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Weak variants of Martin’s Axiom
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Abstract. A hierarchy of weak variants of Martin’s Axiom is extended and shown
to be strict.

1. Introduction. Variants of MAκ in which the ccc condition on the
partial order P is replaced by some other condition Φ have been well
studied. In particular, denoting the variant thus obtained by MAκ(Φ)
[MAκ = MAκ(ccc)], the implication diagram below is obtained.

In M[c], c Cohen over M, none of the MAℵ1(Φ) in the diagram hold
except for the bottom one, MA(σ-centered). Using the way in which that
is proved, and some results of Devlin, Shelah and Todorčević, we complete
the known facts about the diagram by proving that no implications exist
other than the ones shown: that is, if MA(Φ1) is above MA(Φ2) in the hier-
archy, then ¬CH + MA(Φ1) + ¬MAℵ1(Φ2) is consistent. We first recall the
definitions of the conditions Φ under consideration.

Definition 1.1. Let P be a partial order and n ∈ ω. Then A ⊆ P is
n-linked if and only if for every p1, . . . , pn ∈ A, there is some p ∈ P with
p ≤ p1, . . . , pn. A is centered if and only if A is n-linked for all n ∈ ω.

Definition 1.2. Let P be a partial order.

1. Given n ∈ ω, P has property Kn iff every A ∈ [P]ℵ1 contains an
uncountable n-linked subset.

2. Given n ∈ ω, P is σ-n-linked iff P =
⋃

k<ω Pk, where each Pk is
n-linked.

3. P is
∧∧

n∈ω σ-n-linked iff P is σ-n-linked for all n ∈ ω.

4. P has pre-caliber ω1 (pc ω1) iff every A ∈ [P]ℵ1 contains an uncount-
able centered subset.

5. P is σ-centered iff P =
⋃

k<ω Pk, where each Pk is centered.
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It is clear from the definitions that the following hierarchy holds.
MA
↓

MA(K2)
↙

MA(σ-2-linked) ↓
↓ MA(K3)

↙
MA(σ-3-linked) ↓

↓
...

... MA(Kn)
↙

MA(σ-n-linked)
...

...
↓ ↓

MA
(∧∧

n∈ω

σ-n-linked
)

↓ MA(pc ω1)
↙

MA(σ-centered)

The consistency of MA(K2) + ¬MAℵ1 + ¬CH is shown in [KT] by ex-
tending a model M in which there is a Suslin tree to a model M[GP ]
of ¬CH + MA(K2) via iterated forcing. Since the partial order P used
to obtain M(GP) has property K2 (see Lemma 1.4), one need then only
check that no K2 partial order destroys a Suslin tree to conclude that
M[GP ] � [2ℵ0 > ℵ1 + MA(K2) + ¬MAℵ1 ]. Similarly, Herink [He] uses
a counterexample to the statement “The measure algebra has pc ω1”, which
is a consequence of MAℵ1(Kn), to show the consistency of ¬CH+MA(pc ω1)
with ∀n ∈ ω ¬MAℵ1(Kn). Since the measure algebra is

∧∧
n∈ω σ-n-linked,

MAℵ1(
∧∧

n∈ω σ-n-linked) also implies the measure algebra has pc ω1. Thus,
Herink’s proof in fact yields Con(¬CH + MA(pc ω1) + ¬MAℵ1(

∧∧
n∈ω σ-n-

linked)). We remark that this result also follows from Pawlikowski’s proof
in [Pa] that MA(pc ω1) is consistent with

(†) There exists a covering of the real line by ω1 measure zero sets

since MAℵ1(
∧∧

n∈ω σ-n-linked) implies that there is no such covering.
Herink also shows in [He] that ¬CH+MA(σ-n-linked) is consistent with

¬MAℵ2(pc ω1) by showing that an (ω2, ω
∗
2) gap cannot be filled by a σ-2-

linked partial order. This left open whether MAℵ2(pc ω1) could be improved
to MAℵ1(pc ω1). In Section 2 we show that this is the case using the notion
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of a uniformization of a ladder system. In order to complete the diagram,
we thus need only show the following two results:

• Con(¬CH + MA(Kn+1) + ¬MAℵ1(σ-n-linked)),

• Con
(
¬CH + MA(σ-centered) +¬MAℵ1

(∧∧
n∈ω

σ-n-linked
))

.

The first we establish in Section 3 using the notion of a ≤n-ary set of
reals. The second result follows from Theorem 1.3 below and the fact that
M[c] � (†) (see [CP]), where (†) is as above. In Section 4 we give an alternate
proof of this consistency result using a generalization of the notion of a ≤n-
ary set of reals.

For all of these results, counterexamples to the various Martin’s Axiom
statements are constructed in the Cohen extension M[c]. To establish the
consistency of ¬CH+MA(σ-centered)+¬MAℵ1(Φ), we then need only apply
the following well-known theorem (see [Ro1,2], [IS]).

