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Planar rational compacta and universality

by

S. D. I l i a d i s and S. S. Z a f i r i d ou (Patras)

Abstract. We prove that in some families of planar rational compacta there are no
universal elements.

1. Introduction. The spaces considered in this paper are separable
and metrizable and the ordinals are countable. For a subset Q of a space
X we denote by |Q| the cardinality of Q and by diam(Q) the diameter of
Q when X is a metric space. A compactum is a compact metrizable space;
a continuum is a connected compactum. A space is said to be scattered iff
every non-empty subset has an isolated point. A space is said to be planar
iff it is homeomorphic to a subset of the plane.

A space T is said to be universal for a class A of spaces iff both the
following conditions are satisfied: (α) T ∈ A, (β) for every X ∈ A, there
exists a homeomorphism of X onto a subset of T . If only condition (β) is
satisfied, then T is called a containing space for the class A.

An ordinal α is called isolated iff α = β + 1, where β is an ordinal.
A non-isolated ordinal is called a limit ordinal. Hence, the ordinal zero
is considered as a limit ordinal. By N we denote the set {0, 1, 2, . . .} of
non-negative integers.

Let M be a topological space. Let M (0) = M and let M (1) be the
set of all limit points of M in M . For every ordinal α we define the set
M (α) putting M (α) = (M (α−1))(1) if α is an isolated ordinal and M (α) =⋂

β<α M (β) if α is a limit ordinal. M (α) is called the α-derivative of M (see
[Ku], Vol. I, §24.IV).

If M (α) = ∅, we say that M has type ≤ α, and we write type(M) ≤ α.
If α is the least such ordinal, we say that M has type α, and we write
type(M) = α. Obviously, type(M) = 0 iff M = ∅.

We note the following properties:

(1) A compactum is scattered iff it is countable.
(2) The type of a non-empty countable compactum is an isolated ordinal.
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(3) For every isolated ordinal α there exist compacta having type α (see
[M-S]).

(4) If M and Q are compacta having type ≤ α, then M∪Q has type ≤ α.
(5) If f is a continuous map of a scattered compactum M onto Q such

that f−1(x) is finite for every x ∈ Q, then f(M (α)) = Q(α) for every ordinal
α and, hence, type(Q) = type(M).

We recall that a closed subset M of a space X separates X iff there exists
an integer m > 1 such that X \M = U1 ∪ . . .∪Um, where Ui, i = 1, . . . ,m,
is a non-empty regular open set (that is, Ui is the interior of the closure
of Ui) and Ui ∩Uj = ∅ if i 6= j. In this case we say that M separates X into
m parts (see [I]).

For the notions of upper semicontinuous partition, quotient space and
natural projection see, for example, [K].

A space X is said to have rim-type ≤ α, and we write rim-type(X) ≤ α,
iff X has a basis of open sets whose boundaries have type ≤ α. If α is
the least such ordinal, then we say that X has rim-type α and we write
rim-type(X) = α.

A space X is said to be rim-finite iff X has a basis of open sets whose el-
ements have finite boundaries. Let RF be the family of all rim-finite spaces.

Nöbeling (see [N]) proved that for every rim-finite space Y there exists a
rim-finite continuum X which is not topologically contained in Y . From this
it follows that in the family of all rim-finite spaces, or rim-finite compacta,
or rim-finite continua, there is no universal element.

A generalization of the family RF of all rim-finite spaces is the family
Rrim-com(α), where α is a given ordinal. A space X belongs to Rrim-com(α)
iff X has a basis of open sets whose elements have compact boundaries of
type ≤ α. Obviously, if α = 1, then Rrim-com(α) = RF .

In [I] the result of Nöbeling is generalized for the family Rrim-com(α),
α > 0. For every Y ∈ Rrim-com(α) there exists a locally connected continuum
X of rim-type ≤ α which is not topologically contained in Y. In general, X
is not planar.

