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The coincidence Nielsen number
for maps into real projective spaces

by

Jerzy J e z i e r s k i (Warszawa)

Abstract. We give an algorithm to compute the coincidence Nielsen number N(f, g),
introduced in [DJ], for pairs of maps into real projective spaces.

1. Preliminaries. Let f, g : M → N be a pair of maps between closed
C1-smooth connected manifolds of the same dimension. We investigate the
coincidence set Φ(f, g) = {x ∈ M : fx = gx} of such a pair. The Nielsen
relation (x, y ∈ Φ(f, g) are Nielsen equivalent iff there is a path ω from x to
y such that fω and gω are fixed-end-homotopic) divides Φ(f, g) into Nielsen
classes ([J], [M]). We will denote the quotient set by Φ′(f, g). If M and N
are orientable then we use the classical coincidence index [V] to define essen-
tial and nonessential classes and the Nielsen number [M]. If the orientability
assumption is dropped we use the coincidence semi-index introduced in [DJ].

We recall briefly its definition. We consider a transverse pair of maps
f, g : M → N , i.e. for any x ∈ Φ(f, g) the graphs Γf , Γg ⊂ M × N are
transverse at the point (x, fx = gx). Let x, y ∈ Φ(f, g) and let the path ω
establish the Nielsen relation between them. Fix local orientations α0(f),
α0(g) of the graphs Γf , Γg at the point (x, fx = gx). Let αt(f), αt(g) denote
their translations along the paths (ω, fω), (ω, gω) in Γf and Γg respectively.
Then their sum α0 = α0(f) ∧ α0(g) is an orientation of M ×N at (x, fx);
let αt be its translation along (ω, fω) in M ×N . We say that x and y are
R-related (reduce each other in [DJ]) iff α1 = −α1(f) ∧ α1(g) for a path ω
establishing the Nielsen relation.

Now we may represent a Nielsen class A as

A = {a1, b1, . . . , ak, bk : c1, . . . , cs}

where aiRbi but no pair {ci, cj} satisfies this relation (i 6= j). Finally, we
define the semi-index of this class:

|ind|(f, g : A) := s .
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It turns out that this definition applied in the orientable case gives the ab-
solute value of the ordinary coincidence index. Now we follow the standard
method of generalizing the Nielsen theory to the non-orientable case.

We will also use the coincidence Lefschetz number L(f, g) defined in [V]
for pairs of maps f, g : M → N between closed orientable n-manifolds.
This definition may be repeated for Z2 coefficients with no orientability
assumptions: for k = 0, . . . , n we consider the squares

Hk(M, Z2)
D−1

M←−−− Hn−k(M, Z2)

f∗

y xg∗

Hk(N, Z2)
DN−−−→ Hn−k(N, Z2)

where DM , DN stand for the Poincaré duality. We set Θk = D−1
M g∗DNf∗ :

Hk(M, Z2) → Hk(M, Z2) and define the coincidence Lefschetz number
mod2: L2(f, g) =

∑n
k=0 trΘk ∈ Z2. Then

L2(f, g) =
{

0 if |ind|(f, g) is even ,
1 if |ind|(f, g) is odd ,

so if M and N are oriented then L2(f, g) = %L(f, g) where % : Z → Z2 is
the epimorphism.

Let A be a Nielsen class of a transverse pair f, g. We call this class
defective iff xRx for some x ∈ A [Je2, Section 2]. Then any two points in A
are R-related [Je2, (2.3)] and therefore

|ind|(f, g : A) =
{

0 if #A is even ,
1 if #A is odd

(# denotes cardinality). In particular, if Φ(f, g) is a unique Nielsen class
and is defective then by abuse of notation N(f, g) = L2(f, g).

We will also need the following two lemmas.

(1.1) Lemma. Let p : M̃ → M be a covering , M , M̃ manifolds, M̃

oriented. Let α : M̃ → M̃ be the covering transformation corresponding
to a ∈ π1(M,x0). Then the map α is orientation-preserving on M̃ iff a
preserves local orientation at x0 ∈M .

(1.2) Lemma. Let f : M → RPn be a map from an n-dimensional
manifold M into the real projective space RPn (n even) such that there exists
a ∈ π1M preserving local orientation of M and f#a 6= 0. Let p : M̃ → M

be a finite covering such that M̃ is orientable and a /∈ p#π1M̃ . Then any
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lift f̃ ,
M̃

f̃−−−→ Sn

p

y y
M

f−−−→ RPn

is freely homotopic to a constant map.

