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The coincidence Nielsen number
for maps into real projective spaces

by

Jerzy Jezierski (Warszawa)

Abstract. We give an algorithm to compute the coincidence Nielsen number N (f, g),
introduced in [DJ], for pairs of maps into real projective spaces.

1. Preliminaries. Let f,g: M — N be a pair of maps between closed
C'-smooth connected manifolds of the same dimension. We investigate the
coincidence set @(f,g) = {x € M : fxr = ga} of such a pair. The Nielsen
relation (z,y € @(f, g) are Nielsen equivalent iff there is a path w from = to
y such that fw and gw are fixed-end-homotopic) divides &(f, g) into Nielsen
classes ([J], [M]). We will denote the quotient set by &'(f,g). If M and N
are orientable then we use the classical coincidence index [V] to define essen-
tial and nonessential classes and the Nielsen number [M]. If the orientability
assumption is dropped we use the coincidence semi-index introduced in [DJ].

We recall briefly its definition. We consider a transverse pair of maps
f,9: M — N, ie. for any x € &(f,g) the graphs I'y, I'; C M x N are
transverse at the point (z, fr = gz). Let z,y € @(f, g) and let the path w
establish the Nielsen relation between them. Fix local orientations ag(f),
ap(g) of the graphs I'y, I'; at the point (z, fo = gz). Let oy (f), ax(g) denote
their translations along the paths (w, fw), (w, gw) in I'y and I'y respectively.
Then their sum ap = ag(f) A ap(g) is an orientation of M x N at (z, fx);
let o be its translation along (w, fw) in M x N. We say that x and y are
R-related (reduce each other in [DJ]) iff a; = —ay(f) A ay(g) for a path w
establishing the Nielsen relation.

Now we may represent a Nielsen class A as

A={a1,by,...,ak,bg:c1,...,cs}

where a;Rb; but no pair {¢;, c;} satisfies this relation (i # j). Finally, we
define the semi-indez of this class:

lind|(f,g: A):=s.
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It turns out that this definition applied in the orientable case gives the ab-
solute value of the ordinary coincidence index. Now we follow the standard
method of generalizing the Nielsen theory to the non-orientable case.

We will also use the coincidence Lefschetz number L(f, g) defined in [V]
for pairs of maps f,g : M — N between closed orientable n-manifolds.
This definition may be repeated for Zs coefficients with no orientability
assumptions: for k =0,...,n we consider the squares

-1

D
Hy(M,Zy) «— H"*(M,Zy)

‘| I

Hy(N,Zs) LB H"%(N,Zs)

where Djy;, Dy stand for the Poincaré duality. We set O = D]T/Il " Dnfs:
Hy(M,Zs) — Hy(M,Z3) and define the coincidence Lefschetz number
mod2: La(f,g) =Y p_otr O € Zy. Then

[0 if |ind|(f, g) is even,
Lao(f,9) = { 1 if [ind|(f, g) is odd,

so if M and N are oriented then Lo(f,g) = oL(f,g) where ¢ : Z — Zs is
the epimorphism.

Let A be a Nielsen class of a transverse pair f,g. We call this class
defective iff zRx for some = € A [Je2, Section 2]. Then any two points in A
are R-related [Je2, (2.3)] and therefore

) o]0 if#Aiseven,
ind|(f,g: A) = { 1 if #Ais odd

(# denotes cardinality). In particular, if @(f,g) is a unique Nielsen class
and is defective then by abuse of notation N(f,g) = La(f, g).

We will also need the following two lemmas.

(1.1) LEMMA. Let p : M — M be a covering, M, M manifolds, M
oriented. Let o : M — M be the covering transformation corresponding
to a € m(M,xo). Then the map « is orientation-preserving on M iff a
preserves local orientation at xg € M. m

(1.2) LEMMA. Let f : M — RP"™ be a map from an n-dimensional
manifold M into the real projective space RP™ (n even) such that there exists

a € mM preserving local orientation of M and fyua # 0. Let p : M — M
be a finite covering such that M is orientable and a ¢ pymi M. Then any
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lift f,

ML ST

/| !