Theorem 1.3. M � MAℵ1(σ-centered)⇒M[c] � MAℵ1(σ-centered).

To establish the consistency of ¬CH+MA(Φ′)+¬MAℵ1(Φ) for conditions
Φ′ other than σ-centered, we use the fact that, for the conditions Φ′ under
consideration here, the partial order used to force MA(Φ′) itself satisfies the
condition Φ′. This follows from the following well-known lemmas, whose
proofs we include for completeness (see also [Ba]).

Lemma 1.4. Suppose 〈〈Pξ〉ξ≤α, 〈Πξ〉ξ<α〉 is an α-stage finite support
iteration such that

∀ξ < α Pξ
[Πξ has property Φ] ,

where Φ is either Kn or pc ω1. Then Pα also has property Φ.

P r o o f. We give the proof in the case where Φ is property Kn; the proof
for pc ω1 is similar. We proceed by induction on α.

C a s e 1: Suppose α=β+1. Then Pα=Pβ+1 = Pβ ∗Πβ , where we assume
Pβ has property Kn and Pβ

[Πβ has property Kn]. Let 〈〈pγ〉, 〈πγ〉〉γ∈ω1

⊆ Pα. Since Pβ is ccc, there is some p ∈ Pβ such that p  |{γ ∈ ω1 : pγ ∈
ĠPβ

}| = ℵ1. Let Ȧ be a Pβ term for this set and assume without loss of
generality that

p Pβ
[{πγ : γ ∈ Ȧ} is n-linked] .

Then there exists B ∈ [ω1]ℵ1 such that for all γ ∈ B, there is some p′γ ∈ Pβ

such that
p′γ ≤ pγ , p′γ ≤ p and p′γ  γ ∈ Ȧ .

By the induction hypothesis, Pβ has property Kn, so that {p′γ : γ ∈ B′}
is n-linked for some B′ ∈ [B]ℵ1 . Then {〈pγ , πγ〉 : γ ∈ B′} is the desired
n-linked subset of 〈〈pγ〉, 〈πγ〉〉γ∈ω1 .
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C a s e 2: Suppose α is a limit ordinal. Then Pα = ∗ξ<αPξ, where we
assume that each Pξ, ξ < α, has property Kn. Let 〈pγ〉γ∈ω1 ⊆ Pα and
Sγ = supp(pγ) for all γ ∈ ω1. We may assume by the ∆-system lemma that
Sγ ∩ Sγ′ = S ⊆ β < ω1 for all γ < γ′ < ω1. Since qγ = pγ � (β + 1) ∈ Pβ

for all γ ∈ ω1 and Pβ has property Kn by the induction hypothesis, there is
some B ∈ [ω1]ℵ1 such that {qγ : γ ∈ B} is n-linked. Then {pγ ∈ Pα : γ ∈ B}
is the desired n-linked subset of 〈pγ〉γ∈ω1 .

Lemma 1.5. Suppose α ≤ 2ℵ0 and 〈〈Pξ〉ξ≤α, 〈Πξ〉ξ<α〉 is an α-stage finite
support iteration such that

∀ξ < α Pξ
[Πξ has property Φ] ,

where Φ is either σ-centered or σ-n-linked , n∈ω. Then Pα also has prop-
erty Φ.

P r o o f. We give the proof for σ-n-linked; the proof for σ-centered is
similar. Let 〈〈Pξ〉ξ≤α, 〈Πξ〉ξ<α〉 be a finite support iteration, α ≤ 2ℵ0 , such
that for all ξ < α,

Pξ

[
Πξ =

⋃
k∈ω

Πξ
k is an n-linked decomposition

]
.

We show that Pα is also σ-n-linked.
Let us say a condition p ∈ P is determined just in case for all ξ ∈ supp(p),

there is some kξ ∈ ω satisfying p � ξ  p(ξ) ∈ Πξ
kξ

. Let Pα be the set of all
determined conditions. By induction on α, Pα is dense in the finite support
iteration Pα. Thus, we need only show Pα is σ-n-linked to complete the
proof.

To this end, let g : 2ℵ0 7→ 2ω be 1-1 and onto, so that g labels the
branches of 2ω by ordinals β ≤ 2ℵ0 . For all N ∈ ω, let TN be the binary
tree of height N and T = {〈TN , h〉 : N ∈ ω and h : A 7→ ω, A an antichain
in TN}. Note that for any p ∈ Pα, the set {g(ξ) : ξ ∈ supp(p)} diverges in
2ω below some level N ∈ ω. Thus, the set A = {g(ξ) � N : ξ ∈ supp(p)} is
an antichain in TN . If additionally p ∈ Pα and zξ = g(ξ) � N , then we can
define a map h on A by h(zξ) = kξ if and only if p � ξ  p(ξ) ∈ Πξ

kξ
.

