Algebras of Borel measurable functions

by

Michał Morayne (Wrocław)

Abstract. We show that, for each $0 < \alpha < \omega_1$, in the α th class in the Baire classification of Borel measurable real functions defined on some uncountable Polish space there is a function which cannot be expressed as a countable union of functions which are (on their domains) in the α th class in Sierpiński's classification. This, in particular, solves positively a problem of Kempisty who asked whether for $1 < \alpha < \omega_1$ the α th Baire and Sierpiński classes are different. We also show that, for every α , in the α th class of Sierpiński's classification there is a function which cannot be expressed as a countable union of functions each of which is on its domain in one of the two α th classes of Young's classification (we refer here to the classical numbering of Baire's, Young's and Sierpiński's classes and not to the one used in the paper).

1. Introduction. In [CM] and [CMPS] the following diagram was considered:

where \mathbf{B}_{α} is the α th class in the Baire classification of real functions defined on [0, 1] and \mathbf{L}_{α} and \mathbf{U}_{α} are the classes of limits of, respectively, nondecreasing and nonincreasing sequences of functions from \mathbf{B}_{α} ; the arrows stand for proper inclusions. It was shown there that in every class of (1) there is a function which cannot be expressed as a union of countably many partial functions from lower classes. In the present paper, considering the algebra $\mathbf{L}_{\alpha} + \mathbf{U}_{\alpha}$ of all algebraic sums of functions from \mathbf{L}_{α} and \mathbf{U}_{α} , we add to (1) the following diagram (cl stands for closure in the uniform convergence

¹⁹⁹¹ Mathematics Subject Classification: Primary 26A21.

Supported in part by KBN grant 2-1054-91-01.

topology):

(2)
$$\mathbf{L}_{\alpha} \cup \mathbf{U}_{\alpha} \to \mathbf{L}_{\alpha} + \mathbf{U}_{\alpha} \to \operatorname{cl}(\mathbf{L}_{\alpha} + \mathbf{U}_{\alpha}) = \mathbf{B}_{\alpha+1}$$

(the equality in (2) was proved by Sierpiński in $[S_2]$ for $\alpha = 0$ and the proof remains the same for all $\alpha < \omega_1$). In fact, we consider algebras of bounded functions and then the diagram (2) gets more subtle (b stands for the bounded functions in the given class):

(3)
$$b\mathbf{L}_{\alpha} \cup b\mathbf{U}_{\alpha} \to b\mathbf{L}_{\alpha} + b\mathbf{U}_{\alpha}$$

 $\to cl(b\mathbf{L}_{\alpha} + b\mathbf{U}_{\alpha}) \to b(cl(\mathbf{L}_{\alpha} + \mathbf{U}_{\alpha})) = b\mathbf{B}_{\alpha+1}$

Again we show that in every class displayed in (3) there exists a function which cannot be expressed as a sum of countably many partial functions from lower classes. This, in particular, implies that the second inclusion from (2), $\mathbf{L}_{\alpha} + \mathbf{U}_{\alpha} \subset \operatorname{cl}(\mathbf{L}_{\alpha} + \mathbf{U}_{\alpha}) = \mathbf{B}_{\alpha+1}$, is proper. This solves a problem of Kempisty [Ke] (for $\alpha = 0$ the inclusion was shown to be proper by Sierpiński [S₁]).

We work in a more general setting enabling us to obtain, for example, analogous results for functions measurable with respect to the projective classes Σ_n^1 .

2. Notation, definitions and basic facts. We use standard set-theoretical notation. N is the set of positive integers, \mathbb{R} the set of reals, and P(A) the family of all subsets of a set A. If A is fixed and $\mathcal{A} \subseteq P(A)$ then $\mathcal{A}^{c} = \{A \setminus B : B \in \mathcal{A}\}$. \mathcal{A}_{δ} will stand for all countable intersections of elements of \mathcal{A} . A family $\mathcal{A} \subseteq P(A)$ is a partition of A if $\bigcup \mathcal{A} = A$ and for all $X, Y \in \mathcal{A}, X \neq Y$, we have $X \cap Y = \emptyset$. If $\mathcal{A} \subseteq P(A)$ and $X \subseteq A$, then $\mathcal{A}|X = \{Y \cap X : Y \in \mathcal{A}\}$. We denote by $r(\mathcal{A})$ the ring of sets generated by \mathcal{A} , i.e. the smallest family containing \mathcal{A} and closed under taking complements and finite unions. Suppose that $\mathcal{A} \subseteq P(\mathcal{A})$ is a family of sets. We say that \mathcal{A} is a σ -class if $\{\emptyset, A\} \subseteq \mathcal{A}$ and \mathcal{A} is closed under finite intersections and countable unions. If $\mathcal{A} \subseteq P(A)$, then we denote by \mathcal{A}' the minimal σ -class containing $r(\mathcal{A})$. The symbol χ_A will denote the characteristic function of A. The domain of a function f will be denoted by dom f and its range by $\operatorname{Rg} f$. If A and B are sets, then ${}^{A}B$ is the set of all functions with domain A and range contained in B. If $f \in {}^{A}B$ and $C \subseteq A$, then f|C denotes the restriction of f to C. We write $\overset{A}{\longrightarrow} B$ for the set of all partial functions from A to B, i.e. ${}^{\underline{A}}B = \{f \in {}^{C}B : C \subseteq A\}$. Let f be a real function defined on some set A; then $\inf f = \inf \{ f(x) : x \in A \}$, $\sup f = \sup \{f(x) : x \in A\}$ and if f is bounded $||f|| = \sup |f|$. If \mathcal{H} is any class of real functions, we denote by $b\mathcal{H}$ the class of all bounded functions from \mathcal{H} , and by $\mathrm{cl}\,\mathcal{H}$ the class of all uniform limits of functions from \mathcal{H} . For $\mathcal{G} \subseteq {}^{\mathbb{Z}}\mathbb{R}$ and $\mathcal{H} \subseteq {}^{\mathbb{Z}}\mathbb{R}$ let $\mathcal{G} + \mathcal{H} = \{g + h : g \in \mathcal{G} \text{ and } h \in \mathcal{H}\}$. Let $A \subseteq \mathbb{R}$.