We also note the following result of [M-T]: There exists a planar locally
connected continuum of rim-type α + 1 which is a containing space for the
family of all planar compacta of rim-type ≤ α. This gives an affirmative
answer to Problem 5 of [I].

The main result of the present paper is the following: for every Y ∈
Rrim-com(α), α > 0, there exists a locally connected planar continuum of
rim-type α which is not topologically contained in Y. In particular, in the
family of all planar continua (or planar locally connected continua, or planar
compacta) having rim-type ≤ α, there is no universal element. This gives a
negative answer to Problem 1 of [I].
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2. Definitions and notations. We denote by Ln, n = 1, 2, . . . , the set
of all ordered n-tuples i1 . . . in, where it = 0 or 1, t = 1, . . . , n. Also, we set
L0 = {∅} and L =

⋃∞
n=0 Ln. For n = 0, by convention i1 . . . in denotes the

element ∅ of L. We write i1 . . . in ≤ j1 . . . jm if either n = 0, or n ≤ m and
it = jt for every t ≤ n. The elements of L are also denoted by ī, j̄, ī1, etc.
If ī = i1 . . . in and j̄ = j1 . . . jm, then īj̄ or īj1 . . . jm denotes the element
i1 . . . inj1 . . . jm of L.

Let C denote by the Cantor ternary set. By Cī, where ī = i1 . . . in ∈ L,
n ≥ 1, we denote the set of all points of C for which the t-th digit in the
ternary expansion, t = 1, . . . , n, is 0 if it = 0, and 2 if it = 1. Also, we set
C∅ = C.

We denote by a(Cī) (respectively, b(Cī)) the element c of Cī for which
c ≤ x (respectively, x ≤ c) for every x ∈ Cī. Also, we set a(̄i) = b(Cī0) and
b(̄i) = a(Cī1).

Let C2 = C×C and if ī, j̄ ∈ Ln, n = 0, 1, . . . , then set C2(̄i, j̄) = Cī×Cj̄ .
For every x ∈ C2 and n ∈ N we denote by st2(x, n) the set C2(̄i, j̄) for which
x ∈ C2(̄i, j̄) and ī, j̄ ∈ Ln.

For every n ∈ N and for every ī, j̄ ∈ Ln the following pairs of sets:
C2(̄i0, j̄0) and C2(̄i0, j̄1), C2(̄i0, j̄1) and C2(̄i1, j̄1), C2(̄i1, j̄1) and
C2(̄i1, j̄0), C2(̄i1, j̄0) and C2(̄i0, j̄0) are called adjacent.

We denote by E2 the plane with a Cartesian coordinate system. We con-
sider C2 as a subset of E2. For any distinct points x and y of E2 we denote
by [x, y] the straight line segment joining x and y (including the ends).

3. Partitions D of C2 and D̂ of E2. Let α be an isolated ordinal.
For every n ∈ N and ī ∈ Ln, let Pī be a scattered compact subset of
Cī \ {a(̄i), b(̄i), a(Cī), b(Cī)}.

For every ī, j̄ ∈ Ln we define a collection D(̄i, j̄) of two-element subsets
of C2. Let x = (a, b), y = (c, e) ∈ C2. Then {x, y} ∈ D(̄i, j̄) iff either
a = c ∈ Pī and {b, e} = {a(j̄), b(j̄)}, or b = e ∈ Pj̄ and {a, c} = {a(̄i), b(̄i)}.
Also we set Dn =

⋃
ī,j̄∈Ln

D(̄i, j̄) and D(1) =
⋃

n∈N Dn.
We denote by D the collection of subsets of C2 consisting of all elements

of D(1) and all singletons {x}, where x ∈ C2 does not belong to any element
of D(1).

Let D̂(1) denote the set of all straight line segments [x, y], where {x, y} ∈
D(1). We denote by D̂ the collection of subsets of E2 consisting of all
elements of D̂(1) and all singletons {x}, where x ∈ E2 does not belong to
any element of D̂(1).