For all 〈TN , h〉 ∈ T , let P〈TN ,h〉 be the set of all p ∈ Pα satisfying

∀ξ ∈ supp(p)∃z ∈ dom(h) g(ξ) extends z ∧ p � ξ  p(ξ) ∈ Πξ
h(z) .

By the above comments, Pα =
⋃
{P〈TN ,h〉 : 〈TN , h〉 ∈ T }. Furthermore,

since Pξ
[Πξ

k is n-linked] for all ξ < α, the cell P〈TN ,h〉 is n-linked for all
〈TN , h〉 ∈ T . Since T is countable, this completes the proof.

The author wishes to acknowledge Rich Laver for sharing his insight into
these questions and the referee for bringing the results of [CP] and [Pa] to
our attention.
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2. MA(pc ω1) and ladder systems. In this section we show that
MAℵ1(pc ω1) does not hold in M[c] by constructing a non-uniformizable
ladder system coloring. We first recall the basic definitions and theorem,
which appear in [DS].

Definition 2.1. Let Ω denote the set of limit ordinals below ω1. Given
α ∈ Ω, a ladder dα on α is a strictly increasing ω-sequence 〈dα

m〉m∈ω cofinal
in α. d = 〈dα〉α∈Ω is a ladder system on Ω if and only if dα is a ladder on
α for all α ∈ Ω.

Definition 2.2. Let d be a ladder system on Ω. A coloring on d is
an Ω-sequence k = 〈kα〉α∈Ω with kα ∈ 2ω for all α ∈ Ω. We say that the
coloring system 〈d, k〉 on Ω is uniformizable if and only if there is a function
g : Ω 7→ ω for which hg = {〈dα

m, kα(m)〉 : α ∈ Ω,m ≥ g(α)} is a function.

Theorem 2.3 (Devlin, Shelah). MAℵ1(pc ω1) implies that every coloring
system 〈d, k〉 on Ω is uniformizable.

Theorem 2.4. Let C be the poset (2)<ω adding a Cohen real. There is a
C-term k̇ = 〈k̇α〉α∈Ω for a ladder system coloring such that for every d ∈M,
if d is a ladder system on ω1, then

M[c] � [If S stationary, then 〈ď, k̇〉 is non-uniformizable on S] .

P r o o f. Let 〈Aα〉α∈Ω be a family of almost disjoint subsets of ω in
M, Aα = {aαm}m∈ω for all α ∈ Ω. Let c, c′ be two mutually generic
Cohen reals with c : ω 7→ ω, c′ : ω 7→ 2. Define kα : ω 7→ 2 in M[c]
by kα(m) = c′(aαc(m)) and let k̇ = 〈k̇α〉α∈ω1 . Let d = 〈dα〉α∈Ω be a
ladder system in M and suppose S ⊆ Ω is stationary in M. We show
C [〈ď, k̇〉 non-uniformizable on Š]. Then since every M[c] stationary set
contains an M stationary subset of Ω, we are done.

Suppose 〈p, p′〉  [ġ : Š 7→ ω]. We show there is 〈q, q′〉 ≤ 〈p, p′〉 such
that 〈q, q′〉  [ġ does not uniformize 〈ď, k̇〉 on Š]. By extending if necessary,
we may assume that for all α ∈ S, 〈p, p′〉  ġ(α) = mα for some mα ∈ ω.
Further, assume that mα = m for all α ∈ S. Choose l > m such that
l 6∈ dom(p). Since dα

l < α for all α ∈ S, Fodor’s lemma gives us a stationary
set S′ ⊆ S and some ν ∈ ω1 such that dα

l = ν for all α ∈ S′. Fix α, β ∈ S′.
Since |Aα∩Aβ | < ℵ0, there is n ∈ ω with aαn 6= aβn and aαn, aβn 6∈ dom(p′).
Extend 〈p, p′〉 to 〈q, q′〉 in such a way that q(l) = n and q′(aαn) 6= q′(aβn).
Thus, 〈q, q′〉  [(ġ(α), ġ(β) < l) ∧ (k̇α(l) 6= k̇β(l))]. Since dα

l = dβ
l , this gives

〈q, q′〉  [ġ does not uniformize 〈ď, k̇〉 on Š], as desired.

Corollary 2.5. M[c] � ¬MAℵ1(pc ω1).

Combining this with Theorem 1.3, we have the following consistency
result.
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Corollary 2.6. Assume Con(ZFC). Then

Con(ZFC + 2ℵ0 > ℵ1 + MA(σ-centered ) + ¬MAℵ1(pc ω1)) .

