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Exceptional directions for Sierpiński’s
nonmeasurable sets

by

B. K i r chh e im (Bratislava) and T. Na tkan i e c (Bydgoszcz)

Abstract. In [2] the question was considered in how many directions can a nonmea-
surable plane set behave even “better” than the classical one constructed by Sierpiński in
[6], in the sense that any line in a given direction intersects the set in at most one point.
We considerably improve these results and give a much sharper estimate for the size of
the sets of those “better” directions.

I. Let us establish some terminology to be used later. We shall denote by
L the outer Lebesgue measure in the plane R2 and by | · | the outer Lebesgue
measure on the real line R. By `(x, y) and `δ(x) we denote the line through
the two different points x, y ∈ R2 and the line through x in the direction
δ ∈ [0, π), respectively. For a given line ` ⊂ R2 let dir(`) ∈ [0, π) be its
direction. Further, for each M ⊂ [0, π) let CM denote the cone generated by
M , i.e. CM =

⋃
{`δ(0) : δ ∈ M}. For k ≥ 1 and δ ∈ [0, π) let Gk(δ) be the

class of all E ⊂ R2 such that for any line ` with dir(`) = δ the set E ∩ ` is
open in ` and has at most k connected components.

For any M ⊂ R we denote by BSCL(M) = M ∪ {x : (x − ε, x) ∩ M 6=
∅ 6= (x, x + ε) ∩ M for any ε > 0}, the “two-sided” closure of M . Finally,
for A ⊂ R2 let intq(A) denote the interior of A in the qualitative topology,
i.e. the union of all subsets of A of the form U \ I, where U is open and I
is of the first category.

We shall use the following set-theoretical assumptions (see [3] for defi-
nitions). Let A(m) and U(m) stand for the propositions that the union of
less than c (the continuum) measure zero sets has measure zero and that
every set of reals of cardinality less than c has measure zero, respectively.
Furthermore, let A(c) and U(c) be defined similarly with “first category”
replacing measure zero. It is well known that all these conditions follow
from Martin’s Axiom and therefore also from the Continuum Hypothesis
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(see e.g. [5]). If not explicitly stated otherwise, we are working in ZFC
without further assumptions.

A subset S of R is called an S-set (Sierpiński set) if S∩A has cardinality
less than c for each A ⊂ R with Lebesgue measure zero. Note that every
S-set has inner measure zero and, under the assumption A(m), it is easy to
construct an S-set having full outer measure (see e.g. [4]). A subset L of R
is called a Lusin set if L ∩ A has cardinality less than c for each nowhere
dense A ⊂ R.

II. Sierpiński [6] constructed an example of a nonmeasurable (and with-
out the Baire property) subset E of the plane whose intersection with any
line consists of at most two points. It follows immediately that the com-
plement of Sierpiński’s set belongs to

⋂
δ∈[0,π) G3(δ) and therefore, we are

mainly interested in the “better” classes G2(δ).
Frantz [2] proved that if A(m) holds and |[0, π) \ D| = 0 then every

set in
⋂

δ∈D G2(δ) is measurable and, on the other hand, if |D| = 0 then⋂
δ∈D G2(δ) ∩

⋂
δ∈[0,π) G3(δ) contains a nonmeasurable set. These results

lead in a natural way to the following questions:

1. Is full outer measure of D sufficient for measurability of sets in⋂
δ∈D G2(δ) ∩

⋂
δ∈[0,π) G3(δ)?

2. Is a positive inner measure of D sufficient for measurability of sets in⋂
δ∈D G2(δ) ∩

⋂
δ∈[0,π) G3(δ)?

Proposition 1 below answers the first question in the negative.

Lemma 1. Let S ⊂ [0, π) be an S-set. Then for each line ` ⊂ R2 and for
every x ∈ R2 \ ` the set ` ∩

⋃
δ∈S `δ(x) is an S-set on `.

P r o o f. Since every isometry maps S-sets onto S-sets, we can assume
that x = 0 and ` = R×{1}. Let h : (0, π) → ` be a homeomorphism defined
by h(x) = (cot(x), 1) for x ∈ (0, π). Then h and h−1 map measure zero sets
onto measure zero sets and ` ∩

⋃
δ∈S `δ(0) = h(S \ {0}). It is easy to verify

that h(S \ {0}) is an S-set and therefore ` ∩
⋃

δ∈S `δ(0) is an S-set on `.

Proposition 1. Assume A(m). Then for any S-set D ⊂ [0, π) the class⋂
δ∈D G2(δ) ∩

⋂
δ∈[0,π) G3(δ) contains nonmeasurable sets.