It is not difficult to see that D is a partition of C2 and D̂ a partition of
E2. We denote by p the natural projection of C2 onto the quotient space D
and by p̂ the natural projection of E2 onto the quotient space D̂.



112 S. D. Il iadis and S. S. Zafiridou

Let ī, j̄ ∈ Ln and ī1 ∈ Lm. We denote by Dī1 (̄i, j̄) (respectively,
Dī1 (̄i, j̄)) the set of all elements {(a, b), (c, e)} of D(̄i, j̄) such that a = c ∈
Pī ∩ Cī ī1 (respectively, b = e ∈ Pj̄ ∩ Cj̄ ī1).

The following properties are easily proved:

(1) If F is a closed subset of C2 (respectively, of E2), n ∈ N and ī, j̄ ∈
Ln, then the union (DF (̄i, j̄))∗ (respectively, (D̂F (̄i, j̄))∗) of all elements of
D(̄i, j̄) (respectively, of D̂(̄i, j̄)) which intersect F is a closed subset of C2

(respectively, of E2).
(2) If īn, j̄n ∈ Ln and (D(̄in, j̄n))∗ (respectively, (D̂(̄in, j̄n))∗) is the

union of all elements of D(̄in, j̄n) (respectively, of D̂(̄in, j̄n)), then we have
limn→∞ diam(D(̄in, j̄n))∗ = 0 (respectively, limn→∞ diam(D̂(̄in, j̄n))∗ = 0).

4. Lemma. (1) D and D̂ are upper semicontinuous partitions of C2 and
E2, respectively.

(2) The quotient space D̂ is homeomorphic to E2 and the quotient space
D is a planar compactum.

(3) For every n, m ∈ N, ī, j̄ ∈ Ln and ī1 ∈ Lm the subsets Dī1 (̄i, j̄) and
Dī1 (̄i, j̄) of D are homeomorphic to Pī ∩ Cī ī1 and Pj̄ ∩ Cj̄ ī1 , respectively.

(4) If for every n ∈ N and ī ∈ Ln, type(Pī) ≤ α, then rim-type(D) ≤ α.
(5) Let n0 ∈ N and ī0, j̄0 ∈ Ln0 . If for every ī ≥ ī0 and for every j̄ ≥ j̄0,

Pī∩Cī0 6= ∅, Pī∩Cī1 6= ∅, Pj̄ ∩Cj̄0 6= ∅ and Pj̄ ∩Cj̄1 6= ∅, then p(C2(̄i0, j̄0))
is connected and locally connected.

P r o o f. (1) We prove that D is an upper semicontinuous partition of C2.
Let d ∈ D and let d ⊆ U , where U is an open subset of C2. For every n ∈ N
and for every ī, j̄ ∈ Ln by property (1) of Section 3 the set F ∪ (DF (̄i, j̄))∗

is a closed subset of C2, where F = C2 \U . By property (2) of Section 3 so
is F1 =

⋃
n∈N

⋃
ī,j̄∈Ln

F ∪ (DF (̄i, j̄))∗. Thus V = C2 \ F1 is an open subset
of C2 which is a union of elements of D. Obviously, d ⊆ V ⊆ U , that is, D
is an upper semicontinuous partition of C2. The proof for D̂ is similar.

(2) Since every element of D̂ is a singleton or an arc, the quotient space
D̂ is homeomorphic to the plane E2 (see [Ku], Vol. II, §61.IV).

Obviously, D is a compactum. To prove that D is planar, we construct
a homeomorphism i of D onto a subset of D̂.

Let d ∈ D. If d = {x}, then we set i(d) = d, and if d = {x, y}, then
i(d) = d′ , where d′ = [x, y]. Obviously, i is a one-to-one map of D onto a
subset of D̂.