Lemma 2.7. Let 〈d, k〉 ∈ M be a coloring system on ω1 which is not
uniformizable on any stationary set S ∈M. Then for any σ-2-linked partial
order P in M,

M[GP ] � [〈ď, ǩ〉 is not uniformizable ] .

P r o o f. Working in M, let P =
⋃

i∈ω Pi be a 2-linked decomposition
of P. Suppose ġ is a P-term and p ∈ P such that p  [ġ : Ω 7→ ω].
We show that for some q ≤ p, q  [ġ does not uniformize〈ď, ǩ〉]. Since
p  [ġ : Ω 7→ ω], there is a stationary set S ⊆ Ω in M and some l ∈ ω such
that for all α ∈ S, there is qα ≤ p satisfying qα  ġ(α) = l. Furthermore, we
may assume that for some i ∈ ω, qα ∈ Pi for all α ∈ S. Since 〈d, k〉 is not
uniformizable on S, there are some α, β ∈ S and m,m′ > l such that dα

m =
dβ

m′ and kα(m) 6= kβ(m′). Using 2-linkedness of Pi, let q ≤ qα, qβ . Then q 
[ġ(α) < m and ġ(β) < m′] and we have q  [ġ does not uniformize 〈ď, ǩ〉],
as desired.

Theorem 2.8. Assume Con(ZFC). Then

Con(ZFC + 2ℵ0 > ℵ1 + MA(σ-2-linked ) + ¬MAℵ1(pc ω1)) .

P r o o f. Assume M � [2ℵ0 = 2ℵ1 = ℵ2]. Using standard methods
and Lemma 1.5, we obtain a σ-2-linked partial order P in M[c] forcing
MA(σ-2-linked) in the extension. By Lemma 2.7, M[c][GP ] � [〈ď, k̇〉 is not
uniformizable], where k̇ is the coloring of Theorem 2.4 and d is any ladder
system in M. By Theorem 2.3, we have M[c][GP ] � [2ℵ0 = ℵ2 + MA(σ-2-
linked)+¬MAℵ1(pc ω1)], as desired.

3. MA(σ-n-linked) and ≤n-ary sets of reals. In this section we use
the notion of a ≤ n-ary set of reals, which is due to Todorčević [To1], to
obtain results concerning ¬MA(σ-n-linked). In particular, we present his
proof that M[c] � ∀n ∈ ω ¬MAℵ1(σ-n-linked) in Theorem 3.3 [To2].

Definition 3.1. Given f, g ∈ ωω, let ∆(f, g) = min{i ∈ ω : f(i) 6=
g(i)}. A set A ⊆ ωω is co-divergent at level m ∈ ω if and only if ∆(f, g) = m
for all f, g ∈ A. Given n < ω, A is ≤ n-ary if and only if A contains no
co-divergent subsets of size n + 1. A is finitary if and only if A contains no
infinite co-divergent subsets.

If f ∈ ωω and A ⊆ ωω, we will use ∆(f,A) to denote the minimum of
∆(f, g) for g ∈ A.

Theorem 3.2 (Todorčević). For all n ∈ ω, MAℵ1(σ-n-linked) implies
that every uncountable set of reals contains an uncountable ≤n-ary subset.
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P r o o f. Assume MAℵ1(σ-n-linked) and let A = {fη}η∈ω1 ⊆ ωω. We
define a σ-n-linked partial order P which adds an uncountable ≤ n-ary
subset of A as follows: a ∈ P if and only if

(1) a is a finite ≤n-ary subset of A,
(2) |{f ∈ A : ∆(f, a) > max{∆(g, g′) : g, g′ ∈ a}}| = ℵ1;

and a ≤ a′ if and only if

(1) a ⊇ a′,
(2) for all f ∈ a \ a′, ∆(f, a′) > max{∆(g, g′) : g, g′ ∈ a′}.

Note that condition (2) of the definition of a ∈ P implies that for all η ∈ ω1,
the set Dη = {a ∈ P : fβ ∈ a for some β > η} is dense in P.

Given m ∈ ω and a finite set t ⊆ ωm containing no co-divergent subsets
of size n + 1, let

Pt = {a ∈ P : a � m = t and max{∆(g, g′) : g, g′ ∈ a} < m} .

Clearly, P equals the union of all such Pt. Also, if a0, a1, . . . , an−1 ∈ Pt,
then a =

⋃
i∈n ai ∈ P extending each ai, so that P is σ-n-linked. Applying

MAℵ1(σ-n-linked), let G be generic for 〈Dη〉η∈ω1 . Then A′ =
⋃

a∈G a ⊆ A
is ≤n-ary, while |A′| = ℵ1 by density of the Dη’s. Thus, A′ is the desired
≤n-ary subset of A.

Theorem 3.3 (Todorčević).

