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Representing free Boolean algebras

by

Alan Dow (North York, Ont.)
and Peter Ny i k o s (Columbia, S.C.)

Abstract. Partitioner algebras are defined in [2] and are natural tools for studying
the properties of maximal almost disjoint families of subsets of ω. In this paper we
investigate which free algebras can be represented as partitioner algebras or as subalgebras
of partitioner algebras. In so doing we answer a question raised in [2] by showing that the
free algebra with ℵ1 generators is represented. It was shown in [2] that it is consistent that
the free Boolean algebra of size continuum is not a subalgebra of any partitioner algebra.

1. Introduction and main result. Two subsets of the integers, A, B,
are almost disjoint if A ∩ B is finite. Similarly, A and B are almost equal,
denoted by A =∗ B, if (A \B)∪ (B \A) is finite, and A is almost contained
in B is denoted by A ⊂∗ B.

For any almost disjoint family M of subsets of ω, a set X ⊂ ω is a parti-
tioner of M if (∀M ∈M)(X ∗⊃ M ∨X ∩M =∗ ∅). The partitioner algebra,
BM, corresponding to M is the quotient of PM by the ideal, IM, generated
by M, where PM is the set of partitioners of M. From now on, algebra
will always mean Boolean algebra. An algebra B is said to be representable
if it is isomorphic to a partitioner algebra for some mad (maximal almost
disjoint) family M. We will say that a set Y splits a set M if M ∩ Y and
M \ Y are both infinite. Note that Y 6∈ PM if and only if Y splits some
member of M. See [2] for more details.

Partitioner algebras are also very important to topologists. A topological
space Ψ is a Ψ -space if

• Ψ is locally compact and Hausdorff,
• Ψ has a countably infinite dense subset D of isolated points,
• Ψ \D is an infinite discrete (closed) subspace,
• every infinite subset of D contains a subsequence which converges to

some point of Ψ \D.
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If M is a mad family on ω, it is clear how to construct a Ψ -space Ψ(M)
from M. Indeed, we take D = ω and M itself forms the set Ψ \D. For each
M ∈M, {M} ∪M is a clopen set in which M (as a subset of ω) converges
to the point M . These spaces are introduced and shown to have the above
properties in [6]. It follows that Ψ(M) embeds naturally into the Stone
space of the partitioner algebra, which turns out to be the maximal zero-
dimensional compactification of Ψ(M) usually denoted by ζ[Ψ(M)]. Recall
that β[Ψ(M)] is the maximal compactification of Ψ(M). For a space X, βX
is equal to ζX if and only if βX is zero-dimensional. There are Ψ -spaces,
Ψ , for which β Ψ is not zero-dimensional [10].

We let P(S) denote the power set of S. Let us call an ideal I ⊂ P(ω)
a κ-tower if I is generated by a set of cardinality κ which is a maximal
well-ordered chain when ordered by inclusion mod finite. (Here “maximal”
means maximal in P(ω) \ {A ⊂ ω : A =∗ ω}.) Recall that t is the least
cardinal such that there is a t-tower.

Lemma 1.1. If there is a κ-tower then there is an ideal I which is a
κ-tower such that P(ω)/I contains a copy of P(ω).

P r o o f. Let J be an arbitrary κ-tower. Let f be any finite-to-one
function from ω to itself with the property that |f−1(n)| = n for each
n ∈ ω. Let I be the ideal generated by {f−1[J ] : J ∈ J }. If {Jα : α < κ} is
the well-ordered chain which generates J , then {f−1[Jα] : α < κ} is again
a well-ordered chain which generates I. To see that {f−1[Jα] : α < κ} is
maximal, assume that f−1[Jα] ⊂∗ I for each α < κ. Let J = f [I] and note
that Jα ⊂∗J for each α < κ; hence I is a κ-tower. Finally, we can embed
P(ω) into P(ω)/I as follows. For each n ∈ ω we may view f−1(n) as a
copy of the set n = {0, 1, . . . , n− 1}. For each A ⊂ ω, let XA be the subset
of ω with the property that XA ∩ f−1(n) is exactly A ∩ n under the above
identification.