P r o o f. Let (Fα)α<c be the net of all closed subsets of R2 with positive
measure. Let D ⊂ [0, π) be an S-set. We choose inductively a net (xα)α<c

such that

xα ∈ Fα \
(
{xβ : β < α} ∪

⋃
β,γ<α

`(xβ , xγ) ∪
⋃

β<α

(xβ + CD)
)

.

Assume that for some α < c and for all β < α points xβ are already defined.
Fix δ ∈ [0, π) \ D. According to Fubini’s Theorem, there exists a line ` in
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the direction δ such that xβ 6∈ ` for β < α and ` ∩ Fα has a positive linear
measure. Lemma 1 implies that `∩(xβ +CD) is an S-set on ` for each β < α.
Since the union of less than c S-sets is an S-set, the set

` ∩
( ⋃

β,γ<α

`(xβ , xγ) ∪
⋃

β<α

(xβ + CD)
)

has linear inner measure zero and consequently,

` ∩ Fα \
( ⋃

β,γ<α

`(xβ , xγ) ∪
⋃

β<α

(xβ + CD)
)

is nonempty; select xα from this set. Finally, it is easy to verify that the
set E = R2 \ {xα : α < c} belongs to

⋂
δ∈D G2(δ) ∩

⋂
δ∈[0,π) G3(δ) and is

nonmeasurable.

Corollary 1. If we assume A(m) then there exists D ⊂ [0, π) of full
outer measure for which

⋂
δ∈D G2(δ)∩

⋂
δ∈[0,π) G3(δ) contains nonmeasurable

sets.

The next theorem answers our second question in the affirmative.

Theorem 1. Let D ⊂ [0, π) have positive inner measure. Then any
E ∈

⋂
δ∈D G2(δ) is measurable.

This theorem is a special case of the following proposition (set n = 1 and
c = |D|∗/2π), which will be applied below a second time and which uses an
idea from Theorem 2 in [2].

Proposition 2. Let c > 0, n ≥ 1 and D ⊂ [0, π) be such that for all
x1, . . . , xn ∈ R2 mutually different and any j ≤ n

lim sup
r↘0

L∗((
⋃n

i=1(x
i + CD)) ∩B(xj , r))

L(B(xj , r))
> c ,

where B(x, r) = {y ∈ R2 : ‖x − y‖ < r} and L∗(A) denotes the inner
measure of A. Then each E ∈

⋂
δ∈D G2(δ) is Lebesgue measurable.

P r o o f. Using a suitable rotation of the plane, we may assume that 0 ∈
D. For any p < q let E(p, q) = {y : (p, q)×{y} ⊂ E}. Obviously, E ∈ G2(0)
implies E =

⋃
{(p, q)× E(p, q) : p < q rationals}. Hence, the measurability

will follow if we show that for any p < q there exists a measurable set A
satisfying (p, q)×E(p, q) ⊂ A ⊂ E. But this is a consequence of the following
statement:

(∗) for any p < q, L(((p, q)× BSCL(E(p, q))) \ E) = 0 .

Indeed, since R \ BSCL(E(p, q)) has all connected components nondegen-
erate and hence at most countably many of them, we infer that (p, q) ×
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BSCL(E(p, q)) is a Gδ-set, and hence measurable. Therefore, (∗) ensures
that we could choose

A = ((p, q)× BSCL(E(p, q))) \ ((p, q)× BSCL(E(p, q)) \ E) .

So, let us prove (∗). Assume

S = ((p, q)× BSCL(E(p, q))) \ E

is not of measure zero and let S̃ be a measurable hull of S. Lebesgue’s
density theorem (see e.g. [1], p. 184) implies that there exists a measure
zero set S0 such that any x ∈ S̃ \ S0 is a density point of S̃ and hence a
point of outer density of S. Consequently, we can find x1 ∈ S\S0. Obviously

x1
1 ∈ (p, q) and x1

2 ∈ BSCL(E(p, q)) \ E(p, q) ,

therefore we can choose s, t ∈ E(p, q) with s < x1
2 < t such that

L(B(x1, 1) ∩ Lx1) > (1− c)L(B(x1, 1))

where Ly =
⋃
{`δ(y) : `δ(y)∩((p, q)×{s}) 6= ∅ and `δ(y)∩((p, q)×{t}) 6= ∅}

for general y. This inequality together with the definition of a point of
outer density imply that we can find n − 1 different points x2, . . . , xn ∈
S ∩ ((p, q) × (s, t)) ∩ Lx1 \ {x1}. Since Ly \ {y} is always open, there is an
R > 0 such that

B(x1, R) ⊂ ((p, q)× (s, t)) ∩ Lx2 ∩ . . . ∩ Lxn \ {x2, . . . , xn} .