We denote by VB(A) the family of all real functions of bounded variation on A, and by C(A) the continuous functions on A.

We write \mathcal{N} and \mathcal{C} for the spaces $\mathbb{N}\mathbb{N}$ and $\mathbb{N}\{0,1\}$, respectively, with the product topology. The first space is homeomorphic to the irrational numbers and the second to the Cantor set.

Let Z be any set. Let $\mathcal{F} \subseteq {}^{Z}\mathbb{R}$ and $\mathcal{G} \subseteq {}^{\underline{Z}}\mathbb{R}$. We denote by dec $(\mathcal{F}, \mathcal{G})$ the least cardinal κ such that for every $f \in \mathcal{F}$ one can find a family $\{g_{\alpha} : \alpha < \kappa\} \subseteq \mathcal{G}$ such that $\{\operatorname{dom} g_{\alpha} : \alpha < \kappa\}$ is a partition of Z and $f = \bigcup \{g_{\alpha} : \alpha < \kappa\}$. We shall only use this definition when it makes sense, i.e., when such subfamilies of \mathcal{G} exist.

Suppose \mathcal{A} is a σ -class. We denote by $\overline{\mathbf{M}}\mathcal{A}$ the family of all functions $f \in {}^{\mathbb{Z}}\mathbb{R}$ such that $f^{-1}((-\infty,c)) \in \mathcal{A}$ for every $c \in \mathbb{R}$. Similarly, $\underline{\mathbf{M}}\mathcal{A}$ is the family of all $f \in {}^{\mathbb{Z}}\mathbb{R}$ such that $f^{-1}((c,\infty)) \in \mathcal{A}$ for every $c \in \mathbb{R}$. Note that $f \in \underline{\mathbf{M}}\mathcal{A}$ if and only if $-f \in \overline{\mathbf{M}}\mathcal{A}$. We put $\mathbf{M}\mathcal{A} = \underline{\mathbf{M}}\mathcal{A} \cap \overline{\mathbf{M}}\mathcal{A}$. We denote by $\mathbf{M}_B\mathcal{A}$, $\underline{\mathbf{M}}_B\mathcal{A}$ and $\overline{\mathbf{M}}_B\mathcal{A}$ the functions from $\mathbf{M}\mathcal{A}$, $\underline{\mathbf{M}}\mathcal{A}$ and $\overline{\mathbf{M}}\mathcal{A}$, respectively, for which $\operatorname{Rg} f \subseteq B$. Note that if \mathcal{A} is a σ -class and B is closed then $\mathbf{M}_B\mathcal{A}$, $\underline{\mathbf{M}}_B\mathcal{A}$ and $\overline{\mathbf{M}}_B\mathcal{A}$ are complete metric spaces (in the uniform convergence topology) and the same is true for $\operatorname{b}\mathcal{M}\mathcal{A}$, $\operatorname{b}\underline{\mathcal{M}}\mathcal{A}$ and $\operatorname{b}\overline{\mathcal{M}}\mathcal{A}$. Let $R\underline{\mathbf{M}}_B\mathcal{A} = \bigcup\{\underline{\mathbf{M}}_B(\mathcal{A}|X) : X \in P(Z)\}$, $R\overline{\mathbf{M}}_B\mathcal{A} = \bigcup\{\overline{\mathbf{M}}_B(\mathcal{A}|X) : X \in P(Z)\}$, and $R(\operatorname{cl}(\operatorname{b}\underline{\mathbf{M}}_B\mathcal{A} + \operatorname{b}\overline{\mathbf{M}}_B\mathcal{A})) = \bigcup\{\operatorname{cl}(\operatorname{b}\underline{\mathbf{M}}_B(\mathcal{A}|X) + \operatorname{b}\overline{\mathbf{M}}_B(\mathcal{A}|X)) : X \in P(Z)\}$.