To prove that i is continuous, let i(d) = d′ and let U be an open neigh-
bourhood of d′ in D̂. Then p̂−1(U) is an open subset of E2 which is a union
of elements of D̂. Hence, W = p̂−1(U)∩C2 is an open subset of C2 which is
a union of a collection, say V, of elements of D. Thus, V is an open subset
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of D, d ∈ V and i(V ) ⊆ U . Hence, i is continuous. Since D is a compactum,
i is a homeomorphism onto a subset of E2.

(3) Let f : Pī∩Cī ī1 → C2 be defined by f(a) = (a, a(j̄)) for a ∈ Pī∩Cī ī1 .
Obviously, f is continuous and one-to-one. Also, p◦f is a continuous one-to-
one map of Pī ∩Cī ī1 onto Dī1 (̄i, j̄). Since Pī ∩Cī ī1 is a compactum, p ◦ f is
a homeomorphism. Similarly, we can prove that Dī1 (̄i, j̄) is homeomorphic
to Pj̄ ∩ Cj̄ ī1 .

(4) Let d ∈ D and let U be an open neighbourhood of d in D. If d = {x},
then there exist n ∈ N and ī, j̄ ∈ Ln such that d ⊆ C2(̄i, j̄) ⊆ p−1(U). If
d = {x, y}, then there exist n ∈ N and ī1, ī2, j̄1, j̄2 ∈ Ln such that d ⊆
C2(̄i1, j̄1) ∪ C2(̄i2, j̄2) ⊆ p−1(U).

Let V be the set of all elements of D which are contained in C2(̄i, j̄)
(respectively, in C2(̄i1, j̄1) ∪ C2(̄i2, j̄2)). Obviously, d ∈ V ⊆ U . We prove
that the boundary Bd(V ) has type ≤ α. Indeed, it is easy to verify that
Bd(V ) ⊆

⋃n
k=0 Dk. By the assumption and (3), type(

⋃n
k=0 Dk) ≤ α. Hence,

type(Bd(V )) ≤ α. Thus, rim-type(D) ≤ α.
(5) Suppose that D0 = p(C2(̄i0, j̄0)) is not connected. Then D0 =

D1 ∪D2, where D1 and D2 are simultaneously open and closed non-empty
subsets of D0 with empty intersection. Hence, C2

1 = p−1(D1)∩C2(̄i0, j̄0) and
C2

2 = p−1(D2)∩C2(̄i0, j̄0) are simultaneously open and closed in C2(̄i0, j̄0).
Moreover, it is easy to see that C2

1 and C2
2 are not empty and if d ∈ D0 and

d ⊆ C2(̄i0, j̄0), then either d ⊆ C2
1 or d ⊆ C2

2 .
There exists an integer n ≥ n0 such that if ī, j̄ ∈ Ln, ī ≥ ī0 and j̄ ≥ j̄0,

then C2(̄i, j̄) is contained either in C2
1 or in C2

2 . We can suppose that n is
the minimal such ordinal.

If n ≤ n0, then either C2(̄i0, j̄0) ⊆ C2
1 or C2(̄i0, j̄0) ⊆ C2

2 . Hence, either
C2

1 = ∅ or C2
2 = ∅, which is impossible. Thus, n > n0.

There exist ī, j̄ ∈ Ln−1 such that ī ≥ ī0, j̄ ≥ j̄0, C2(̄i, j̄) 6⊆ C2
1 and

C2(̄i, j̄) 6⊆ C2
2 . On the other hand, each of the sets C2(̄i0, j̄0), C2(̄i0, j̄1),

C2(̄i1, j̄0) and C2(̄i1, j̄1) is contained either in C2
1 or in C2

2 . It is easy to see
that there are two of them which are adjacent with one being contained in C2

1

and the other in C2
2 . Suppose C2(̄i0, j̄0) and C2(̄i0, j̄1) have this property.