M[c] � [∃X∈[ωω]2
ℵ0 ∀n ∈ ω X contains no uncountable ≤n-ary subsets] .

P r o o f. Let c : ω<ω 7→ ω. For all h ∈ ωω ∩M, define in M[c] a function
hc : ω 7→ ω by hc(n) = c(h � n) and let X = {hc : h ∈ ωω ∩M} ∈ M[c].
Fix n ∈ ω and suppose p  [{ẋη}η∈ω1 enumerates Ẏ ⊆ Ẋ]. We show there
is p′ ≤ p such that p′  [Y is not ≤n-ary].

Assume without loss of generality that for all η ∈ ω1, hη ∈ ωω ∩ M
is such that p  [hc

η = ẋη]. Thus, {hη : η ∈ ω1} is an uncountable set
in M. Let m ∈ ω be such that dom(z) ⊆ m for all z ∈ dom(p). Then for
some S′ ∈ [S]ℵ1 and h ∈ ωm, we have hη � m = h for all η ∈ S′. Choose
η0, η1, . . . , ηn ∈ S′ and let m′ = max{∆(hηi , hηj ) : i, j ≤ n}. Extend p to p′

in such a way that

(1) p′(hηi � l) = p′(hηj � l) for all i, j ≤ n and all l < m′; note that
p already satisfies p(hηi � l) = p(h � l) = p(hηj � l) for all l < m with
h� l ∈ dom(p),

(2) p′(hηi
� m′) 6= p′(hηj

� m′) for all i, j ≤ n.

Then p′  [{hc
ηi
}i≤n ⊆ Ẏ co-diverges at level m′], as desired.

Corollary 3.4. M[c] � [∀n ∈ ω ¬MAℵ1(σ-n-linked)].
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Again combining this corollary with Theorem 1.3, we have the following
consistency result.

Corollary 3.5. Assume Con(ZFC). Then

Con(ZFC + 2ℵ0 > ℵ1 + MA(σ-centered ) + ∀n ∈ ω ¬MAℵ1(σ-n-linked )) .

In Section 4, we will show that we cannot replace the “≤ n-ary” of
Theorem 3.3 by “finitary” (see Lemma 4.1).

Lemma 3.6. Suppose n ∈ ω and X ∈ M is an uncountable set of reals
containing no M-uncountable ≤ n-ary subsets. Then for every property
Kn+1 partial order P in M,

M[GP ] � [X̌contains no uncountable ≤n-ary subsets ] .

P r o o f. Working in M, suppose p  [{ẋη}η∈ω1 enumerates Ẏ ⊆ X̌].
Then for each η ∈ ω1, there are some p′η ≤ p and some hη ∈ X such that
p′η  ẋη = hη. Using property Kn+1, we may assume that {p′η : η ∈ ω1} is
(n + 1)-linked. Since {hη : η ∈ ω1} is an uncountable subset of X, there are
η0, η1, . . . , ηn ∈ ω1 such that the set {hηi}i≤n is co-divergent. Taking p′ ∈ P
with p′ ≤ p′ηi

for all i ≤ n, we have p′  [{hηi
}i≤n ⊆ Ẏ is co-divergent], as

desired.

Theorem 3.7. Assume Con(ZFC). Then for all n ∈ ω,

Con(ZFC + 2ℵ0 > ℵ1 + MA(Kn+1) + ¬MAℵ1(σ-n-linked )) .

P r o o f. Similar to Theorem 2.8, using Lemmas 1.4 and 3.6.

4. f-Thin sets. In view of Theorem 3.3, a natural question to ask
is whether there exists an uncountable X ⊆ ωω in M[c] which contains
no uncountable finitary subsets. The following theorem shows this is not
necessarily the case.

Theorem 4.1. MAℵ1(σ-centered) implies that every uncountable A ⊆ ωω

contains an uncountable finitary subset.

P r o o f. Assume MAℵ1(σ-centered) and define a partial order P as in
Theorem 3.2 with condition (1) changed to

(1′) a is a finite subset of A.

Define the cells Pt for finite t ⊆ ω<ω as before. Then each cell is centered,
so that P is σ-centered. The rest of the proof is the same.

Corollary 4.2. If M � MAℵ1(σ-centered), then

M[c] � [Every X ∈ [ωω]ℵ1 has an uncountable finitary subset ] .

Although MAℵ1(σ-centered) guarantees the existence of an uncountable
finitary subset for any uncountable X ⊆ ωω, it says nothing about how this
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set branches. In particular, we will show that MAℵ1(σ-centered) does not
ensure the existence of a finitary subset which is thin in the following sense.

Definition 4.3. Let f ∈ ωω. A set A ⊆ ωω is f -thin if and only if
every B ⊆ A which is co-divergent at level m has cardinality ≤ f(m).