M L. Rrpr

is freely homotopic to a constant map.

Proof Let a: M — M be the covering transformation corresponding
toa € m M and let 3 : 5™ — S™ denote the antipodism. Then the diagram

oL sm
al ~ lﬁ
M L. g

is commutative and hence deg(fa) = deg(ﬂf). But by (1.1)

deg(fa) = deg fdega = +deg [,
deg(3f) = degfdeg f = —deg f,

hence deg f: 0 and the Hopf theorem implies our lemma. m

2. Covering spaces. Let M, N be closed connected smooth manifolds
of the same dimension and let p: M — M, g : N — N be finite connected
regular coverings coresponding to the normal subgroups H = impy C m M,
H' =imqgy C mN. Let I'ny, I'v denote the groups of covering transfor-
mations of these coverings. Let f,g: M — N be a pair of maps admitting
lifts:

i f.g ~

N
(2.0) » lq
M 9 N

In this section we find a formula expressing the Nielsen number N(f,g)
by the numbers N(f,g). First we notice that @(f,g) = Up®(f,g) where

the summation runs over all pairs of lifts. The sets p®(f,g) are either

disjoint or equal and each of them is a sum of some Nielsen classes of f,g.
Fix x9 € &(f,g) and let [, gif : m(M,20)/H (x0) — m1(N, fxo)/H'(fx0)
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denote the homomorphisms induced by f and g respectively. Let
C(fa: 9 )ao = {(a) € m (M, o) : fe(a) = gx(a)},
C(f£, 94 )z = {{a) € m (M, 20)/H(x0) = fii{a)rr = g} (a)u}
é(f#ﬂg#)mo = lm{]H : C(f#vg#)ﬂco - C(f;{ﬁi[?gg)wo}

where j denotes the natural projection of 71 M onto w1 M/H. Finally, let
P :.C(ﬁz,gﬁ)xo — C(fﬁ,gﬁ)mo/C(f#,g#)zo (left cosets) be the natural
projection.

(2.1) LEMMA. Fiz a pair of lifts f,ﬁ and points Ty € p@(f, 9),Ty €
p~YHwxo) ND(f,g). For any ¥ € p~tag ND(f,q) fir a path & from T to T.
Define the map © : p~ oo ND(f,g) — C(fﬁ,gﬁ)zo putting O(T) = (pw)y.
Then

(a) © is a well defined bijective map.

(b) (naturality) Let x1 be another coincidence point of ®(f,g) lying in
the same Nielsen class. Let T be a path establishing the Nielsen relation
between x¢ and x1. Then the diagram

_ 7~ K, _ ~
plzoNd(f,9) —— p laiNd(f,9)

@J l@
O g = CUFHE )

is commutative (K, (Z) = 7(1) where T is the lift of T starting at T and h,
is given by h(w)g = (-7 +w+ 7)g), K, is a bijection and h, is a group
isomorphism.

(c) T1, %2 € p~laoN®(f,§) are Nielsen equivalent iff PO(Z1) = PO(T)
€ C(fiygg)wo/c(f#7g#)xo :

Proof. (a) and (b) follow from easy calculations. We prove (c). Assume
that 7; and z, are Nielsen equivalent. Fix paths w from z; to 75 satisfying
fw ~ gw and @, from Zg to Z1. Then Wy + @ goes from Ty to ZTs and hence

O(72) = (p(w1 + W) = (pw1)n + (pW)n = O(T1) + (pW)u ;

but (pw)g € C(fu,9#)a, since fpw = qfw ~ ggw = gpw.