Corollary 1.2. There is a t-tower I such that P(ω)/I contains a copy
of the free algebra on c generators.

P r o o f. Clearly it follows from t = κ that there are κ-towers. So apply
the above lemma together with the fact that P(ω) contains a copy of the
free algebra with c generators.

We shall need the following fundamental result from [2] (the result for
countable algebras, B, is due to Teresawa [10]). Recall that p is the least
cardinal such that there is a filter base of infinite subsets of ω for which
there is no infinite set which is almost included in each member of the filter.

Proposition 1.3. If B is a subalgebra of P(ω) consisting only of infinite
sets and |B| < p, then there is a mad family M such that B/IM is the
partitioner algebra for M (i.e. not only is B isomorphic to the partitioner
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algebra but it is essentially equal to it). Furthermore, it may be assumed
that , for each filter F ⊂ B,

|{M ∈M : (∀F ∈ F)(M ⊂∗ F )}| = c ,

P r o o f. Each ultrafilter on B is a filter of fewer than p infinite subsets
of ω and there are therefore many infinite subsets of ω which are almost
contained in every member of this filter. Therefore a mad family of infinite
subsets of ω can be found such that B is a subset of the partitioner algebra.
Notice also that ifM is any mad family with B ⊂ BM then for each M ∈M,
{B ∈ BM : M ⊂∗ B} generates an ultrafilter, UM , on BM. One then uses
a technique originally used by Mrówka [7] to modify the family so as to
keep all of B as partitioners but to destroy the unwanted partitioners. The
technique is to collapse certain pairs of the first family into single sets by
simply taking the union of the pair. The resulting family will still be mad,
and if for each pair that is collapsed the same ultrafilter on B is generated
by each set in the pair, then every member of B will remain a partitioner.
However, partitioners can be destroyed by choosing a pair which is split by
that partitioner. It is clear that all unwanted partitioners can be killed in
this way if M can be chosen so that for each partitioner Y ∈ PM and each
ultrafilter U on B, {M ∈M : U = UM and |Y ∩M | = ℵ0} is either finite or
has cardinality c.

This can be accomplished as follows. First of all we use the fact that
Mrówka constructed a mad family with the property that every partitioner
which meets infinitely many, actually meets c-many. Next, for each ultra-
filter U of B choose an arbitrary infinite set AU which is contained mod
finite in every member of U . Fix a “Mrówka” family, MU , of subsets of
AU . Then, by using the collapsing technique, we may choose a family NU
of infinite sets such that M ∩ AU ∈ MU for each M ∈ NU and which is
maximal with respect to being almost disjoint among the set of all infinite
sets which are contained mod finite in every member of U . Since B has car-
dinality less than p it follows that M =

⋃
{MU : U is an ultrafilter on B} is

a mad family. We check that M has the desired property. If a partitioner
Y meets infinitely many members of NU then (since Y is a partitioner) it
must meet infinitely many members of MU . But since this was a Mrówka
family on P(AU ), it follows that Y meets c-many members of MU .

It is not yet known whether the set-theoretic hypothesis “p = t”, used
below, is a theorem of ZFC ([11], [12]).

Theorem 1.4. If p = t, then for each κ ≤ p, the free algebra with κ
generators can be represented.

P r o o f. Clearly the case κ < p follows from Proposition 1.3 so let
κ = p = t. Let I be any κ-tower such that P(ω)/I contains the free algebra
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with κ generators. Let {Xα : α < κ} ⊂ P(ω) be representatives for the
generators for the above copy of the free algebra. Let {Iα : α < κ} be a
well-ordered (mod finite) family of generators for I with I0 = ∅. Since we
may choose a subsequence and then re-index, we may assume that, for each
α < κ, the family {Xβ ∩ (Iα+1 \ Iα) : β ≤ α} forms an independent family.
Let us now replace each Xα by Xα \ Iα. The above properties of the family
{Xα : α < κ} are still valid for this revised family. For each α < κ, let Xα

denote the subalgebra of P(ω) which is generated by {Xβ : β < α} and let
X denote the algebra which is generated by {Xα : α < κ}.