Remark that for the constant function cn defined by cn(j) = n for all
j ∈ ω, A is a cn-thin set if and only if A is ≤n-ary. In fact, by Corollary 4.8
below, for any function f ∈ ωω with limn∈ω f(n) 6= ω, the addition of
an uncountable f -thin set is equivalent to the addition of an uncountable
≤n-ary set, n being the least integer for which |{j ∈ ω : f(j) = n}| = ℵ0;
in this case, the existence of an uncountable f -thin set is thus guaranteed
by MAℵ1(σ-n-linked).

For f ∈ ωω with limn∈ω f(n) = ω, the existence of uncountable f -
thin subsets follows from MA(

∧∧
n∈ω σ-n-linked) (see Theorem 4.9 below).

By Corollary 4.6, this case reduces to showing that MA(
∧∧

n∈ω σ-n-linked)
implies the existence of an uncountable i-thin set, where i ∈ ωω is the
identity function.

Definition 4.4. Let f, g ∈ ωω. Then f eventually bounds g everywhere,
denoted by g � f , if and only if |{j ∈ ω : f(j) < g(m)}| < ℵ0 for all m ∈ ω.
If there is M ∈ ω such that |{j ∈ ω : f(j) < g(m)}| < ℵ0 for all m ≥ M ,
then f eventually bounds g almost everywhere, denoted by g �∗ f .

Theorem 4.5. Let f, g ∈ ωω with g �∗ f . Suppose that every A ⊆ ωω

has an uncountable g-thin subset. Then every A ⊆ ωω has an uncountable
f-thin subset.

P r o o f. Let A ⊆ ωω; we show A has an uncountable f -thin subset. To
this end, let M ∈ ω with |{j ∈ ω : f(j) < g(m)}| < ℵ0 for all m ≥ M . Then
there is some jM ≥ M such that g(M) ≤ f(j) for all j > jM . Without loss
of generality, assume s � jM = s′ � jM for all s, s′ ∈ A. Define by induction
an increasing sequence of integers {jm}m≥M such that for all j ∈ [jm, jm+1)
we have g(m) ≤ f(j). Let Cm = [jm, jm+1) and km = |Cm| for all m ≥ M .
Fix a 1-1 onto map lm : [ω]km 7→ ω for each m ≥ M and define a function
hs ∈ ωω by hs(m) = lm(s � Cm) for each s ∈ A. Thus, hs codes up segments
of s onto single integers in such a way that for all s, s′ ∈ A, ∆(hs, hs′) = m
if and only if ∆(s, s′) = j for some j ∈ Cm.

Let B′ be an uncountable g-thin subset of B = {hs : s ∈ A}. We show
the set A′ = {s ∈ A : hs ∈ B′} is f -thin; then since |A′| = |B′| = ℵ1, we are
done. So, suppose that for some j ∈ ω and l > g(j), the set {si}i∈l ⊆ A′ is
co-divergent at level j. Note that j ≥ jM since the tree {s � k : k < jM}
is 1-branching. Thus, j ∈ Cm for some m ≥ M . But then {hsi}i∈l ⊆ B′ is
co-divergent at level m and g(m) ≤ f(j) < l, contrary to B′ being g-thin.
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Corollary 4.6. Let f ∈ ωω with limn∈ω f(n) = ω. Then every un-
countable A ⊆ ωω contains an uncountable f-thin set if and only if every
uncountable A ⊆ ωω contains an uncountable i-thin subset , where i ∈ ωω

is the identity map.

P r o o f. Since i �∗ f and f �∗ i, both directions follow from Theo-
rem 4.5.

Theorem 4.7. Let n ∈ ω and f ∈ ωω such that |{j ∈ ω : f(j) = n}| =
ℵ0. Suppose that every uncountable A ⊆ ωω contains an uncountable f-thin
subset. Then every uncountable A ⊆ ωω has an uncountable ≤n-ary subset.

P r o o f. Let A ⊆ ωω; we show A has an uncountable ≤ n-ary subset.
To this end, let M ∈ ω with {j ∈ ω : f(j) < n} ⊆ M . Without loss of
generality, assume s � M = s′ � M for all s, s′ ∈ A. Let l : ω 7→ f−1({n}) be
an increasing enumeration of f−1({n}) and define for each s ∈ A a function
hs ∈ ωω as follows:

hs(m) =
{

s(l(m)) if m ∈ f−1({n}),
0 otherwise.

Note that ∆(hs, hs′) = m if and only if ∆(s, s′) ∈ f−1({n}). Thus, if B′ is an
uncountable f -thin subset of B = {hs : s ∈ A}, then A′ = {s ∈ A : hs ∈ B′}
is ≤n-ary; since |A′| = |B′| = ℵ1, A′ is the desired subset.