P r o o f. Let α : M̃ → M̃ be the covering transformation corresponding
to a ∈ π1M and let β : Sn → Sn denote the antipodism. Then the diagram

M̃
f̃−−−→ Sn

α

y yβ

M̃
f̃−−−→ Sn

is commutative and hence deg(f̃α) = deg(βf̃). But by (1.1)

deg(f̃α) = deg f̃ deg α = + deg f̃ ,

deg(βf̃) = deg β deg f̃ = −deg f̃ ,

hence deg f̃ = 0 and the Hopf theorem implies our lemma.

2. Covering spaces. Let M , N be closed connected smooth manifolds
of the same dimension and let p : M̃ → M , q : Ñ → N be finite connected
regular coverings coresponding to the normal subgroups H = im p# ⊂ π1M ,
H ′ = im q# ⊂ π1N . Let ΓM , ΓN denote the groups of covering transfor-
mations of these coverings. Let f, g : M → N be a pair of maps admitting
lifts:

(2.0)

M̃
f̃ ,g̃−−−→ Ñ

p

y yq

M
f,g−−−→ N

In this section we find a formula expressing the Nielsen number N(f, g)
by the numbers N(f̃ , g̃). First we notice that Φ(f, g) =

⋃
pΦ(f̃ , g̃) where

the summation runs over all pairs of lifts. The sets pΦ(f̃ , g̃) are either
disjoint or equal and each of them is a sum of some Nielsen classes of f, g.
Fix x0 ∈ Φ(f, g) and let fH

# , gH
# : π1(M,x0)/H(x0) → π1(N, fx0)/H ′(fx0)
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denote the homomorphisms induced by f and g respectively. Let

C(f#, g#)x0 = {〈a〉 ∈ π1(M,x0) : f#〈a〉 = g#〈a〉} ,

C(fH
# , gH

# )x0 = {〈a〉H ∈ π1(M,x0)/H(x0) : fH
# 〈a〉H = gH

# 〈a〉H} ,

C(f#, g#)x0 = im{jH : C(f#, g#)x0 → C(fH
# , gH

# )x0}

where jH denotes the natural projection of π1M onto π1M/H. Finally, let
P : C(fH

# , gH
# )x0 → C(fH

# , gH
# )x0/C(f#, g#)x0 (left cosets) be the natural

projection.

(2.1) Lemma. Fix a pair of lifts f̃ , g̃ and points x0 ∈ pΦ(f̃ , g̃), x̃0 ∈
p−1(x0) ∩ Φ(f̃ , g̃). For any x̃ ∈ p−1x0 ∩ Φ(f̃ , g̃) fix a path ω̃ from x̃0 to x̃.
Define the map Θ : p−1x0 ∩ Φ(f̃ , g̃)→ C(fH

# , gH
# )x0 putting Θ(x̃) = 〈pω̃〉H .

Then

(a) Θ is a well defined bijective map.
(b) (naturality) Let x1 be another coincidence point of Φ(f, g) lying in

the same Nielsen class. Let τ be a path establishing the Nielsen relation
between x0 and x1. Then the diagram

p−1x0 ∩ Φ(f̃ , g̃) Kτ−−−→ p−1x1 ∩ Φ(f̃ , g̃)

Θ

y yΘ

C(fH
# , gH

# )x0

hτ−−−→ C(fH
# , gH

# )x1

is commutative (Kτ (x̃) = τ̃(1) where τ̃ is the lift of τ starting at x̃ and hτ

is given by hτ 〈ω〉H = 〈−τ + ω + τ〉H), Kτ is a bijection and hτ is a group
isomorphism.

(c) x̃1, x̃2 ∈ p−1x0∩Φ(f̃ , g̃) are Nielsen equivalent iff PΘ(x̃1) = PΘ(x̃2)
∈ C(fH

# , gH
# )x0/C(f#, g#)x0 .

P r o o f. (a) and (b) follow from easy calculations. We prove (c). Assume
that x̃1 and x̃2 are Nielsen equivalent. Fix paths ω̃ from x̃1 to x̃2 satisfying
f̃ ω̃ ' g̃ω̃ and ω̃1 from x̃0 to x̃1. Then ω̃1 + ω̃ goes from x̃0 to x̃2 and hence