Use Proposition 1.3, to produce a mad family Mα+1 on P(Iα+1 \ Iα)
for each α so that Mα represents the algebra generated by {Xβ ∩ (Iα+1 \
Iα+1) : β ≤ α}. Using the same principle as in Proposition 1.3, we may also
choose an almost disjoint family, Mα, of subsets of Iα, for limit α, which
we may think of as representing the algebra {Xβ : β < α} restricted to
Iα \ [

⋃
β<α Iβ ]. More specifically, we may choose Mα so that:

1) M ∩ Iγ =∗ ∅ for each M ∈Mα and γ < α,
2) each Xβ , β < α, is a non-trivial partitioner of Mα,
3) if Y is an infinite subset of Iα which is almost disjoint from each Iγ

for γ < α, then there is an M ∈Mα which meets Y in an infinite set, and
4) if Y is any partitioner of Mα then there is a B ∈ Xα and a γ < α

such that B ∩ (Iα \ Iγ) and Y ∩ (Iα \ Iγ) are equivalent modulo IMα .

The only new idea required here is to accomplish 4). First choose a family
M of subsets of Iα satisfying 1)–3). That is, for each M ∈M, M∩Iβ is finite
for each β < α, andM is maximal with respect to this property. In addition,
as discussed following Proposition 1.3, we may ensure that for each ultrafil-
ter U on the algebra {B∩Iα : B ∈ Xα} and each partitioner Y ⊂ Iα, the set
{M ∈ UM : |Y ∩M | = ℵ0} is either finite or has cardinality c. We define Mα

using an induction of length c in which we pick pairs from M which we will
“collapse” to form Mα so as to ensure all partitioners satisfy condition 4).
Indeed, let Y ⊂ Iα be a partitioner and suppose that for each β < α, Y \ Iβ

is not in the algebra generated by {Xγ ∩ (Iα \ Iβ) : γ < α} ∪M ∪ [ω]<ω.
Let this algebra be denoted by Cβ and let C =

⋃
β<α Cβ . Let

J = {X ∩ Iα : X ∈ Xα and (∃γ < α)((X ∩ Iα) \ Iγ ⊂∗ Y )} ,

K = {X ∩ Iα : X ∈ Xα and (∃γ < α)((X ∩ Iα) \ Iγ) ∩ Y =∗ ∅)} .

By our hypothesis on Y , M ∪ J ∪ K ∪ {Iγ : γ < α} generates an ideal
such that we may choose an ultrafilter U on C which is disjoint from this
ideal. Suppose that there is some U ∈ U such that Y ∩ U is almost disjoint
from all but finitely many members, say M0

Y , of MU = {M ∈ M : M ⊂∗
U for each U ∈ U}. Then U = U \

⋃
M0

Y ∈ U and U ∩ Y finite. However,
this contradicts that U 6∈ K. Therefore Y , and similarly, Iα \ Y , meets c-
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many members of MU . If some member of M is split by Y , then there is no
need to do anything. If not, we choose a pair of elements, say M0,Y ,M1,Y ,
of M such that:

• neither has been chosen at previous steps in the induction,
• M0,Y ⊂∗ U ∩ Y for each U ∈ U , and
• M1,Y ⊂∗ U \ Y for each U ∈ U .

It follows that when we define Mα to include the set M0,Y ∪M1,Y , the
set Y will not be a partitioner.

Now we have Mα, for α < κ, with the following properties:

1) M ∈Mα implies that M ⊂∗ Iα \ Iβ for each β < α,
2) each Xβ is a partitioner of the mad family

⋃
α<κMα, and

3) for each partitioner Y of
⋃

α<κMα, and for each α, there is an X in
Xα and a β < α such that Y ∩ (Iα \ Iβ) and X ∩ (Iα \ Iβ) are equivalent
modulo Mα.

Now, of course, we would like to replace the third condition by the fact
that Y and X are equivalent. This is not the case for sets of the form
(X ∩ Iα) ∪ (X ′ \ Iα), where X and X ′ are distinct members of Xα and X ,
respectively. To fix this we will now collapse some members of our mad
family.

Fact 1.4.1. There are disjoint Mα,0 and Mα,1, for each α < κ, so that
Mα = Mα,0 ∪Mα,1 and a function fα from Mα,0 into Mα+1,1 so that

(∀M ∈Mα,0)(∀X ∈ X ) (M ⊂∗ X iff fα(M) ⊂∗ X) .