Now we assume that PO(z;) = PO(z3). We fix paths w; from zy to
z; (i = 1,2). Then (pwo)y = (pw1)m + (a)u for some (a) € C(fx, 9#)a,-
Let @ be the lift of a starting at Z;. Then the equality (—pw; + pwe) = (a)
implies that —w; +w; and a have common ends, and hence @ is a path from
Z1 to To. Since a homotopy from fa to ga lifts to a homotopy from fa to
ga, T1 and To are Nielsen equivalent. m
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(2.2) COROLLARY. The set p~lzg N @(f,@ consists of #C(fg,gﬁ)zo
elements. The Nielsen relation splits it into #(C(fﬁ,gﬁ)xo/é(f#,g#)xo)
parts each of #C(f4, g4 )z, elements. m

Notice that the numbers involved in (2.2) do not depend on the choice
of the points zg € A, Zg € p~txo N @(f, g) and of the lifts f,ﬁ (such that
To € @(f, g)). They only depend on the class A and hence we will write
ra = #C(fas 0 )0 ma = F(CUE )0 [T 90

Now suppose that f and g are transverse. Let A € ¢'(f,g) be a non-
defective class ([Je2, Section 2]). Now we are going to find how many Nielsen
classes of the lifts f, g cover A and we will compare their semi-indices.

Recall that for R-related z,y € ®(f,g), p~*{x,y} splits into a sum of
R-related pairs [DJ, (2.2)], so to simplify notation we may assume that A =
{zo,...,xx} and no two points in A are R-related. Fix paths w; from z( to
x; such that fw; ~ gw; (i=1,...,k). Let p~too ND(f,9) = {To1,--.,Tor}

Denote by &ij the lift of Wi starting at %Oj and let Z\U/ij = &”(1) (l =
1,...,k;5 = 1,...,1). Now p~lz; N @(ﬁﬁ) = {%1,..., Ty}, the points
{Zoj,...,%k;} are Nielsen equivalent and no two of them are R-related.
On the other hand, since no z; is R-related with itself, neither is any z;;
(j=0,...,0).

(2.3) Remark. Under the above assumption we may write

p 2o NO(£,9) = {To1,-- -, ZOr; 0,1y« -3 L0205 -3 L0 J—r41s- -+ 20,0}

where Zo; and Zo; lie in the same Nielsen class of (f,9)iff (s—1)r <i,j < sr
for some s = 1,...,l/r. Then the set Aj ={Zp;:p=0,....k;g=1j+
1,...,rj+r}is asingle Nielsen class of (f, ) and |ind|(f,§ : A)) = (k+1)r =
rlind|(f,g:A) (7 =0,...,l/r — 1;r =14).

To formulate the final statement we denote by lift(f, g) the set of all lifts
of the pair (f,g). Then the group I'yy x I'y acts on lift(f, g) by («, ﬂ)(f, g) =
B(f. 9t ((a,B) € Iy x Ty, (f,§) € lift(f, g)). The orbit space will be
denoted by lift’(f, g). We notice that if p@(f, 9) ﬂp@(!}?’,f}“’) # () then (]7, 9)
and (f~", g’) lie in the same orbit. Conversely, if they lie in the same orbit then
p@(fv, g) = p@(fv’,ﬁ/). In fact, p(ﬁ(f, g) is a single H'-Nielsen class of (f,g)
where H' = gum N [Jel]. Thus we get a disjoint sum &(f,g) = Upd(f,9)
where in the summation we take one representative of each orbit [f,g] €
lift'(f,g). In a forthcoming paper we will show a natural bijection between
lift’(f, g) and the set V. (f,g) defined in [Jel]. Therefore we call elements
of lift'(f,g) Reidemeister classes of (f,g), and define R(f,g) = #1ift'(f, g)
to be the Reidemeister number of (f,g). For the purposes of this paper it
will be enough to show:
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(2.4) LEMMA. If f,g: M — N and m{ N = Zs then

muo={y YR

_ Proof. The universal covering q : N — N is two-fold; let 3 : N —
N denote its non-trivial transformation. We fix (f,q) € lift(f,g). Then

lift(f,g) consists of four elements: (f,3), (f.689), (8f.9), (3f.57). Since
(f,g) and (Bf,3g) lie in the same orbit and so do (f,3g) and (Bf,9q), it
remains to show that fu = gx iff (f,g) and (f, 5g) are in distinct orbits.