Now notice that for any x ∈ S ∩ ((p, q)× (s, t)),

Lx ∩ (x + CD) ∩ ((p, q)× (s, t)) \ {x} ⊂ E .

Indeed, by definition any line `δ(x) contained in Lx ∩ (x + CD) intersects
(p, q)×{s, t} ⊂ E on both sides of x and has on both sides of x precisely one
connected component of `δ(x)∩E (since x 6∈ E and δ ∈ D). However, since
δ 6= 0 and since x1

2 is a two-sided accumulation point of E(p, q), the union of
those two connected components also contains `δ(x) ∩ ((p, q)× (s, t)) \ {x},
as was to be shown.

Summarizing we obtain

[(x1 + CD) ∪ . . . ∪ (xn + CD)] ∩B(x1, R) ∩ Lx1 \ {x1} ⊂ E .

However, according to the assumptions on D and Lx1 ,

lim sup
r↘0

L∗(E ∩B(x1, r))
L(B(x1, r))

> 0 .

But, since E ∩ S = ∅, this contradicts the fact that x1 is a point of outer
density of S and proves (∗) as well as the whole proposition.

According to Proposition 1, outer measure cannot be used to guarantee
that a given set D ⊂ [0, π) is sufficiently large to make each E ∈

⋂
δ∈D G2(δ)

measurable. Since the set constructed there was of inner measure zero,
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this example together with Theorem 1 could lead to the conjecture that⋂
δ∈D G2(δ) consists only of measurable sets iff D ⊂ [0, π) has positive inner

measure. However, this is refuted by

Theorem 2. Assume U(m). Then there exists D ⊂ [0, π) of inner mea-
sure zero such that any E ∈

⋂
δ∈D G2(δ) is measurable.

Indeed, this is an immediate consequence of Proposition 2 and the fol-
lowing

Proposition 3. There exists M ⊂ [0, π) with no nonempty perfect subset
and such that

V = R2 \ [(x + CM ) ∪ (y + CM ) ∪ (z + CM )]

is contained in the union of less than c lines whenever x, y, z ∈ R2 are three
different points. Hence M has inner measure zero, intq(M) = ∅ and if we
suppose U(m) (resp. U(c)) to be true then V has measure zero (resp. is of
the first category) whenever x, y, z are different.

P r o o f. For any s, t ∈ [0, π) and any three different x, y, z ∈ R2 we set
T (x, y, z) = `(x, y)∪`(y, z)∪`(z, x) and let M(s, t;x, y, z) be the set of all u ∈
[0, π) such that there is a bijection f : {1, 2, 3} → {x, y, z} with `s(f(1)) ∩
`t(f(2))∩ `u(f(3))\T (x, y, z) 6= ∅. Simple geometrical reasoning yields that
for any fixed f there is at most one such u and hence M(s, t;x, y, z) contains
at most 6 elements. Next, let {Cα}α<c be the system of all perfect subsets of
[0, π) and let {(xα, yα, zα)}α<c be an enumeration of all triples of different
points in R2.

Now, assume that for some κ < c all tα, α < κ, have already been chosen.
Then a simple comparison of cardinalities shows that we can select some

(∗) tκ ∈ Cκ \
⋃

α≤κ

⋃
β,γ<κ

M(tβ , tγ ;xα, yα, zα) .

Finally, the set M = [0, π) \ {tα : α < c} has all the required properties.
From (∗) it is obvious that M contains no nonempty perfect sets. To verify
the second property of M it suffices to show that for each κ < c the set

Sκ = (xκ + C[0,π)\M ) ∩ (yκ + C[0,π)\M ) ∩ (zκ + C[0,π)\M )

is a subset of

T (xκ, yκ, zκ) ∪ (xκ + C{tα:α<κ}) ∪ (yκ + C{tα:α<κ}) ∪ (zκ + C{tα:α<κ}) .

(Note that if we assume U(m) (resp. U(c)) then this last set has measure
zero (resp. is of the first category).)

But indeed, if p ∈ Sκ\T (xκ, yκ, zκ) then p ∈ `tα
(xκ)∩`tβ

(yκ)∩`tγ
(zκ) for

three different ordinals α, β, γ < c. Hence there are α′ < β′ < γ′ < c with
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{α, β, γ} = {α′, β′, γ′} and of course, tγ′ ∈ M(tα′ , tβ′ ;xκ, yκ, zκ). According
to (∗) this implies γ′ < κ and

p ∈ (xκ + C{tα:α<κ}) ∪ (yκ + C{tα:α<κ}) ∪ (zκ + C{tα:α<κ}) .