Θ(x̃2) = 〈p(ω̃1 + ω̃)〉H = 〈pω̃1〉H + 〈pω̃〉H = Θ(x̃1) + 〈pω̃〉H ;

but 〈pω̃〉H ∈ C(f#, g#)x0 since fpω̃ = qf̃ ω̃ ' qg̃ω̃ = gpω̃.
Now we assume that PΘ(x̃1) = PΘ(x̃2). We fix paths ω̃i from x̃0 to

x̃i (i = 1, 2). Then 〈pω̃2〉H = 〈pω̃1〉H + 〈a〉H for some 〈a〉 ∈ C(f#, g#)x0 .
Let ã be the lift of a starting at x̃1. Then the equality 〈−pω̃1 + pω̃2〉 = 〈a〉
implies that −ω̃1 + ω̃2 and ã have common ends, and hence ã is a path from
x̃1 to x̃2. Since a homotopy from fa to ga lifts to a homotopy from f̃ ã to
g̃ã, x̃1 and x̃2 are Nielsen equivalent.
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(2.2) Corollary. The set p−1x0 ∩ Φ(f̃ , g̃) consists of #C(fH
# , gH

# )x0

elements. The Nielsen relation splits it into #(C(fH
# , gH

# )x0/C(f#, g#)x0)
parts each of #C(f#, g#)x0 elements.

Notice that the numbers involved in (2.2) do not depend on the choice
of the points x0 ∈ A, x̃0 ∈ p−1x0 ∩ Φ(f̃ , g̃) and of the lifts f̃ , g̃ (such that
x̃0 ∈ Φ(f̃ , g̃)). They only depend on the class A and hence we will write
rA = #C(f#, g#)x0 , mA = #(C(fH

# , gH
# )x0/C(f#, g#)x0).

Now suppose that f and g are transverse. Let A ∈ Φ′(f, g) be a non-
defective class ([Je2, Section 2]). Now we are going to find how many Nielsen
classes of the lifts f̃ , g̃ cover A and we will compare their semi-indices.

Recall that for R-related x, y ∈ Φ(f, g), p−1{x, y} splits into a sum of
R-related pairs [DJ, (2.2)], so to simplify notation we may assume that A =
{x0, . . . , xk} and no two points in A are R-related. Fix paths ωi from x0 to
xi such that fωi ' gωi (i = 1, . . . , k). Let p−1x0 ∩ Φ(f, g) = {x̃01, . . . , x̃0l}.

Denote by ω̃ij the lift of ωi starting at x̃0j and let x̃ij = ω̃ij(1) (i =
1, . . . , k; j = 1, . . . , l). Now p−1xi ∩ Φ(f̃ , g̃) = {x̃i1, . . . , x̃il}, the points
{x̃0j , . . . , x̃kj} are Nielsen equivalent and no two of them are R-related.
On the other hand, since no xi is R-related with itself, neither is any x̃ij

(j = 0, . . . , l).

(2.3) R e m a r k. Under the above assumption we may write

p−1x0 ∩ Φ(f̃ , g̃) = {x̃01, . . . , x̃0r; x̃0,r+1, . . . , x̃0,2r; . . . ; x̃0,l−r+1, . . . , x̃0,l}

where x̃0i and x̃0j lie in the same Nielsen class of (f̃ , g̃) iff (s−1)r < i, j ≤ sr

for some s = 1, . . . , l/r. Then the set Ãj = {x̃pq : p = 0, . . . , k; q = rj +
1, . . . , rj+r} is a single Nielsen class of (f̃ , g̃) and |ind|(f̃ , g̃ : Ãj) = (k+1)r =
r|ind|(f, g : A) (j = 0, . . . , l/r − 1; r = rA).

To formulate the final statement we denote by lift(f, g) the set of all lifts
of the pair (f, g). Then the group ΓM×ΓN acts on lift(f, g) by (α, β)(f̃ , g̃) =
β(f̃ , g̃)α−1 ((α, β) ∈ ΓM × ΓN , (f̃ , g̃) ∈ lift(f, g)). The orbit space will be
denoted by lift′(f, g). We notice that if pΦ(f̃ , g̃) ∩ pΦ(f̃ ′, g̃′) 6= ∅ then (f̃ , g̃)
and (f̃ ′, g̃′) lie in the same orbit. Conversely, if they lie in the same orbit then
pΦ(f̃ , g̃) = pΦ(f̃ ′, g̃′). In fact, pΦ(f̃ , g̃) is a single H ′-Nielsen class of (f, g)
where H ′ = q#π1N [Je1]. Thus we get a disjoint sum Φ(f, g) =

⋃
pΦ(f̃ , g̃)

where in the summation we take one representative of each orbit [f̃ , g̃] ∈
lift′(f, g). In a forthcoming paper we will show a natural bijection between
lift′(f, g) and the set ∇H′(f, g) defined in [Je1]. Therefore we call elements
of lift′(f, g) Reidemeister classes of (f, g), and define R(f, g) = # lift′(f, g)
to be the Reidemeister number of (f, g). For the purposes of this paper it
will be enough to show:
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(2.4) Lemma. If f, g : M → N and π1N = Z2 then

R(f, g) =
{

1 if f# 6= g# ,
2 if f# = g# .