Fixx € M, z € p‘lac,Na € I'yy and a path a from 7 to az. Let a = pa.
Then (fa, ga) equals (f,g) or (Bf,B9) iff fra = gua. =
(2.5) THEOREM. If @'(f,g) contains no essential defective class then

Z N(fa jd) = ZmA

(f.9)
where the left sum runs over representatives of orbits in lift'(f,g) and the
right sum over all essential classes A € ®'(f,g), and mu is the number
defined just after (2.2). In particular, if m = my does not depend on the
class A then

Y N(f,5) =mN(f.g).
(£.9)
Proof. Notice that for any A € &'(f,g) there is exactly one class

[f,ﬁ} € lift'(f, g) such that A = p®(f,q). But (2.4) implies that this class
is covered by m 4 classes each of semi-index 74|ind|(f,g: A). m

(2.6) COROLLARY. In the diagram (2.0), let 1 N = Zo, let q be a uni-
versal covering and let the pair f,g have no defective class. Then m = 1
and

N(f,g9) = N(f,9) if f4 # 9%,
N(f,9)=N(f.9) +N(f.59) if fu =gz,

where B denotes the unique non-trivial transformation of the two-fold cov-
ering q. m

3. The general method. In this section we give a general method to
compute the Nielsen number of a pair f,g: M — RP™ where M denotes an
n-manifold.

First recall that the map ¢ : S™ — RP"™ identifying antipodal points is
the universal covering map and

Zg fori=1 y
mRP™ = {Z fori=mn,
0 fore=2,...,n—1.
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One can also prove

(3.1) LEMMA. The action of the non-zero element of 1{RP™ on m,RP™

is multiplication by (—1)"!. m

Let f,g: M — N be a pair of maps between smooth n-dimensional man-
ifolds. Denote by ﬂ'f_ M (Wf N) the subgroup of orientation-preserving ele-
ments of m M (mN). For x € &(f,g) we put CT(fu,g4)e = C(fu, g4)z N
7 M. Recall [Je2, (2.6)] that the Nielsen class containing x is not defective
iff
(3.2) CH(f4r9#)2 = C(far 9)2 N [ (T N).

(3.3) LEMMA. If mi N is abelian then either all Nielsen classes are defec-
tive or none is.

Proof. Let zg,z1 € @(f,g) and let r be a path from zy to z1. Then
the restrictions of h.y : m (M, z0) — m (M, 1), hy(a) = (—r+a+7):

CHfu 98)e0 = CUp98)a N fu'm (N, fzo)
h<r>l Jhm h(,.>l
CHfw98)er = Clpgp)ar N fu'ml (N, fz1)

are isomorphisms since m N is abelian. m

Now we consider again the maps into RP™. We will consider three cases:
(3.4), (3.5), (3.9):

(3.4)  The equality (3.2) holds for an z € &(f, g).

Then by (3.3) there is no defective class. We find a finite covering p :
M — M admitting lifts

M L9, gn

/| Js
M L2 mpn
and we apply (2.6). Such a covering always exists since w3 M is finitely

generated: we denote by H the subgroup of elements divisible by 2 and take
the covering corresponding to H.

(3.5)  The equality (3.2) does not hold and fu # g4.