By the assumption there exists a ∈ Pī∩Cī0. Then by the definition of D
we have {x, y} = d ∈ D, where x = (a, a(j̄)) and y = (a, b(j̄)). Obviously,
x ∈ C2(̄i0, j̄0) and y ∈ C2(̄i0, j̄1) and, hence, d ⊆ C2(̄i0, j̄0), d 6⊆ C2

1 and
d 6⊆ C2

2 , which is a contradiction.
For another pair of adjacent sets the argument is similar. Hence, D0 is

connected.
Now, we prove that D0 is locally connected. It is sufficient to prove that

if d ∈ D0 and U is an open neighbourhood of d in D, then there exist an
open neighbourhood V of d in D0 and a connected subset W of D0 such
that d ∈ V ⊆ W ⊆ U .
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Let d ∈ D0 ∩ U , where U is an open subset of D. If d = {x}, then
x ∈ C2(̄i0, j̄0) and, hence, there exist an integer n ≥ n0 and ī, j̄ ∈ Ln such
that d ⊆ C2(̄i, j̄) ⊆ C2(̄i0, j̄0) ∩ p−1(U). The set V of all elements of D
which are contained in C2(̄i, j̄) is an open neighbourhood of d in D, which
is contained in D0. On the other hand, by the above, W = p(C2(̄i, j̄)) is
connected. Obviously, d ∈ V ⊆ W ⊆ U .

Let d = {x, y} and d ⊆ C2(̄i0, j̄0). There exist n ∈ N and elements
ī1, j̄1, ī2, j̄2 ∈ Ln such that x ∈ C2(̄i1, j̄1), y ∈ C2(̄i2, j̄2) and C2(̄i1, j̄1) ∪
C2(̄i2, j̄2) ⊆ C2(̄i0, j̄0) ∩ p−1(U). As above, the set V of all elements of D
which are contained in C2(̄i1, j̄1)∪C2(̄i2, j̄2) is an open neighbourhood of d
in D, which is contained in D0. Also, W = p(C2(̄i1, j̄1)) ∪ p(C2(̄i2, j̄2)) is a
connected subset of D0 because p(C2(̄i1, j̄1)) and p(C2(̄i2, j̄2)) are connected
and intersect each other. Obviously, d ∈ V ⊆ W ⊆ U .

Finally, let d = {x, y} such that x ∈ C2(̄i0, j̄0) and y 6∈ C2(̄i0, j̄0).
There exist an integer n and ī1, ī2, j̄1, j̄2 ∈ Ln such that x ∈ C2(̄i1, j̄1) ⊆
C2(̄i0, j̄0)∩ p−1(U) and y ∈ C2(̄i2, j̄2) ⊆ (C2 \C2(̄i0, j̄0))∩ p−1(U). The set
V ′ of all elements of D which are contained in C2(̄i1, j̄1) ∪ C2(̄i2, j̄2) is an
open neighbourhood of d in D, and V = V ′ ∩D0 is an open neighbourhood
of d in D0. It is easy to see that V consists of all elements d′ of V ′ for which
d′ ∩ C2(̄i1, j̄1) 6= ∅. Hence, d ∈ V ⊆ W ⊆ U , where W is the connected set
p(C2(̄i1, j̄1)). Thus, p(C2(̄i0, j̄0)) is locally connected.

5. Lemma. Let M be a scattered compact subset of D, n0 ∈ N and
ī0, j̄0 ∈ Ln0 . Suppose that for every n ∈ N, n ≥ n0, for every ī, j̄ ∈ Ln with
ī ≥ ī0 and j̄ ≥ j̄0 and for every ī1 ∈ L2 we have either type(Q) > type(M),
or 0 < type(Q) = type(M) = α and |Q(α−1)| > |M (α−1)| (hence, Q 6= ∅),
for both Q = Pī ∩ Cī ī1 and Q = Pj̄ ∩ Cj̄ ī1 . Then p(C2(̄i0, j̄0)) \ M is
connected.

P r o o f. We prove the lemma by induction on the ordinal type(M) = α.
If α = 0, then M = ∅ and by Lemma 4(5), p(C2(̄i0, j̄0)) is connected.

Suppose that the lemma is proved for all α < β. Since the type of a
scattered compact space is an isolated ordinal we may suppose that β is
also isolated.