P r o o f. The universal covering q : Ñ → N is two-fold; let β : Ñ →
Ñ denote its non-trivial transformation. We fix (f̃ , g̃) ∈ lift(f, g). Then
lift(f, g) consists of four elements: (f̃ , g̃), (f̃ , βg̃), (βf̃ , g̃), (βf̃ , βg̃). Since
(f̃ , g̃) and (βf̃ , βg̃) lie in the same orbit and so do (f̃ , βg̃) and (βf̃ , g̃), it
remains to show that f# = g# iff (f̃ , g̃) and (f̃ , βg̃) are in distinct orbits.
Fix x ∈ M , x̃ ∈ p−1x, α ∈ ΓM and a path ã from x̃ to αx̃. Let a = pã.
Then (f̃α, g̃α) equals (f̃ , g̃) or (βf̃ , βg̃) iff f#a = g#a.

(2.5) Theorem. If Φ′(f, g) contains no essential defective class then∑
(f̃ ,g̃)

N(f̃ , g̃) =
∑

mA

where the left sum runs over representatives of orbits in lift′(f, g) and the
right sum over all essential classes A ∈ Φ′(f, g), and mA is the number
defined just after (2.2). In particular , if m = mA does not depend on the
class A then ∑

(f̃ ,g̃)

N(f̃ , g̃) = mN(f, g) .

P r o o f. Notice that for any A ∈ Φ′(f, g) there is exactly one class
[f̃ , g̃] ∈ lift′(f, g) such that A = pΦ(f̃ , g̃). But (2.4) implies that this class
is covered by mA classes each of semi-index rA|ind|(f, g : A).

(2.6) Corollary. In the diagram (2.0), let π1N = Z2, let q be a uni-
versal covering and let the pair f, g have no defective class. Then m = 1
and

N(f, g) = N(f̃ , g̃) if f# 6= g# ,

N(f, g) = N(f̃ , g̃) + N(f̃ , βg̃) if f# = g# ,

where β denotes the unique non-trivial transformation of the two-fold cov-
ering q.

3. The general method. In this section we give a general method to
compute the Nielsen number of a pair f, g : M → RPn where M denotes an
n-manifold.

First recall that the map q : Sn → RPn identifying antipodal points is
the universal covering map and

πiRPn =

{ Z2 for i = 1 ,
Z for i = n ,
0 for i = 2, . . . , n− 1 .
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One can also prove

(3.1) Lemma. The action of the non-zero element of π1RPn on πnRPn

is multiplication by (−1)n+1.

Let f, g : M → N be a pair of maps between smooth n-dimensional man-
ifolds. Denote by π+

1 M (π+
1 N) the subgroup of orientation-preserving ele-

ments of π1M (π1N). For x ∈ Φ(f, g) we put C+(f#, g#)x = C(f#, g#)x ∩
π+

1 M . Recall [Je2, (2.6)] that the Nielsen class containing x is not defective
iff

(3.2) C+(f#, g#)x = C(f#, g#)x ∩ f−1
# (π+

1 N) .

(3.3) Lemma. If π1N is abelian then either all Nielsen classes are defec-
tive or none is.

P r o o f. Let x0, x1 ∈ Φ(f, g) and let r be a path from x0 to x1. Then
the restrictions of h〈r〉 : π1(M,x0)→ π1(M,x1), h〈r〉〈a〉 = 〈−r + a + r〉:

C+(f#, g#)x0 = C(f#, g#)x0 ∩ f−1
# π+

1 (N, fx0)

h〈r〉

y yh〈r〉 h〈r〉

y
C+(f#, g#)x1 = C(f#, g#)x1 ∩ f−1

# π+
1 (N, fx1)

are isomorphisms since π1N is abelian.

Now we consider again the maps into RPn. We will consider three cases:
(3.4), (3.5), (3.9):

(3.4) The equality (3.2) holds for an x ∈ Φ(f, g).

Then by (3.3) there is no defective class. We find a finite covering p :
M̃ →M admitting lifts

M̃
f̃ ,g̃−−−→ Sn

p

y yq

M
f,g−−−→ RPn

and we apply (2.6). Such a covering always exists since π1M is finitely
generated: we denote by H the subgroup of elements divisible by 2 and take
the covering corresponding to H.