Let us remark that in the same way as Proposition 3 we can prove in
ZFC that for any three different points x, y, z there exists a set M of inner
measure zero such that

(x + CM ) ∪ (y + CM ) ∪ (z + CM ) = R2 .

On the other hand, it is easy to observe that there is no “universal” set M
of inner measure zero which has the above property for each triple x, y, z of
distinct points in R2.

III. The well-known correlation between measure and category [4] sug-
gests that category analogues of the foregoing results are true. Indeed, one
can prove the following theorems (we omit the proofs which are quite the
same as in the second section).

Proposition 4. Assume A(c). If D ⊂ [0, π) is of the first category
then there exists a set E in

⋂
δ∈D G2(δ) ∩

⋂
δ∈[0,π) G3(δ) without the Baire

property.

Proposition 5. Assume A(c). Then there exists D ⊂ [0, π) which is
of the second category at each point of [0, π) and for which

⋂
δ∈D G2(δ) ∩⋂

δ∈[0,π) G3(δ) contains sets without the Baire property.

Proposition 6. Let 0 < a < b < π, n ≥ 1 and D ⊂ [0, π) satisfy

{x1, . . . , xn}+ C(a,b) ⊂ cl
(

intq
( n⋃

i=1

(xi + CD)
))

for any different points x1, . . . , xn ∈ R2. Then each set E in
⋂

δ∈D G2(δ)
has the Baire property.

P r o o f. Similarly to the proof of Proposition 2 it is enough to prove
that for each pair of rationals p, q the set S = ((p, q)× BSCL(E(p, q))) \ E
is of the first category. Suppose that S is of the second category. Then
there exist nonempty intervals U ⊂ (p, q) and V such that S is of the second
category at each point of U × V . Fix x1 ∈ S ∩ (U × V ) and s < x1

2 < t with
s, t ∈ V ∩ E(p, q) and such that the open set {δ ∈ (a, b) : `δ(x1) ⊂ Lx1} is
nonvoid. In the same way as in the proof of Proposition 2 we can choose
n − 1 different points x2, . . . , xn ∈ S ∩ (U × (s, t)) ∩ Lx1 \ {x1} and R > 0
such that

B(x1, R) ⊂ (U × V ) ∩ Lx2 ∩ . . . ∩ Lxn \ {x2, . . . , xn}
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and

[(x1 + CD) ∪ . . . ∪ (xn + CD)] ∩B(x1, R) ∩ Lx1 \ {x1} ⊂ E .

From the assumption on D it follows that E ∩ B(x1, R) contains a second
category subset with the Baire property, which contradicts the assumption
on U × V .

Theorem 3. If D ⊂ [0, π) contains a second category set having the
Baire property , then each set in

⋂
δ∈D G2(δ) also has the Baire property.

Proposition 7. Assume U(c). Then there exists M ⊂ [0, π) such that
intq(M) = ∅ and R2 \ [(x+CM )∪ (y+CM )∪ (z +CM )] is of the first category
whenever x, y, z are three different points of R2.

Theorem 4. Assume U(c). Then there exists D ⊂ [0, π) such that
intq(D) = ∅ and any set in

⋂
δ∈D G2(δ) has the Baire property.

IV. Now we try to find conditions for
⋂

δ∈[0,π) G3(δ) ∩
⋂

δ∈D G2(δ) to
contain non-Borel sets.

First, Frantz [2] showed that
⋂

δ∈[0,π) G3(δ) ∩
⋂

δ∈D G2(δ) contains only
open sets provided that [0, π) \D is finite.

Theorem 5. If [0, π) \ D is countable then any set in
⋂

δ∈[0,π) G3(δ) ∩⋂
δ∈D G2(δ) is of type Gδσ.

P r o o f. Let E ∈
⋂

δ∈[0,π) G3(δ) ∩
⋂

δ∈D G2(δ). We may assume that
0, π/2 ∈ D. For p < q define

E(p, q) = {y : (p, q)× {y} ⊂ E} , E∗(p, q) = {x : {x} × (p, q) ⊂ E} .

Obviously, E ∈ G2(0) ∩ G2(π/2) implies

E =
⋃
{[(p, q)× E(p, q)] ∩ [E∗(p′, q′)× (p′, q′)] :

p < q, p′ < q′ rationals} .