Corollary 4.8. Let f ∈ ωω with limn∈ω f(n) 6= ω. Then every un-
countable A ⊆ ωω contains an uncountable f-thin set if and only if every
uncountable A ⊆ ωω contains an uncountable ≤n-ary subset , where n ∈ ω
is the least integer for which |{j ∈ ω : f(j) = n}| = ℵ0.

P r o o f. Since cn �∗ f by minimality of n, the “if” direction follows
from Theorem 4.5. The “only if” direction is Theorem 4.7.

Theorem 4.9. For all f ∈ ωω with limn∈ω f(n) = ω, MAℵ1(
∧∧

n∈ω σ-n-
linked) implies that every uncountable A ⊆ ωω contains an uncountable f-
thin subset.

P r o o f. By Corollary 4.6, we need only show that MAℵ1(
∧∧

n∈ω σ-n-
linked) yields an uncountable i-thin set, where i is the identity function. To
this end, proceed as in Theorem 3.2, replacing condition (1) of the definition
of P by

(1′) a is a finite i-thin subset of A.

Then the cells Pt are i(n) = n-linked for all i-thin t ∈ [ωn]<ω. Furthermore,
given n < n′ < ω, if a ∈ Pt for some i-thin t ∈ [ωn]<ω, then a ∈ Pt′

where t′ = a � n′ is an i-thin subset of [ωn′
]<ω. Thus, for each n ∈ ω,

P =
⋃

ht(t)≥n Pt is the desired n-linked decomposition of P. The rest of the
proof is the same.
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We now construct the Cohen counterexample to MAℵ1(
∧∧

n∈ω σ-n-
linked).

Theorem 4.10. M[c] � [∃X ∈ [ωω]2
ℵ0 ∀f ∈ ωω ∩ M X contains no

uncountable f-thin subsets ].

P r o o f. We modify the definition in Theorem 3.3 of a set containing no
uncountable ≤n-ary subsets. To this end, let c and c′ be mutually generic
Cohen reals with c : ω<ω 7→ ω and c′ : ω 7→ ω. Given h ∈ ωω ∩M, define
h ∈ ωω∩M[c] by h(n) = c(h � c′(n)) and let X be the set in M[c] of all such
h. Fix f ∈ ωω ∩M and suppose 〈p, p′〉  [{ẋα}α∈ω1 enumerates Ẏ ⊆ Ẋ].
We show there exists 〈q, q′〉 ≤ 〈p, p′〉 such that 〈q, q′〉  [Ẏ not f̌ -thin].

Without loss of generality, suppose for all η ∈ ω1, hη ∈ ωω ∩M is such
that 〈p, p′〉  ẋη = hη. Let l, m ∈ ω be such that

(1) for all z ∈ dom(p), dom(z) ⊆ l,
(2) ran(p′) ⊆ l,
(3) dom(p′) ⊆ m.

Then there are S ∈ [ω1]ℵ1 ∩M and h ∈ ωl such that hη � l = h for all
η ∈ S. Let m′ > m and set M = f(m′). Choose η0, η1, . . . , ηM ∈ S and let
L > l be such that ∆(hηi , hηj ) ≤ L for all i, j ≤ M . Extend 〈p, p′〉 to 〈q, q′〉
in such a way that

(1) for all k < m′, q′(k) < l; note that p′ already satisfies p′(k) < l for
k ∈ dom(p′),

(2) q′(m′) = L,
(3) for all l′ < l, h � l′ ∈ dom(q),
(4) for all i, j ≤ M , q(hηi � L) 6= q(hηj � L).

Then by conditions (1) and (3) and the assumption hηi � l = h for all i ≤ M ,
we have q(hηi � q′(k)) = q(hηj � q′(k)) for all k < m′ and i, j ≤ M , while
conditions (2) and (3) yield q(hηi � q′(m′)) 6= q(hηj � q′(m′)) for all i, j ≤ M .
Thus, f(m′) = M and 〈q, q′〉  [{hηi}i≤M ⊆ Ẏ is co-divergent at level m′].
It follows that 〈q, q′〉  [Ẏ is not f̌ -thin], as desired.

Corollary 4.11. M[c] � ¬MAℵ1(
∧∧

n∈ω σ-n-linked).

Again, using the fact that M[c] preserves MA(σ-centered), we now have
the following consistency result, which completes the MA hierarchy diagram
under discussion.

Corollary 4.12. Assume Con(ZFC). Then

Con
(
ZFC + 2ℵ0 > ℵ1 + MA(σ-centered ) + ¬MAℵ1

( ∧∧
n∈ω

σ-n-linked
))

.