Let M be a scattered compact subset of D having type β. Then p−1(M)
is a compactum having type β and, hence, p−1(M (β−1)) is finite. It is easy
to see that p−1(M (β−1)) = (p−1(M))(β−1).

Hence, there exists an integer n1 ≥ n0 such that if x and y are distinct
elements of p−1(M (β−1)), then st2(x, n1) ∩ st2(y, n1) = ∅.

First, we prove the following assertions:

(1) If n ≥ n0, ī, j̄ ∈ Ln, ī ≥ ī0, j̄ ≥ j̄0 and C2(̄i, j̄) ∩ p−1(M (β−1)) = ∅,
then p(C2(̄i, j̄)) \M is connected.
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(2) If n ≥ n1, x ∈ p−1(M (β−1)) and st2(x, n) ⊆ C2(̄i0, j̄0), then
p(st2(x, n) \ st2(x, n + 1)) \M is connected.

(3) For x and n as in (2), p(st2(x, n) \ st2(x, n + 2)) \M is connected.

Obviously, in (1), p(C2(̄i, j̄))∩M (β−1) = ∅. Thus, type(p(C2(̄i, j̄))∩M)
< β. Hence, by induction, p(C2(̄i, j̄)) \M is connected.

To prove (2), let st2(x, n) = C2(̄i, j̄). Then st2(x, n + 1) is either
C2(̄i0, j̄0), C2(̄i0, j̄1), C2(̄i1, j̄0), or C2(̄i1, j̄1). Suppose that st2(x, n+1) =
C2(̄i0, j̄0); the other cases are treated similarly.

Let k = |M (β−1)|. Since C2(̄i, j̄) ⊆ C2(̄i0, j̄0) we have ī ≥ ī0 and j̄ ≥
j̄0. Hence, since Pī ∩ Cī10 ⊆ Pī ∩ Cī1, we have either type(Pī ∩ Cī1) = β
and |(Pī ∩ Cī1)(β−1)| > k, or type(Pī ∩ Cī1) > β. Also, either type(Pj̄ ∩
Cj̄1) = β and |(Pj̄ ∩ Cj̄1)(β−1)| > k, or type(Pj̄ ∩ Cj̄1) > β. From the
above and Lemma 4(3) it follows that Dī1 (̄i, j̄) 6⊆ M and Dī1 (̄i, j̄) 6⊆ M ,
where ī1 = 1 ∈ L1. Let d ∈ Dī1 (̄i, j̄) \ M . If d = {y, z}, then either
y ∈ C2(̄i1, j̄0) and z ∈ C2(̄i1, j̄1), or z ∈ C2(̄i1, j̄0) and y ∈ C2(̄i1, j̄1). In
both cases (p(C2(̄i1, j̄0)) \M)∩ (p(C2(̄i1, j̄1)) \M) 6= ∅. Similarly, we have
(p(C2(̄i0, j̄1)) \M) ∩ (p(C2(̄i1, j̄1)) \M) 6= ∅.

Since n ≥ n1 and x ∈ C2(̄i0, j̄0) we have type(C2(̄i0, j̄1)∩p−1(M)) < β,
type(C2(̄i1, j̄0) ∩ p−1(M)) < β and type(C2(̄i1, j̄1) ∩ p−1(M)) < β. Hence,
by (1), the sets p(C2(̄i0, j̄1)) \M , p(C2(̄i1, j̄0)) \M and p(C2(̄i1, j̄1)) \M
are connected.

Since the first two of them intersect the third, the union of the three
sets, equal to p(C2(̄i1, j̄0) ∪ C2(̄i0, j̄1) ∪ C2(̄i1, j̄1)) \M , is connected.

But st2(x, n) \ st2(x, n+1) = C2(̄i1, j̄0)∪C2(̄i0, j̄1)∪C2(̄i1, j̄1). Hence,
p(st2(x, n) \ st2(x, n + 1)) \M is connected.