(3.5) The equality (3.2) does not hold and f# 6= g#.

Then there is at most one Nielsen class and this class is defective. Thus
N(f, g) = L2(f, g).

To discuss the last case we will need the following classification of maps
into real projective spaces (see [O, Section 27]).
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(3.6) Lemma. The homotopy classes of maps f : (M,x) → (RPn, y)
are in one-to-one correspondence with the set of pairs (Θ, h) where Θ :
π1(M,x) → π1(RPn, y) is a homomorphism and h ∈ Hn(M,Θ∗πn) where
Θ∗πn denotes the local system induced from πnRPn by Θ. Moreover ,

Hn(M,Θ∗πn) =
{

Z if Θ−1π+
1 RPn = π+

1 M ,
Z2 otherwise.

Consider a pair of maps f, f ′ : (M,x0)→ (RPn, y0) satisfying f# = f ′
#.

Then f and f ′ are homotopic on the 1-skeleton. Since πiRPn = 0 for
i = 2, . . . , n− 1, there is no obstruction to a homotopy between these maps
up to the (n− 1)-skeleton. Thus we may assume that f and f ′ are equal on
M − σ where σ ⊂ M is an n-cell. Now f ′ = f#s for a map s : Sn → RPn

(here # denotes the connected sum f#s : M#Sn = M → RPn).

(3.7) Lemma. Let f, g : M → N and s : Sn → N . Then

L(f, g#s) = L(f, g) + deg s for M,N oriented ,

L2(f, g#s) = L2(f, g) + deg2 s without this assumption .

P r o o f. Since the Lefschetz number equals the coincidence index it is
enough to see how the last varies. We may assume that for a closed n-ball
K ⊂ M we have f(K) = y0, g(K) = y1 6= y0 and that (g#s)(x) = g(x) for
x /∈ K. Now x ∈ K is a coincidence point iff s(x) = y0. But any y ∈ N is
covered deg s times by the map s (algebraically counting). Thus the indices
of (f, g#s) and (f, g) differ by deg s.

(3.8) Lemma. If f# = g# then x, x′ ∈ Φ(f, g) are Nielsen equivalent iff
fω ' gω for any path ω from x to x′.

P r o o f. Let fω ' gω and assume that ω′ is another path from x to
x′. Then ω′ ' α + ω for some loop α based at x. Thus fω′ ' fα + fω '
gα + gω ' gω′.

Consider again f, g : M → RPn which do not satisfy (3.2) and f# = g#.
If f ' g then there is only one Nielsen class and it is defective. Thus
N(f, g) = L2(f, g) in this case.

Finally, suppose (3.2) does not hold, f# = g# but f 6' g. We may
assume (after a local homotopy) that f sends a ball K into a point x0.
Let f ′ be a map homotopic to f such that f ′(K) = x1, x0 6= x1. Let
q : Sn → RPn denote the universal covering. By (3.6) we may assume that
g = f ′#q. Since Φ(f, f ′) is one Nielsen class, all points in Φ(f, g) −K are
Nielsen equivalent. Moreover, there are two other coincidence points in K.
These are not Nielsen equivalent since they correspond to antipodal points
in q−1(x0) (Lemma (3.8)). Now one of them is an essential Nielsen class
while the remaining coincidence points form another class of semi-index
L2(f, g) + 1 ∈ Z2. Thus we obtain
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(3.9) Corollary. If f# = g# and (3.2) does not hold then

N(f, g) =

 L2(f, g) for f ' g ,
2 for f 6' g , L2(f, g) = 0 ,
1 for f 6' g , L2(f, g) = 1 .

It follows from (3.4), (3.5) and (3.9) that to compute N(f, g) it is enough
to know the Nielsen number of maps into Sn and the Z2-Lefschetz number.
Now we will solve the first problem and the latter will be computed for some
special manifolds in the next sections.

Consider f, g : M → Sn (n > 1). Since Sn is simply connected,
N(f, g) ≤ 1.

(3.10) Lemma. If M is an orientable closed n-manifold then

N(f, g) =
{

0 if f is homotopic to αg ,
1 otherwise,

where α denotes the antipodal map.

P r o o f. Since ind(f, g) = L(f, g) = deg g + (−1)n deg f , ind(f, g) = 0 iff
deg g = (−1)n+1 deg f but the last holds exactly for f homotopic to αg.

(3.11) Lemma. If in the above lemma M is not orientable then

N(f, g) =
{ 1 if f and g are not homotopic,

0 otherwise.