We close with a final result concerning the addition of f -thin subsets.
By Theorem 4.5, for functions f, g satisfying g �∗ f , any Martin’s Axiom
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variant which adds a g-thin subset through every uncountable set of reals
necessarily adds a f -thin subset through every uncountable set of reals,
even though g may grow at a much faster rate than f . However, the next
theorem shows that for g �∗ f , the addition of an uncountable g-thin subset
through a given set A of reals need not add an uncountable f -thin subset
through A. Note that if g ≤∗ f , where we say g ≤∗ f if and only if
|{j ∈ ω : f(j) < g(j)}| < ω, then any uncountable g-thin subset of reals
does contain an uncountable f -thin subset.

Theorem 4.13. Suppose f, g ∈ ωω ∩M such that ¬(g ≤∗ f). Let Ẋ be
the C-term of Theorem 4.10 for which

C [Ẋ has no uncountable f̌-thin subsets ] ,

and Π a C-term for the partial order which adds an uncountable g-thin
subset of Ẋ. Then

M[c][GΠ ] � [Ẋ has no uncountable f̌-thin subsets ] .

P r o o f. Note that if 〈p, p′〉  π ∈ Π, then for some finite g-thin a ⊆ ωω

in M and some 〈q, q′〉 ≤ 〈p, p′〉, we have 〈q, q′〉  π = a = {h : h ∈ a}.
Furthermore, we can assume that 〈q, q′〉  [a ∈ Πt] for some finite g-thin
t ⊆ ω<ω, where Πt is defined in M[c] as in Theorem 3.2.

Working in M, suppose 〈〈p, p′〉, π〉  [{ẋη}η∈ω1 enumerates Ẏ ⊆ Ẋ]. As
before, we may assume hη ∈ ωω ∩M and 〈〈p1, p

′
1〉, π′η〉 ≤ 〈〈p, p′〉, π〉 satisfy

〈〈p1, p
′
1〉, π′η〉  hη = ẋη for all η ∈ ω1. By the above comment, we may also

assume that 〈p1, p
′
1〉  π′η = aη ∈ Πtη

for all η ∈ ω1, where tη is a finite
g-thin subset of ωrη for some rη ∈ ω and aη ∈ [ωω]<ω. Finally, assume
tη = t ∈ ωr and |aη| = |aβ | for all η, β ∈ ω1. Let aη = {sη

0 , sη
1 , . . . , sη

N} and
take l, m ∈ ω such that

(1) for all z ∈ dom(p1), dom(z) ⊆ l,
(2) ran(p′1) ⊆ l,
(3) dom(p′1) ⊆ m,
(4) r < m.

Assume hη � l = hβ � l = h ∈ ωl and sη
n � l = sβ

n � l = sn ∈ ωl for all
n ∈ N and all η, β ∈ ω1. Note that since t ⊆ ωr and 〈p1, p

′
1〉  [aη ∈ Πt]

for all η ∈ ω1, condition (4) implies 〈p1, p
′
1〉  [∆(sη

n, sβ
n′) = ∆(sη

n, sη
n′) < m]

for all n 6= n′ and η, β ∈ ω1. Since ¬(g ≤∗ f), there is some m′ > m such
that f(m′) < g(m′). Let M = g(m′) and choose η0, η1, . . . , ηM−1 ∈ ω1.
Take L > l such that for all i, j < M and n ∈ N , ∆(hηi , hηj ) ≤ L and
∆(sηi

n , s
ηj
n ) ≤ L. Extend 〈p1, p

′
1〉 to 〈p2, p

′
2〉 such that

(1) for all k < m′, p′2(k) < l; again, we already have p′1(k) < l for
k ∈ dom(p1),

(2) p′2(m
′) = L,
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(3) for all l′ < l and n ∈ N , h � l′, sn � l′ ∈ dom(p2),
(4) for all i, j < M , p2(hηi � L) 6= p2(hηj � L),
(5) for all i, j < M and n ∈ N , p2(sηi

n � L) 6= p2(s
ηj
n � L).

As before, this gives 〈p2, p
′
2〉  [∆(hηi

, hηj
) = m′ for all i, j < M ]. Using

conditions (1) and (3) and the fact that sη = sη
n � l for all η ∈ ω1 and n ∈ N ,

we also have 〈p2, p
′
2〉 [For all n ∈ N and i, j < M , ∆(sηi

n , s
ηj
n ) = m′]. Since

M = g(m′) and 〈p1, p
′
1〉  [∆(sηi

n , s
ηj

n′ ) < m < m′ for all n, n′ ∈ N and
i, j < M ], we have 〈p2, p

′
2〉  [a =

⋃
i<M aηi

∈ Π]. In particular, 〈p2, p
′
2〉 

[a ≤ π′ηi
] for all i < M . Thus, f(m′) < M and 〈〈p2, p

′
2〉, a〉  [{hηi

}i<M ⊆ Ẏ

is co-divergent at level m′]. It follows that 〈〈p2, p
′
2〉, a〉  [Ẏ is not f̌ -thin],

as desired.
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