Then there is at most one Nielsen class and this class is defective. Thus

To discuss the last case we will need the following classification of maps

into real projective spaces (see [O, Section 27]).
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(3.6) LEMMA. The homotopy classes of maps f : (M,z) — (RP™,y)
are in one-to-one correspondence with the set of pairs (©,h) where © :
m(M,x) — m (RP",y) is a homomorphism and h € H"(M,O*m,) where
O*m, denotes the local system induced from m,RP™ by ©. Moreover,

H™(M,0"m,) = {Z if Ot RP™ = mf M,
Zo otherwise. m

Consider a pair of maps f, f': (M, x0) — (RP",yo) satisfying fz = fy,.
Then f and f’ are homotopic on the 1-skeleton. Since m;RP™ = 0 for
1 =2,...,n—1, there is no obstruction to a homotopy between these maps
up to the (n — 1)-skeleton. Thus we may assume that f and f’ are equal on
M — o where 0 C M is an n-cell. Now f/ = f+#s for a map s : S™ — RP™
(here # denotes the connected sum f#s: M#S™ = M — RP™).

(3.7) LEMMA. Let f,g: M — N and s: S™ — N. Then
L(f,g#s) = L(f,g) +degs for M, N oriented,
Lo(f,g#s) = La(f,g) +degy s without this assumption.

Proof. Since the Lefschetz number equals the coincidence index it is
enough to see how the last varies. We may assume that for a closed n-ball
K C M we have f(K) = yo, g(K) = y1 # yo and that (g#s)(z) = g(z) for
x ¢ K. Now z € K is a coincidence point iff s(x) = yo. But any y € N is
covered deg s times by the map s (algebraically counting). Thus the indices
of (f,g#s) and (f,g) differ by degs. m

(3.8) LEMMA. If fu = gy then z,2’ € O(f,g) are Nielsen equivalent iff
fw =~ gw for any path w from x to x’.

Proof. Let fw ~ gw and assume that «’ is another path from z to
2'. Then w’ ~ a + w for some loop « based at x. Thus fw' ~ fa+ fw ~
ga+gw~gu'. =

Consider again f, g : M — RP"™ which do not satisfy (3.2) and fu = gx.
If f ~ ¢ then there is only one Nielsen class and it is defective. Thus
N(f,g) = La(f,g) in this case.

Finally, suppose (3.2) does not hold, fxz = gx but f % g. We may
assume (after a local homotopy) that f sends a ball K into a point z.
Let f’ be a map homotopic to f such that f/(K) = z1, ©9 # x1. Let
q:S™ — RP™ denote the universal covering. By (3.6) we may assume that
g = f'#q. Since @(f, ') is one Nielsen class, all points in @(f,g) — K are
Nielsen equivalent. Moreover, there are two other coincidence points in K.
These are not Nielsen equivalent since they correspond to antipodal points
in ¢ 1(z9) (Lemma (3.8)). Now one of them is an essential Nielsen class
while the remaining coincidence points form another class of semi-index
Lo(f,g9) + 1 € Zy. Thus we obtain
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(3.9) COROLLARY. If fy = g# and (3.2) does not hold then

La(f,g) forf~g,
N(f7g): 2 fOT’f;ég, L2(fag):07
1 forf#g, La(f,g)=1. =

It follows from (3.4), (3.5) and (3.9) that to compute N (f,¢g) it is enough
to know the Nielsen number of maps into S™ and the Zo-Lefschetz number.
Now we will solve the first problem and the latter will be computed for some
special manifolds in the next sections.

Consider f,g : M — S™ (n > 1). Since S™ is simply connected,
N(f,g) <1

(3.10) LEMMA. If M is an orientable closed n-manifold then

|0 if f is homotopic to ag,
N(f.9) = { 1 otherwise,

where o denotes the antipodal map.

Proof. Since ind(f,g9) = L(f,g9) =degg+ (—1)"deg f, ind(f, g) = 0 iff
deg g = (—1)"T! deg f but the last holds exactly for f homotopic to ag. =

(3.11) LEMMA. If in the above lemma M is not orientable then

1 if f and g are not homotopic
N(f,9) = { ,
(f.9) 0 otherwise.