P r o o f. By the Hopf theorem there are exactly two homotopy classes of
maps from a non-orientable manifold M into Sn. To obtain the non-trivial
map we fix an n-cell σ ⊂ M and we send M − σ into a point x0 and the
interior of σ diffeomorphically onto Sn − x0. Now let f be non-trivial, of
the above form, and let g be constant, g(M) = x1 6= x0. Then f and g are
transverse and Φ(f, g) consists of one point, therefore |ind|(f, g) = 1 implies
N(f, g) = 1.

If both f and g are constant then obviously N(f, g) = 0.
Now let f = g be non-trivial. Assume first that n is odd. Then the

identity map is homotopic to a fixed point free map α. Thus g = f ' αf
and Φ(f, αf) = ∅ implies N(f, g) = N(f, αf) = 0. Let now n be even.
The only Nielsen class of f = g is defective since any orientation-reversing
loop on M is sent to a null homotopic one. We may assume that x0 /∈
{(0, . . . , 0,+1), (0, . . . , 0,−1)} and we notice that the map h : Sn → Sn,
h(x1, . . . , xn+1) = (−x1, . . . ,−xn, xn+1), is homotopic to the identity since
deg h = (−1)n = 1. Now g = f ' hf , the last two maps are transverse
and Φ(f, hf) = {f−1(0, . . . , 0,+1), f−1(0, . . . , 0,−1)} consists of exactly two
points. Since this class is defective, |ind|(f, g) = 0 and N(f, g) = 0.
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Finally, we will apply the above methods to compute the Nielsen number
of f, g : Sn → RPn. Since Sn is simply connected, no class in Φ′(f, g) is
defective and we may apply (3.4). We fix lifts

Sn

↗(f̃ ,g̃)
y

Sn f,g−−−→ RPn

and we notice that π1S
n = 0 implies m = 1 (in (2.5)) and R(f, g) = 2,

hence N(f, g) = N(f̃ , g̃) + N(−f̃ , g̃).

(3.12) Corollary. Let f, g : Sn → RPn. Then

N(f, g) =

 0 for (f ' g ' const, n even) or (f ' g, n odd),
1 for f ' g 6' const, n even,
2 for f 6' g .

P r o o f. Let n be odd. Then N(f, g) = N(f̃ , g̃) + N(f̃ ,−g̃) = 2N(f̃ , g̃).
Thus

N(f, g) =
{

0 if f ' g ,
2 otherwise,

since f̃ ' g̃ iff f ' g.
Let now n be even. Then N(f, g) = N(f̃ , g̃) + N(f̃ ,−g̃) and

N(f, g) =

{ 0 if f ' g ' const ,
1 if f ' g 6' const ,
2 if f 6' g ,

since f ' g iff f̃ ' ∓g̃ and N(f̃ , g̃) = 0 iff f̃ ' −g̃.

4. The coincidence Nielsen number for maps from an even-
dimensional torus. In this and the next sections we assume that n is
even; the odd case is easier and will be discussed in Section 6.

Now we apply the results of the last section to maps from the n-torus
Tn = (S1)n = ([0, 1]/{0 = 1})n into RPn. We fix the points p0 = {0 =
1} ∈ S1, x0 = (p0, . . . , p0) ∈ (S1)n = Tn and y0 = [1, 0, . . . , 0] ∈ RPn.
Let aj(t) denote the canonical generators of π1(Tn, x0) given by aj(t) =
(p0, . . . , p0, exp(2πti), p0, . . . , p0) ∈ Tn (j = 1, . . . , n). Let Θ : π1(Tn, x0)→
π1(RPn, y0) = Z2 be a homomorphism and let ΛΘ = {j ∈ {1, . . . , n} :
Θ(aj) 6= 0}. Then the formula

fΘ(t1, . . . , tn) =
[
exp

( ∑
k∈ΛΘ

tkπi
)
, 0, . . . , 0

]
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gives a map fΘ : Tn → RPn such that fΘ# = Θ. Now fix a map
f : (Tn, x0) → (RPn, y0) and let Θ = f#. Since f# = fΘ#, we may
assume by (3.6) that f = fΘ#s for a map s : Sn → RPn. Thus f sends the
(n− 1)-skeleton into the 1-skeleton and all induced homology and cohomol-
ogy homomorphisms are zero in dimensions k = 2, . . . , n− 1. On the other
hand, we notice that deg2 fΘ = 0 since the whole image of fΘ lies in the
1-skeleton. Moreover, deg2 s = 0 since s admits a lift

Sn

↗s̃
yq

Sn s−−−→ RPn

and deg2 s = deg2 qs̃ = deg2 q deg2 s̃ but deg2 q = 0 since q is two-fold.
Thus deg2 f = deg2(fΘ#s) = deg2 fΘ + deg2 s = 0 and f∗ : Hn(Tn, Z2) →
Hn(RPn, Z2), f∗ : Hn(RPn, Z2) → Hn(Tn, Z2) are also zero homomor-
phisms.