P r o o f o f F a c t 1.4.1. Recall that we have chosen the families Mα

so that, for each filter F ⊂ Xα,

|{M ∈Mα : (∀F ∈ F)(M ⊂∗ F )}| = c .

For each such F , this set may be partitioned into two pieces. Therefore, for
each α < κ, we may choose Mα,0,Mα,1 ⊂Mα so that, for each i ∈ {0, 1},

|{M ∈Mα,i : (∀F ∈ F)(M ⊂∗ F )}| = c .

Since Xβ ∩ Iα =∗ ∅ for α ≤ β, it follows that the previous condition holds
for each filter F ⊂ X .

For each M ∈ Mα,0, let FM be the filter of all F ∈ Xα such that
M ⊂∗ F . Now by simply well-ordering Mα,0 we may inductively choose
fα(M) ∈ Mα+1,1, for M ∈ Mα,0, so that fα(M) ⊂∗ F for all F ∈ FM .
Similarly, we may ensure that the range of fα is exactly {M ∈ Mα+1,1 :
M ∩Xα is finite}. Let Mα+1,2 = {M ∈ Mα+1,1 : M ⊂∗ Xα} and for α a
limit let Mα,2 = Mα,1 = ∅. To complete the proof of Fact 1.4.1, we must
define Mα,0 and Mα,1 for α = 0 and for α a limit. In all these cases, we
just let Mα,0 = Mα and Mα,1 = ∅.
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We define

M =
⋃

α<κ

[Mα,2 ∪ {M ∪ fα(M) : M ∈Mα,0}] .

It remains to check that BM is isomorphic to X . The first condition of
Fact 1.4.1 guarantees that each X ∈ X is a partitioner of M. For sets
A,B ⊂ ω, let A = B (mod M) abbreviate the statement that there is a
finite set N ⊂M such that, for M ∈M\N , A ∩M is infinite iff B ∩M is
infinite.

Fact 1.4.2. For each Y ∈ PM and for each α < κ there is an X ∈ X
such

X ∩ Iα = Y ∩ Iα (mod M) .

P r o o f o f F a c t 1.4.2. By property 4) of the family Mα, there is an
X ∈ X and a ξ < α such that Y ∩ (Iα \ Iξ) = X ∩ (Iα \ Iξ) (mod M). Let
ξ be minimal such that Y ∩ (Iα \ Iξ) = X ∩ (Iα \ Iξ) (mod M). Clearly
we may assume that ξ > 0 since I0 = ∅. Now choose X ′ ∈ X so that
there is a γ < ξ so that Y ∩ (Iξ \ Iγ) = X ′ ∩ (Iξ \ Iγ) (mod M). By the
minimality of ξ, X ∩ (Iξ \ Iγ) 6= X ′ ∩ (Iξ \ Iγ) (mod M) for all γ < ξ. Now
at least one of (X \X ′) ∩ (Iξ \ Iγ) or (X ′ \X) ∩ (Iξ \ Iγ) is not equivalent
to zero modulo M for all γ < ξ. Assume it is X \ X ′ which is not; the
other case is handled similarly. Therefore there is an M ∈ Mξ such that
M ⊂∗ X \ X ′, hence fξ(M) ⊂∗ X \ X ′. Since there are c-many such M ,
we may assume that M ∪ fξ(M) is not a member of the finite set which
witnesses the hypothesized equivalences of X or X ′ to Y . But now, since
fξ(M) ⊂∗ X, fξ(M) ⊂∗ Y , whereas M ⊂∗ X \ X ′ implies that M ∩ Y is
finite. It follows that Y splits M ∪ fξ(M), contradicting that Y ∈ PM.

Now we show that if Y ∈ PM, then there is an X ∈ X which is equivalent
to Y modulo M. By Fact 1.4.2 it is clear that we may choose, for each
α < κ, an Aα ∈ X so that Y ∩ Iα = Aα ∩ Iα (mod M). We may suppose
that Aα ∈ Xα, since for all X ∈ X there is an X ′ ∈ Xα such that X ∩ Iα =
X ′ ∩ Iα modM. Now by the pressing-down lemma, there is an A ∈ X so
that Aα = A for κ-many α’s. Clearly Y is equivalent to A modulo M.