Proof. By the Hopf theorem there are exactly two homotopy classes of
maps from a non-orientable manifold M into S™. To obtain the non-trivial
map we fix an n-cell 0 C M and we send M — ¢ into a point xy and the
interior of o diffeomorphically onto S™ — zg. Now let f be non-trivial, of
the above form, and let g be constant, g(M) = x; # zo. Then f and g are
transverse and &(f, g) consists of one point, therefore |ind|(f,g) = 1 implies
N(f.g)=1.

If both f and g are constant then obviously N(f,g) = 0.

Now let f = g be non-trivial. Assume first that n is odd. Then the
identity map is homotopic to a fixed point free map «. Thus g = f ~ af
and &(f,af) = 0 implies N(f,g) = N(f,af) = 0. Let now n be even.
The only Nielsen class of f = ¢ is defective since any orientation-reversing
loop on M is sent to a null homotopic one. We may assume that zo ¢
{(0,...,0,+1),(0,...,0,—1)} and we notice that the map h : S™ — S,
h(zy,...,2pn41) = (=21, ..., —Tpn, Tpt1), is homotopic to the identity since
degh = (=1)" = 1. Now g = f ~ hf, the last two maps are transverse
and @(f,hf) = {f~1(0,...,0,4+1), f~1(0,...,0,—1)} consists of exactly two
points. Since this class is defective, |ind|(f,g) =0 and N(f,g) =0. m
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Finally, we will apply the above methods to compute the Nielsen number
of f,g: S™ — RP™. Since S™ is simply connected, no class in &'(f,g) is
defective and we may apply (3.4). We fix lifts

Sn
(f,g)/ l
gn 9, ppn

and we notice that m1.S™ = 0 implies m = 1 (in (2.5)) and R(f,g9) = 2,
hence N(f7g) = N(f7’9V) +N(_f7§)
(3.12) COROLLARY. Let f,g: S™ — RP™. Then

0 for (f ~ g~ const, n even) or (f ~ g, n odd),
N(f,g) =< 1 for f =~ g+ const, n even,
2 forf#g.

Proof. Let n be odd. Then N(f,g) = N(f,§)+ N(f,—g) = 2N(f, ).
Thus
0 if f~g,
2 otherwise,

N9 ={

since f:giﬂ'f ~g. B N
Let now n be even. Then N(f,g) = N(f,q9) + N(f,—g) and
0 if f~ g~ const,
N(f,g):{l if f ~ g const,
2 iffitg,

since f ~ g iff f ~ Fg and N(f,ﬁ) —0iff f~—G. m

4. The coincidence Nielsen number for maps from an even-
dimensional torus. In this and the next sections we assume that n is
even; the odd case is easier and will be discussed in Section 6.

Now we apply the results of the last section to maps from the n-torus
T = (SH™ = ([0,1]/{0 = 1})" into RP™. We fix the points py = {0 =
1} € S 29 = (po,...,po) € (SH™ = T™ and yo = [1,0,...,0] € RP".
Let a;(t) denote the canonical generators of m1(T™,x¢) given by a;(t) =
(p07 s ,po,exp(Qﬂ’ti),po, s 7p0) e (] = 17 s ,TL). Let ©: 7T1(Tn>$0) -
m1(RP™ yo) = Zo be a homomorphism and let Ag = {j € {1,...,n} :
©(a;) # 0}. Then the formula

fo(ti, ... tn) = [exp( Z tkm'),(),...,O]

kedo
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gives a map fo : T™ — RP"™ such that fox = 6. Now fix a map
f (T z9) — (RP™,yo) and let © = fy. Since fx = fox, we may
assume by (3.6) that f = fo#s for a map s: S™ — RP™. Thus f sends the
(n — 1)-skeleton into the 1-skeleton and all induced homology and cohomol-
ogy homomorphisms are zero in dimensions k = 2,...,n — 1. On the other
hand, we notice that deg, fo = 0 since the whole image of fg lies in the
1-skeleton. Moreover, deg, s = 0 since s admits a lift

Sn
3 Vs l q
s 2, RP»

and deg, s = deg, gs = deg, gdeg, s but deg, ¢ = 0 since ¢ is two-fold.
Thus deg, f = degy(fo#s) = degy fo +degys =0 and f, : H,(T",Z2) —
H,(RP",Zs), f* : H"(RP",Zs) — H"(T™,7Z3) are also zero homomor-
phisms.