Now we are in a position to compute the Z2-Lefschetz number of f, g :
Tn → RPn. We consider the squares

Hk(Tn, Z2)
D−1

←−−− Hn−k(Tn, Z2)

f∗

y xg∗

Hk(RPn, Z2)
D−−−→ Hn−k(RPn, Z2)

If n > 2 then for any k either 1 < k or 1 < n− k so in any case at least
one of the vertical homomorphisms is zero and L2(f, g) = 0.

If n = 2 then the above diagram may give a non-zero homomorphism for
k = 1. In this case we write f∗ai = kia, g∗ai = k′ia, hence f∗a = k1a1+k2a2,
g∗a = k′1a1 + k′2a2 (here a1, a2 ∈ H1(Tn, Z2), a1, a2 ∈ H1(Tn, Z2), a ∈
H1(RPn, Z2), a ∈ H1(RPn, Z2) denote the canonical generators). Thus

L2(f, g) = tr(D−1g∗Df∗) = det
[

k1 k2

k′1 k′2

]
∈ Z2 .

Now we may compute the Nielsen number; we consider three cases ac-
cording to Section 3.

(a) The equality (3.2) holds.
(a1) Let f# 6= g#. Then one of the homomorphisms f#, g# must be

zero. Indeed, suppose otherwise. Then f#ai 6= 0, g#aj 6= 0 for some i, j =
1, . . . , n. If moreover g#ai 6= 0 then ai ∈ C+(f#, g#) but f#ai = g#ai = a
is orientation-reversing on RPn, contradicting (3.2). If f#aj = g#ai = 0
then ai + aj contradicts (3.2).
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Let p : Tn → Tn be a 2n-fold covering corresponding to the subgroup of
elements of π1T

n divisible by 2. Then any pair of maps f, g admits lifts

Tn f̃,g̃−−−→ Sn

p

y yq

Tn f,g−−−→ RPn

and (2.6) implies N(f, g) = N(f̃ , g̃).
We may assume that f# = 0 and g#b 6= 0 for some b ∈ π1T

n not divisible
by 2. Let β be the transformation of the covering p : Tn → Tn determined
by b. Then the diagram

Tn g̃−−−→ Sn

β

y yα

Tn g̃−−−→ Sn

commutes (α denotes the antipodism). Now, by (1.2), deg g̃ = 0, so (3.10)
implies

N(f̃ , g̃) =

{
0 if deg f̃ = 0 ,

1 if deg f̃ 6= 0 .

On the other hand, since f# = 0, there exists a map f̃ ′ such that the diagram

Tn f̃−−−→ Sn

p

y ↗f̃
′

yq

Tn f−−−→ RPn

commutes. Since deg f̃ = deg(f̃ ′p) = deg f̃ ′ deg p = 2n deg f̃ ′, N(f̃ , g̃) = 0
iff deg f̃ ′ = 0 but then f̃ ′ is null homotopic, and hence so is f = qf̃ ′. Thus
we get

N(f, g) =
{ 0 if one of the maps f, g is null homotopic,

1 otherwise.
(a2) If f# = g# then (3.2) means f# = g# = 0 and the maps f, g admit

lifts

Sn

↗f̃ ,g̃
yq

Tn f,g−−−→ RPn
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Then by (2.6), N(f, g) = N(f̃ , g̃) + N(f̃ ,−g̃) and hence

N(f, g) =

{ 0 if f ' g ' const ,
1 if f ' g 6' const ,
2 if f 6' g .

(b) (3.2) does not hold and f# 6= g#. Then there is only one Reidemeister
class and it is defective. If n ≥ 3 then L2(f, g) = 0 and [Je2, (2.3)] implies
N(f, g) = 0. If n = 2 then one can check that our assumptions are fulfilled
exactly for[

k1 k2

k′1 k′2

]
=

[
0 1
1 1

]
,

[
1 0
1 1

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
0 1

]
,

[
1 1
1 0

]
.

But now in any case

L2(f, g) = det
[

k1 k2

k′1 k′2

]
6= 0 ∈ Z2

and hence N(f, g) = 1.

(c) (3.2) does not hold and f# = g#. Then L2(f, g) = 0 and (3.9) imply

N(f, g) =
{ 0 if f ' g ,

2 otherwise.