Now we prove (3). Obviously, st2(x, n) \ st2(x, n + 2) = (st2(x, n) \
st2(x, n + 1)) ∪ (st2(x, n + 1) \ st2(x, n + 2)). By (2), the sets p(st2(x, n) \
st2(x, n + 1)) \ M and p(st2(x, n + 1) \ st2(x, n + 2)) \ M are connected.
Hence, in order to prove (3) it is sufficient to show that they intersect each
other.

As in (2), without loss of generality we can suppose that st2(x, n + 1) =
C2(̄i0, j̄0). Then st2(x, n)\st2(x, n+1) = C2(̄i0, j̄1)∪C2(̄i1, j̄0)∪C2(̄i1, j̄1).

The set st2(x, n+2) is either C2(̄i00, j̄00), C2(̄i01, j̄00), C2(̄i00, j̄01), or
C2(̄i01, j̄01). By the assumption of the lemma and by Lemma 4(3) the sets
Dī1 (̄i, j̄) \M and Dī2 (̄i, j̄) \M , where ī1 = 00 ∈ L2 and ī2 = 01 ∈ L2, are
not empty.

Let d ∈ Dī1 (̄i, j̄)\M if st2(x, n+2) 6= C2(̄i00, j̄01) and d ∈ Dī2 (̄i, j̄)\M
otherwise. If d = {x, y}, then one of the two points, say x, belongs to
C2(̄i0, j̄1). Then y ∈ C2(̄i00, j̄01) if d ∈ Dī1 (̄i, j̄) \M , and y ∈ C2(̄i01, j̄01)
if d ∈ Dī2 (̄i, j̄) \M .
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In both cases, the intersection considered is non-empty. Thus, (3) is
proved.

From (1)–(3) the next statement follows:

(4) Let ī, j̄ ∈ Ln1 and C2(̄i, j̄) ⊆ C2(̄i0, j̄0). Then p(C2(̄i, j̄)) \ M is
connected.

Indeed, if C2(̄i, j̄) ∩ p−1(M (β−1)) = ∅, then this is assertion (1). Oth-
erwise, by the choice of the integer n1, this intersection is a singleton {x}
and, hence, st2(x, n1) = C2(̄i, j̄).

Obviously, p(st2(x, n1))\M =
⋃∞

m=0(p(st2(x, n1+m)\st2(x, n1+m+2))\
M). By (3) each term of the union is connected. Since any two consecutive
terms intersect each other, p(st2(x, n1)) \M is also connected.

Finally, we prove that p(C2(̄i0, j̄0))\M is connected. By (4) it is sufficient
to prove the following statement:

Let m ∈ N and let ī, j̄ ∈ Lm be such that n0 ≤ m, m+1 ≤ n1, C2(̄i, j̄) ⊆
C2(̄i0, j̄0) and the sets p(C2(̄i0, j̄0))\M , p(C2(̄i0, j̄1))\M , p(C2(̄i1, j̄0))\M
and p(C2(̄i1, j̄1)) \M are connected. Then p(C2(̄i, j̄)) \M is connected.

Consider the sets Dī1 (̄i, j̄) \M and Dī1 (̄i, j̄) \M , where ī1 ∈ L1. By the
assumption of the lemma and by Lemma 4(3) all these sets are not empty.
Let d = {x, y} ∈ Dī1 (̄i, j̄) \M , where ī1 = 0 ∈ L1. Then one of the points x
and y belongs to C2(̄i0, j̄0) and the other to C2(̄i0, j̄1). Hence, the first of
the connected sets in the assumption of the statement intersects the second.
Similarly we can prove that it also intersects the third, and that the third
set intersects the fourth. Since p(C2(̄i, j̄)) \M is the union of the four sets,
it is connected. The proof of the lemma is complete.