Now we are in a position to compute the Zs-Lefschetz number of f, g :
T™ — RP"™. We consider the squares

—1

Hy(T", 7o) E—  H (T, Z)

f*l Tg*
Hy(RP",Zy) —2— H"FRP",Zy)

If n > 2 then for any k either 1 < k or 1 < n — k so in any case at least
one of the vertical homomorphisms is zero and Ls(f, g) = 0.

If n = 2 then the above diagram may give a non-zero homomorphism for
k = 1. In this case we write f.a; = k;a, g.a; = kla, hence f*a = kya; +kqaz,
g*ﬁ = k?llal + k‘éag (here ai,ay € Hl(Tn,Zg), ai,as € Hl(Tn,ZQ), a €
Hi(RP",Zs), a € H*(RP",Zs) denote the canonical generators). Thus

1 s ki k
La(f9) =D DL = dec [ 11 | € 0.
1 2

Now we may compute the Nielsen number; we consider three cases ac-
cording to Section 3.

(a) The equality (3.2) holds.

(al) Let fu # g#. Then one of the homomorphisms fx, g4 must be
zero. Indeed, suppose otherwise. Then fua; # 0, gxa; # 0 for some 4, j =
1,...,n. If moreover gxa; # 0 then a; € C*(fu,g4) but fra; = gpa; = a
is orientation-reversing on RP"™, contradicting (3.2). If fua; = gga; = 0
then a; + a; contradicts (3.2).
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Let p: T™ — T™ be a 2™-fold covering corresponding to the subgroup of
elements of w1 T™ divisible by 2. Then any pair of maps f, g admits lifts

T fg Sn

/| Js
T L9, Rpr
and (2.6) implies N(f,g) = N(f,§).
We may assume that fx = 0 and g4b # 0 for some b € ;7" not divisible

by 2. Let 3 be the transformation of the covering p : T™ — T" determined
by b. Then the diagram

™ 2 sn

al e
™ L. gn
commutes (« denotes the antipodism). Now, by (1.2), degg = 0, so (3.10)
implies
0 if deg f~‘: 0,
1 if deg f;é 0.

On the other hand, since fx = 0, there exists a map f’ such that the diagram

N@@:{

f

™ — S"
pl fl/ lq
f

m —— RP"

commutes. Since deg f = deg(f’p) = deg f'degp = 2" deg [/, N(f, 9)=0
iff degf’ = 0 but then J?’ is null homotopic, and hence so is f = qf’. Thus
we get
N(f,g) = { (1) if one O_f the maps f, g is null homotopic,
otherwise.
(a2) If fu = g4 then (3.2) means fy = g4 = 0 and the maps f, g admit
lifts

Sn
1.9, l a
™ L9, Rrpn
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Then by (2.6), N(f,g) = N(f,§) + N(f,—§) and hence
0 if f~g~const,
N(f,g) = {1 if f~ g const,
2 iffg.

(b) (3.2) does not hold and fyu # g4. Then there is only one Reidemeister
class and it is defective. If n > 3 then Lo(f,g) = 0 and [Je2, (2.3)] implies
N(f,g) = 0. If n =2 then one can check that our assumptions are fulfilled
exactly for

R R P R IR R

But now in any case

ki k
Ly(f,g)=det |7} 7| #0€Zs
1k

and hence N(f,g) = 1.
(c) (3.2) does not hold and fyu = g4. Then Lo(f,g) = 0 and (3.9) imply

N(f,g):{o if f~g,

2 otherwise.