5. The coincidence Nielsen number for maps from an even-
dimensional projective space. Let n ∈ N be even. Recall that

Hk(RPn, Z2) = Hk(RPn, Z2) =
{

Z2 for k ≤ n ,
0 for k > n ,

and H∗(RPn, Z2) = Z2[a]/(an+1) as algebras. We denote by ak ∈ Hk(RPn,
Z2), ak ∈ Hk(RPn, Z2) the non-trivial elements, k = 0, . . . , n. Consider a
map f : RPn → RPn; let f∗a1 = ca1 (c ∈ Z2). Then f∗a1 = ca1, hence
f∗ak = cak, which implies f∗ak = cak (universal coefficients formulae),
k = 1, . . . , n.

Consider f, g : RPn → RPn. We now determine the Z2-Lefschetz num-
ber of this pair. Let f∗a1 = ca1, g∗a1 = c′a1. Then the above discussion
implies that in the diagrams

Hk(RPn, Z2)
D−1

←−−− Hn−k(RPn, Z2)

f∗

y xg∗

Hk(RPn, Z2)
D−−−→ Hn−k(RPn, Z2)

we have

D−1g∗Df∗(ak) =

{
c′a0 for k = 0 ,
cc′ak for k = 1, . . . , n− 1 ,
can for k = n .
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Thus L2(f, g) = c′ + (n− 1)cc′ + c = c′ + cc′ + c ∈ Z2 (since n is even) and
finally

L2(f, g) =
{

0 if c = c′ = 0 ,
1 otherwise.

Now we compute the Nielsen number. First we assume that f# 6= g#.
Then there is only one Reidemeister class and L2(f, g) = 1 implies N(f, g) =
1. Let now f# = g# = 0. If moreover f and g are homotopic then there is
only one Nielsen class and it is defective, so L2(f, g) = 0 implies N(f, g) =
0. If f and g are not homotopic then N(f, g) = 2 by (3.9). Finally, let
f# = g# = id. Then no class is defective and we may use lifts:

Sn f̃,g̃−−−→ Sn

q

y yq

RPn f,g−−−→ RPn

Now f̃ , g̃ are odd maps (f̃(−x̃) = −f̃(x̃)) and hence their degrees are
odd numbers. On the other hand, the number m from (2.5) equals one and
now Lemma (3.1) implies

N(f, g) = N(f̃ , g̃) + N(f̃ ,−g̃) =
{

1 if |deg f̃ | = |deg g̃| ,
2 otherwise,

=
{

1 if f ' g ,
2 otherwise.

Finally, we get

(5.1) Corollary. For any pair of maps f, g : RPn → RPn (with n
even)

N(f, g) =


0 if f# = g# = 0 and f ' g ,
1 if f# 6= g# or (f# = g# = id and f ' g) ,
2 if f# = g# and f 6' g .

In particular , for g = id we obtain a formula for the fixed point Nielsen
number of a self-map f of RPn (n even):

N(f) =
{

2 if f# = id and f 6' id ,

1 otherwise.

6. The coincidence Nielsen number for maps from an odd-
dimensional manifold. The computation of the two last sections could
be modified to cover also the odd-dimensional case. But this turns out to be
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easier since then RPn is orientable. Let n = 2k + 1. The cyclic homotopy
H : RPn × I → RPn,

H([z1, . . . , zk+1], t) = [z1 exp(πti), . . . , zk+1 exp(πti)] ,

shows that RPn is a Jiang space [J]. Let f, g : M → RPn be maps from an
n-dimensional orientable manifold. Then Lemma (6.6) of [Je1] implies that

N(f, g) =
{

0 if L(f, g) = 0 ,
R(f, g) if L(f, g) 6= 0 ,

so it remains to compute the ordinary Lefschetz number. Since

Hk(RPn, Q) = Hk(RPn, Q) =
{

Q if k = 0, n ,
0 otherwise,

in the diagrams

Hk(M, Q) D−1

←−−− Hn−k(M, Q)

f∗

y xg∗

Hk(RPn, Q) D−−−→ Hn−k(RPn, Q)

we have Θ0 = deg g, Θn = deg f and Θk = 0 for other k, which implies
L(f, g) = deg g − deg f .

(6.1) Corollary. Let M be an oriented n-manifold (with n odd) and
let f, g : M → RPn. Then

N(f, g) =


0 if deg f = deg g ,
1 if deg f 6= deg g, f# 6= g# ,
2 if deg f 6= deg g, f# = g# .

P r o o f. Check case by case. Combine (2.4) with the arguments of this
section.
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