6. Theorem. Let 0 < k(2), k(3), . . . , k(n), . . . be an increasing sequence
of integers and let α be an isolated ordinal. There exists a locally connected
planar continuum X having rim-type ≤ α such that if a compact scattered
subset M of X has type α and separates X into m ≥ 2 parts, then |M (α−1)|
≥ k(m).

P r o o f. Let k0, k1, . . . , kn, . . . be an increasing sequence of integers such
that kn ≥ k(4n+1). We construct a partition D of C2 by defining the sets
Pī as follows: if ī ∈ Ln, n ∈ N, then Pī is a scattered compact subset
of Cī \ {a(̄i), b(̄i), a(Cī), b(Cī)} such that type(Pī ∩ Cī ī1) = α and |(Pī ∩
Cī ī1)

(α−1)| ≥ kn, where ī1 ∈ L2. We prove that the quotient space D is the
required space X.

Indeed, by (2), (4) and (5) of Lemma 4, D is a locally connected planar
continuum having rim-type ≤ α. Let M be a compact scattered subset of
D which has type α and separates D into m ≥ 2 parts.
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Suppose that |M (α−1)| < k(m). There exists an integer q ≥ 1 such that
4q−1 < m ≤ 4q. Then, if |M (α−1)| = k, we have k < k(m) ≤ k(4q) ≤ kq−1.

Let n0 = q − 1 and let ī0, j̄0 ∈ Ln0 . Let n ≥ n0 and let ī, j̄ belong to Ln

with ī ≥ ī0 and j̄ ≥ j̄0. If Q denotes any of the sets Pī ∩ Cī ī1 or Pj̄ ∩ Cj̄ ī1 ,
where ī1 ∈ L2, then by the construction of the partition D and the choice of
the integer n0 we have type(Q) = α and |Q(α−1)| ≥ kn ≥ kn0 = kq−1 > k.
By Lemma 5 it follows that p(C2(̄i0, j̄0)) \M is connected.

On the other hand, D \M =
⋃

ī,j̄∈Ln0
(p(C2(̄i, j̄)) \M). Since each term

of the last union is connected, it follows that m ≤ |Ln0 × Ln0 |. Obviously,
|Ln0 ×Ln0 | = 4n0 = 4q−1 < m, which is a contradiction. Hence, |M (α−1)| ≥
k(m) and D is the required space X.

7. Theorem. Let α be a limit ordinal and let α(2), α(3), . . . , α(n), . . . be
an increasing sequence of ordinals such that limn→∞ α(n) = α. There exists
a locally connected planar continuum X having rim-type ≤ α such that if a
compact scattered subset M of X has type ≤ α and separates X into m ≥ 2
parts, then M has type ≥ α(m).

P r o o f. Let α0, α1, . . . , αn, . . . be an increasing sequence of isolated ordi-
nals such that αn ≥ α(4n+1) and αn < α. We construct a partition D of C2

by defining the sets Pī as follows: if ī ∈ Ln, n ∈ N, then Pī is a scattered com-
pact subset of Cī \ {a(̄i), b(̄i), a(Cī), b(Cī)} such that type(Pī ∩ Cī ī1) = αn,
where ī1 ∈ L1. The quotient space D is the required locally connected pla-
nar continuum X. The proof is the same as the corresponding part of the
proof of Theorem 6.

8. Theorem. Let Y ∈ Rrim-com(α), where α > 0. There exists a locally
connected planar continuum X having rim-type ≤ α which is not topologi-
cally contained in Y .

The proof is the same as the proof of the Theorem of [I]. Instead of
Lemmas 6 and 7 of [I] we here use Theorems 6 and 7.

Corollary. The following families of spaces have no universal ele-
ments:

(1) the family of all (locally connected) planar elements of Rrim-com(α),
(2) the family of all (locally connected) planar compacta having rim-type

≤ α,
(3) the family of all (locally connected) planar continua having rim-type

≤ α.

This corollary gives a negative answer to Problem 1 of [I]. It should be
understood so that each “locally connected” may be either disregarded or
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considered part of the statement, thus giving 6 families without universal
elements.
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