Corollary 1.5. The free algebra on ℵ1 generators is representable.

P r o o f. If p > ℵ1, then this follows from Proposition 1.3. If p = ℵ1,
then by [9], t = ℵ1 and we apply the previous theorem.

It is shown in [4] that it is consistent to have a non-representable algebra
of cardinality ℵ1.

2. Subrepresentable algebras. As mentioned in the abstract, it is
proven in [2] that it is consistent that the free algebra with c generators is
not even a subalgebra of any representable algebra. Let us now consider the
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problem of determining those κ for which the free algebra with κ generators
is a subalgebra of a representable algebra.

It turns out that this property has a much simpler formulation. We
will look at some topological equivalences in the next section. A family
A ⊂ P(ω) is said to be splitting if for each infinite Y ⊂ ω, there is an A ∈ A
with |Y ∩ A| = |Y \ A| = ℵ0. Let us call a family A nowhere splitting if
for each infinite X ⊂ ω, there is an infinite Y ⊂ X such that Y is not split
by A.

Proposition 2.1. Let κ be an infinite cardinal. The following are equiv-
alent.

1. The free algebra on κ generators is a subalgebra of some representable
algebra.

2. There is an independent family X of cardinality κ which is nowhere
splitting.

3. There is a mad family M and an independent family X of cardinality
κ such that no member of M is split by any member of X .

P r o o f. It is very easy to check that each of the first two statements is
equivalent to the third.

Recall that s is the least cardinality of a splitting family on ω. Naturally
we are considering the following problem.

Problem 2.2. Is the free algebra on s generators a subalgebra of a
representable algebra? Equivalently , is there a nowhere splitting independent
family of cardinality s?

We show that both the hypotheses “there is an s-tower” and “b = s”
imply a “yes” answer to this problem.

Theorem 2.3. If there is an s-tower , then there is a mad family M such
the free algebra on s generators is a subalgebra of BM.

P r o o f. By Lemma 1.1, let I be an s-tower such that P(ω)/I contains a
copy of the free algebra on s generators. Let {Iα : α < s} be the generators
for I which are increasing mod finite. Choose representatives, {Xα : α < s},
for the generators of the free algebra so that Xα ∩ Iα = ∅ for each α < s.
Let X be the algebra generated by {Xα : α < s}.

Claim. The family X is nowhere splitting.

For each α < s, let Xα ⊂ P(Iα) be the algebra generated by {Xβ ∩ Iα :
β < α}. Let S be any infinite subset of ω. Since I is a tower, there is an
α < s such that S ∩ Iα is infinite. By the definition of s, the family Xα is
nowhere splitting. Therefore, there is an infinite Y ⊂ S ∩ Iα such that Y is
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not split by any member of Xα. Finally, note that {X ∩ Iα : X ∈ X} = Xα.
This completes the proof of the claim and, by 2.1, the theorem.

Theorem 2.4. If b = s, then there is a mad family M such that the free
algebra on s generators is a subalgebra of BM.

P r o o f. Rather than working with P(ω) it will be more convenient to use
P(ω×ω). Fix an unbounded family {fα : α < b} of increasing functions from
ω to ω. For α < b, let Iα = {(n, m) : m < fα(n)}. Choose representatives,
{Xα : α < s} ⊂ P(ω), for the generators of the free algebra (as a subalgebra
of P(ω)). For each α < s = b, let

Yα = [Xα × ω] \ Iα .

Clearly, {Yα : α < s} is an independent family.
The algebra, Y, generated by {Yα : α < s} is also nowhere splitting.

Indeed, let S ⊂ ω × ω. If there is an n such that S ∩ ({n} × ω) is infinite,
then, of course, this infinite subset of S is not split by the family Y since
{n}×ω is not split by any member of Y. If {n : ({n}×ω)∩S 6= ∅} is infinite,
then, since {fα : α < s} is unbounded, we may choose α < s such that S∩Iα

is infinite. In this case we proceed exactly as in the previous theorem.