Similarly to the proof of Proposition 2 it is enough to verify that for any
p < q and p′ < q′ the set

M = [(p, q)× BSCL(E(p, q))] ∩ [BSCL(E∗(p′, q′))× (p′, q′)] \ E

is countable. One easily observes that for each line ` any x ∈ `∩M is a two-
sided cluster point of ` ∩ E. Hence, for a fixed x0 ∈ M the set `δ(x0) ∩M
contains at most two points and moreover, `δ(x0) ∩ M = {x0} whenever
δ ∈ D. Since [0, π) \D is countable, the proof is finished.

But what happens for general D ⊂ [0, π)? First assume that card([0, π)\
D) < c. If we assume CH then from the foregoing it follows that every set
in

⋂
δ∈[0,π) G3(δ)∩

⋂
δ∈D G2(δ) is Borel measurable. On the other hand, if we

assume non-CH then there exists D ⊂ [0, π) such that card([0, π) \D) < c
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and
⋂

δ∈[0,π) G3(δ)∩
⋂

δ∈D G2(δ) contains non-Borel sets. Indeed, let M ⊂ R2

be a set having no three points on a line and with cardinality strictly between
ℵ0 and c. Then D = [0, π) \ {dir(`(x, y)) : x, y ∈ M,x 6= y} has the
mentioned properties.

Finally, we allow [0, π) \D of cardinality c.

Proposition 8. There exists an open set D ⊂ [0, π) of full measure such
that

⋂
δ∈[0,π) G3(δ) ∩

⋂
δ∈D G2(δ) contains 2c nonprojective sets.

P r o o f. Let M ⊂ [0, π/2) be a perfect set with symmetrical index (also
called packing dimension) Dim(E) = 0 (see [7]). Then the sets M̃ of all
points of R2 with polar coordinates r = 1 and φ ∈ M and D = [0, π)\ [π/2+
(1/2)(M+M)] (where π/2+(1/2)(M+M) = {π/2+(1/2)(y+z) : y, z ∈ M})
are perfect and have packing dimension zero [7]. Consequently, D is open
and has full measure. Let E be a fixed subset of M̃ . Evidently, Ec ∈⋂

δ∈[0,π) G3(δ) where Ec = R2 \ E. We shall verify that Ec ∈
⋂

δ∈D G2(δ).

Assume that Ec 6∈ G2(γ) for some γ ∈ [0, π). Then there exist x, y ∈ M̃ for
which the line `(x, y) has direction γ. Let x and y have polar coordinates
(1, α) and (1, β), respectively. Then simple geometrical reasoning yields
that γ = π/2 + (1/2)(α + β) ∈ π/2 + (1/2)(M + M) and therefore, γ 6∈ D.
Obviously, there are 2c nonprojective subsets of M̃ .

Theorem 6. For D ⊂ [0, π) the family
⋂

δ∈[0,π) G3(δ)∩
⋂

δ∈D G2(δ) con-
tains a non-Borel set iff

(∗) there is an uncountable set M ⊂ R2 having no three points on any
line and no two points on lines with directions in D.

P r o o f. Obviously, the condition (∗) is sufficient. Indeed, if M fulfills
(∗), then there exists a non-Borel subset E of M with E ∈

⋂
δ∈[0,π) G3(δ) ∩⋂

δ∈D G2(δ). Now assume that
⋂

δ∈[0,π) G3(δ) ∩
⋂

δ∈D G2(δ) contains a non-
Borel set E. Let δ1, δ2 be two different directions in D; assume for conve-
nience that δ1 = 0 and δ2 = π/2. For p, q, p′, q′ let

Ep,q,p′,q′ = [(p, q)× BSCL(E(p, q))] ∩ [BSCL(E∗(p′, q′))× (p′, q′)] ,
Mp,q,p′,q′ = Ep,q,p′,q′ \ E .

Since

E =
⋃
{Ep,q,p′,q′ \Mp,q,p′,q′ : p < q, p′ < q′ rationals}

and the Ep,q,p′,q′ are Gδ-sets, there are p < q and p′ < q′ such that M =
Mp,q,p′,q′ is uncountable. As in the proof of Theorem 5 we observe that for
any line ` the set `∩M has at most two points and is a singleton whenever
dir(`) ∈ D. Thus M satisfies (∗).
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Corollary 2. Assume CH. Then the set M defined in Proposition 3
is non-Borel (since it is nonmeasurable) and does not satisfy the condition
(∗). Hence any set in

⋂
δ∈[0,π) G3(δ) ∩

⋂
δ∈M G2(δ) is Borel measurable.
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