∈ Cr
[−1,1], where Xn =

⋃r
k=0{xk

n,j}
nk
j=1 is a sequence of real nodes

within [−1, 1], {xr
n,j} 6⊆ {−1, 1},

r∑
k=0

nj = n + 1 ,

and lkn,j(x), j = 1, . . . , nk, k = 0, 1, . . . , r, are polynomials of degree not
greater than n. Furthermore, if f is a polynomial of degree ≤ n, then
Ir
n(f,X, x) = f(x). In particular, if r = 0,

l0n,j(x) =
Ωn(x)

Ω′
n(xn,j)(x− xn,j)

, Ωn(x) =
n+1∏
k=1

(x− xn,k) ,

then Ir
n(f,X, x) becomes the nth Lagrange interpolating polynomial with

nodes {xn,j}n+1
j=1 ; if r = 1,

l0m,j(x) =
(

1− Ω′′
n(xn,j)

Ω′
n(xn,j)

(x− xn,j)
)(

Ωn(x)
Ω′

n(xn,j)(x− xn,j)

)2

,
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l1m,j(x) = (x− xn,j)
(

Ωn(x)
Ω′

n(xn,j)(x− xn,j)

)2

,

then Ir
n(f,X, x) becomes the Hermite–Fejér interpolating polynomial of de-

gree m = 2n + 1 with nodes {xn,j}n+1
j=1 ; and so on.

In the present paper we refine the idea used in [1] and prove the following

Theorem. Let 1 ≤ p < ∞. Suppose that {Xn} is a given sequence of
real distinct nodes within [−1, 1], and {λn} is any given positive decreasing
sequence. Then there exists a function f ∈ C∞

[−1,1] such that

lim sup
n→∞

‖f − Ir
n(f,X)‖Lp

λ−1
n En(f (r))p

> 0 .

P r o o f. Without loss of generality assume that −1 < xr
n,1 < 1. Fix n.

Considering the nonnegative function

gn(x) = (1 + x)(1− x)(1−xr
n,1)/(1+xr

n,1) ,

we note that gn(x) strictly increases on [−1, xr
n,1] and strictly decreases on

[xr
n,1, 1]; accordingly we can choose a sufficiently large natural number Tn

such that for all x in [−1, 1] \ (xr
n,1 − δn, xr

n,1 + δn) and all m ≥ Tn,

gm
n (x) ≤ 1

2n
max

1≤j≤nr

‖lrn,j‖−1
Lp ηngm

n (xr
n,1) ,

where
δn := min

2≤j≤nr

|xr
n,j − xr

n,1| , ηn := ‖lrn,1‖Lp .

In particular, for all 2 ≤ j ≤ nr,

(1) gm
n (xr

n,j) ≤
1
2n

max
1≤j≤nr

‖lrn,j‖−1
Lp ηngm

n (xr
n,1) .

Let Nn be a natural number not less than Tn, and

N∗
n =

1− xr
n,1

1 + xr
n,1

Nn .

Write

hn(x) = g−Nn
n (xr

n,1)
x∫

−1

dt1

t1∫
−1

dt2 . . .

tr−1∫
−1

gNn
n (tr) dtr .

Then hn ∈ Cr
[−1,1] and we clearly have

(2) ‖h(r)
n ‖ = h(r)

n (xr
n,1) = 1 ,

and for 2 ≤ j ≤ nr, by (1),

(3) 0 ≤ h(r)
n (xr

n,j) ≤
1
2n

ηn max
1≤j≤nr

‖lrn,j‖−1
Lp .
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On the other hand, a calculation gives

‖gNn
n ‖Lp = 2Nn+N∗n+1/p

(
Γ (Nnp + 1)Γ (N∗

np + 1)
Γ (Nnp + N∗

np + 2)

)1/p

≤ CgNn
n (xr

n,1)N
−1/(2p)
n ,

where here and throughout the paper, C always indicates a positive constant
independent of n which may have different values in different places. So

(4) ‖h(r)
n ‖Lp ≤ CN−1/(2p)

n ,

and for 0 ≤ s ≤ r − 1,

(5) ‖h(s)
n ‖ ≤ 2r−1‖h(r)

n ‖L1 ≤ CN−1/2
n .

We now establish that

(6) ‖hn − Ir
n(hn, X)‖Lp ≥ 1

2ηn − Cn%nN
−1/(2p)
n ,

where
%n := max

1≤j≤nk, 0≤k≤r−1
{1, ‖lkn,j‖Lp} .