3. The topological setting. A subspace Y of a topological space X
is said to be conditionally sequentially compact (abbreviated CSC) if every
infinite subset of Y has an infinite subsequence which converges to a point
of X. Hagler asked (Top. Proc. 1978) for a compact Hausdorff space which
has a countable dense CSC subspace but which is itself not sequentially
compact (i.e. not CSC in itself). This was answered in the affirmative in [5]
via a somewhat involved construction. It would be interesting to know if
there is a cardinal κ such that 2κ serves as an answer to Hagler’s question.

The cardinal number s marks a watershed in this regard. It is the least
cardinal κ such that 2κ is not sequentially compact ([3], [11]). So if some
2κ serves as an answer to Hagler’s question, 2s does. As we will now show,
this problem of whether 2s has a countable dense CSC subspace is just
Problem 2.2.

Proposition 3.1. If a compact space X has a countable dense CSC
subpace, then there is a Ψ -space Ψ such that βΨ maps onto X.

P r o o f. Let f be any bijection from ω to the dense CSC subspace of
X. Let M be an almost disjoint family of subsets of ω with the property
that for each M ∈ M, f(M) converges in X, and maximal with respect
to this property. Since f(ω) is a CSC subspace of X, M is a mad family.
Since f extends to a continuous function from Ψ(M) to X, the maximality
of βΨ(M) guarantees that f extends to all of βΨ(M).
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The above construction is flexible enough to show that many questions
about compact Hausdorff space with a countable dense CSC subspace are
most naturally answered by looking at Ψ -spaces.

Let us now add some more conditions to Proposition 2.1.

Proposition 3.2. Let κ be an infinite cardinal. Each of the following
are equivalent to each of the statements 2.1.1–2.1.3.

1. 2κ has a countable dense CSC subspace.
2. There is a compact space K with a countable dense CSC subspace

such that K maps onto 2κ.
3. There is a Ψ such that βΨ maps onto 2κ.

P r o o f. Dense CSC subspaces are clearly preserved by continuous sur-
jections, so 3 implies 1. Therefore the above three statements are equivalent
by Proposition 3.1. It is easy to see that conditions 2.1.3 and 3.2.3 are
equivalent.

Proposition 3.3. There is a model in which s < c, and yet 2κ has a
countable dense CSC subspace for each κ ≤ c.

P r o o f. We may start with a model, M , of MA + ¬CH and use The-
orem 1.4 to produce an independent family X = {Xα : α < c} such that
there is a tower {Tα : α < c} so that for each α < c, Tα ∩Xα = ∅. We now
add ω1 Cohen reals to obtain our model, M [G]. We claim that the family X
remains nowhere splitting. Let us first recall the following two well-known
results. First of all, any tower of M remains a tower when Cohen reals are
added. Secondly [8], if one Cohen real is added to M then M is again a
model of p = c.

Now suppose that Y ∈ M [G] is a subset of ω. Since {Tα : α < c} is a
tower, we may choose an α < c such that Y ∩ Tα is infinite. Next, we may
view Y as being obtained by the addition of just one Cohen real, hence we
may apply p = c in such an inner model to obtain an infinite Z ⊂ Y ∩ Tα

such that for every β < α, either Z \Xβ or Z ∩Xβ is finite. Since Z ∩Xβ

is finite for all β ≥ α, it follows that Z is not split by the family X . If at
least ℵ1 Cohen reals are added, we have a model in which s is ω1 [1].

Some other problems suggest themselves in the topological setting.

Problem 3.4. Is there a compact space, K, with a countable dense CSC
subspace, and also an infinite closed subspace Y such that Y has no infinite
converging sequences?

Problem 3.5. If [0, 1]κ has a countable dense CSC subspace, must 2κ

also have one?
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In [5], it is shown that if there is a K as in Problem 3.4, there is a Ψ
which has a compactification satisfying 3.4. However, we do not know if βΨ
would be such a compactification.

Problem 3.6. If Ψ has a compactification as in 3.4, then is βΨ such a
compactification?

Problem 3.7. Does s ≤ b guarantee that 2s has a countable dense CSC
subspace?
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