5. The coincidence Nielsen number for maps from an even-
dimensional projective space. Let n € N be even. Recall that

Zo for k <n,

n o k n —
Hi(RP",Zy) = H*(RP 7Z2)_{0 for k >n,

and H*(RP™,Zy) = Zsla]/(a™*!) as algebras. We denote by ay € Hy(RP™,
Zs), a* € H*(RP",Zy) the non-trivial elements, k = 0,...,n. Consider a
map f : RP" — RP"; let f.a; = ca; (¢ € Zz). Then f*a' = cal, hence
f*a* = ca®, which implies f,ar = cay (universal coefficients formulae),
k=1,...,n.

Consider f,g: RP™ — RP"™. We now determine the Zy-Lefschetz num-
ber of this pair. Let f.a; = caq, g+a1 = ca;. Then the above discussion
implies that in the diagrams

Hy(RP", Zs) 2 H"M(RP", Z5)

‘| 1o
H,(RP™,Zy) —2— H"*(RP",Z,)

we have
cag fork=0,
D_lg*Df*(ak)Z{cc’ak fork=1,...,n—1,
can, fork=n.
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Thus Ly(f,9) = + (n—1)ed + ¢ = + e + ¢ € Zy (since n is even) and

finall
' La(fg) = {0 He=¢ =0,
2 1 otherwise.

Now we compute the Nielsen number. First we assume that fu # gx.
Then there is only one Reidemeister class and Lo (f,g) = 1 implies N(f, g) =
1. Let now fyx = g% = 0. If moreover f and g are homotopic then there is
only one Nielsen class and it is defective, so Ly(f, g) = 0 implies N(f, g) =
0. If f and g are not homotopic then N(f,g) = 2 by (3.9). Finally, let
f# = g# = id. Then no class is defective and we may use lifts:

Sn f.g qn
o] Js
rpr L%, rpn
Now f,§ are odd maps (f(—%) = —f(#)) and hence their degrees are

odd numbers. On the other hand, the number m from (2.5) equals one and
now Lemma (3.1) implies

e it

:{1 if f~g,

2 otherwise.
Finally, we get
(5.1) COROLLARY. For any pair of maps f,g : RP™ — RP"™ (with n
even)
0 iffp=9gx=0and f~g,

N(f,g) =41 if fo #9g or (fg =94 =id and f ~g),
2 iffp=gyand f2g.

In particular, for g = id we obtain a formula for the fired point Nielsen
number of a self-map f of RP™ (n even):

N(f):{z if fo =id and f #1id,

1 otherwise.

6. The coincidence Nielsen number for maps from an odd-
dimensional manifold. The computation of the two last sections could
be modified to cover also the odd-dimensional case. But this turns out to be
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easier since then RP" is orientable. Let n = 2k + 1. The cyclic homotopy
H :RP"x I — RP",

H([z1,...,2k41],t) = [z1 exp(7ti), ..., zky1 exp(nti)],

shows that RP™ is a Jiang space [J]. Let f,g: M — RP™ be maps from an
n-dimensional orientable manifold. Then Lemma (6.6) of [Jel] implies that

o if L(f,g) =0,
N(f,9) = {R(ﬁg) if L(f,g) #0,

S0 it remains to compute the ordinary Lefschetz number. Since

) . itk =0,n,
Hi(RP ’Q):H’“(RP ’Q):{E)Q otherwise

in the diagrams

H(M,Q) <= H"*(M,Q)

f*l Tg*
Hy(RP",Q) —2— H"*RP",Q)

we have @y = degg, ©, = deg f and O = 0 for other k, which implies
L(f,g9) = degg — deg f.

(6.1) COROLLARY. Let M be an oriented n-manifold (with n odd) and
let f,g: M — RP™. Then

0 ifdegf=degy,
N(f,g) =<1 ifdegf #degyg, fu # g,
2 dfdegf #degyg, fu=gu.

Proof. Check case by case. Combine (2.4) with the arguments of this
section. m
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