In fact, from the definition,

Ir
n(hn, X, x) =

r∑
k=0

nk∑
j=1

h(k)
n (xk

n,j)l
k
n,j(x) .

By (2), (3) and (5),

‖hn − Ir
n(hn, X)‖Lp ≥ ηn −

nr∑
j=2

h(r)
n (xr

n,j)‖lrn,j‖Lp

−
r−1∑
k=0

nk∑
j=1

h(k)
n (xk

n,j)‖lkn,j‖Lp − ‖hn‖Lp

≥ 1
2ηn − Cn%nN

−1/(2p)
n ,

thus (6) is proved. Without loss suppose that λn ≤ 1. Now choose

Nn = [λ−2p
n n4p(4%2p

n η−2p
n + 1) + Tn] .

Then for sufficiently large n, (6) becomes

(7) ‖hn − Ir
n(hn, X)‖Lp ≥ 1

4ηn ,

and (4) becomes

(8) ‖h(r)
n ‖Lp ≤ Cλnηn .

Because hn ∈ Cr
[−1,1], select an algebraic polynomial f∗n with sufficiently

large degree Mn ≥ n such that (cf., for example, A. F. Timan [4]) for
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0 ≤ s ≤ r,

(9) ‖h(s)
n − (f∗n)(s)‖ ≤ n−1ηnλn(1 + ‖Ir

n‖)−1 ,

where for bounded operators B on C[−1,1],

‖B‖ := sup
f∈C[−1,1], ‖f‖=1

{‖Bf‖} .

Hence by (8) and (9),

‖(f∗n)(r)‖Lp ≤ ‖(f∗n)(r) − h(r)
n ‖+ ‖h(r)

n ‖Lp

≤ n−1ηnλn + Cηnλn ≤ Cηnλn ,

and similarly, from (7) and (9),

‖f∗n − Ir
n(f∗n, X)‖Lp ≥ ‖hn − Ir

n(hn, X)‖Lp − ‖f∗n − hn‖
− ‖Ir

n(hn, X)− Ir
n(f∗n, X)‖

≥ Cηn − n−1ηnλn(‖Ir
n‖+ 1)−1(1 + ‖Ir

n‖) ≥ Cηn

for large enough n. Set fn(x) = η−1
n f∗n(x); we thus have

‖f (r)
n ‖Lp = O(λn) ,(10)

‖fn − Ir
n(fn, X)‖Lp ≥ C .(11)

Select a sequence {mj} by induction. Let m1 = 4r. After mj , choose

(12) mj+1 = [(M∗
mj

)2λ−1/mj
mj

(‖Ir
mj
‖+ 1) + mj + 1] ,

where M∗
n = Mn(η2/n

n + 1). Define

f(x) =
∞∑

j=1

(M∗
mj

)−mj fmj (x) .

Clearly f ∈ C∞
[−1,1] (since fmj

is a polynomial of degree Mmj
) in view of (2)

and (9). Together with (12), (11) implies that

‖f − Ir
mj

(f,X)‖Lp ≥ (M∗
mj

)−mj‖fmj − Ir
mj

(fmj , X)‖Lp

− C(‖Ir
mj
‖+ 1)

∞∑
k=j+1

(M∗
mk

)−mk‖fmk
‖

≥ C(M∗
mj

)−mj − C(M∗
mj+1

)−mj+1/2 ≥ C(M∗
mj

)−mj .

At the same time, by (10) and (12),

Emj (f
(r))p = O

(
(M∗

mj
)−mj‖f (r)

mj
‖Lp +

∞∑
k=j+1

(M∗
mk

)−mk‖f (r)
mk
‖
)

= O((M∗
mj

)−mj λmj + (M∗
mj+1

)−mj+1/2) = O((M∗
mj

)−mj λmj ) .
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Altogether,
‖f − Ir

mj
(f,X)‖Lp

λ−1
mj Emj (f (r))p

≥ C > 0 ,

which is the required result.

R e m a r k. Considering the Theorem together with Motorny̆ı’s and Os-
kolkov’s results, we might have reasons to guess that there might be some
connections between the interpolation approximation rate of a given func-
tion with some kinds of nodes in Lp space and the best approximation rate
of a higher derivative of that function in Lp.
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