We use standard notation from Descriptive Set Theory. For example, Σ^0_{α} (Π^0_{α}) denotes the α th additive (multiplicative, resp.) class in the hierarchy of Borel sets, and Σ^1_n is the *n*th projective class in the hierarchy of projective sets.

For X a Polish space and $\alpha < \omega_1$, let $\mathbf{B}_{\alpha}(X) = \{f \in {}^{X}\mathbb{R} : f^{-1}(G) \in \Sigma_{1+\alpha}^0(X) \text{ for each } G \text{ open in } \mathbb{R}\}$. If $X = \mathbb{R}$ we write briefly $\mathbf{B}_{\alpha}(\mathbb{R}) = \mathbf{B}_{\alpha}$. We have $\mathbf{B}_{\alpha}(X) = \mathbf{M}\Sigma_{1+\alpha}^0(X)$. We also write $\mathbf{L}_{\alpha}(X)$ and $\mathbf{U}_{\alpha}(X)$ to denote $\underline{\mathbf{M}}\Sigma_{1+\alpha}^0(X)$ and $\overline{\mathbf{M}}\Sigma_{1+\alpha}^0(X)$, respectively. For $X = \mathbb{R}$ we write $\mathbf{L}_{\alpha}(\mathbb{R}) = \mathbf{L}_{\alpha}$ and $\mathbf{U}_{\alpha}(\mathbb{R}) = \mathbf{U}_{\alpha}$. Obviously, $\mathbf{L}_0(X)$ and $\mathbf{U}_0(X)$ are the classes of lower and upper semicontinuous functions on X with values in \mathbb{R} .

R e m a r k. In the classical notation the class \mathbf{B}_{α} for $\alpha < \omega$ and $\mathbf{B}_{\alpha+1}$ for $\alpha \geq \omega$ is called the α th class in the Baire classification and the classes \mathbf{L}_{α} , \mathbf{U}_{α} ($\mathbf{L}_{\alpha} + \mathbf{U}_{\alpha}$) for $\alpha < \omega$ have the number $\alpha + 1$ and for $\alpha \geq \omega$ the number α in Young's (Sierpiński's, resp.) classification (compare for instance [L]).

We say that a class \mathcal{A} has the reduction property if for any $A, B \in \mathcal{A}$ there are $A^*, B^* \in \mathcal{A}$ such that $A^* \subseteq A$ and $B^* \subseteq B, A^* \cap B^* = \emptyset$ and $A^* \cup B^* = A \cup B$. Note that if $1 < \alpha < \omega_1$, then Σ^0_{α} has the reduction property. The same is true of $\Sigma^1_n, n \in \mathbb{N}$. Moreover, if Z is zero-dimensional, then $\Sigma^0_1(Z)$ also has the reduction property.

Following the idea used in [Mo] we deal in this paper with a certain fixed

family ${\mathcal T}$ of Polish spaces such that:

- (i) if $X \subseteq Z \in \mathcal{T}$ and X is a closed subset of Z, then also $X \in \mathcal{T}$;
- (ii) \mathcal{T} is closed under finite Cartesian products;
- (iii) $\mathcal{N}, \mathbb{R} \in \mathcal{T}$.

As in [Mo] the idea is to include in ${\mathcal T}$ any Polish space one wants to consider.

Now assume that to each $Z \in \mathcal{T}$ we have assigned a certain family $\mathcal{A}(Z)$ of subsets of Z. Denote by \mathcal{A} the collection of all these families. We say that \mathcal{A} is closed under continuous substitutions if for each $X, Y \in \mathcal{T}$ and for every continuous function $f \in {}^{X}Y$ we have $f^{-1}(\mathcal{A}) \in \mathcal{A}(X)$ for every $\mathcal{A} \in \mathcal{A}(Y)$. We shall call \mathcal{A} a hereditary σ -class if \mathcal{A} is closed under continuous substitutions and if for each $Z \in \mathcal{T}$ the following two conditions are satisfied:

(I) $\mathcal{A}(Z)$ is a σ -class;

(II) $\mathcal{A}(Z)|X = \mathcal{A}(X)$ for each closed $X \subseteq Z$.

Obviously, Σ_{α}^{0} , $\alpha < \omega_{1}$, and Σ_{n}^{1} , $n \in \mathbb{N}$, are examples of hereditary σ -classes. Let X and Y be any sets. For $A \subseteq X \times Y$ and $x \in X$ let $A_{x} = \{y \in Y : (x, y) \in A\}$. If $A \subseteq P(Y)$, a set $A \subseteq X \times Y$ is called a *universal set* for A if $\mathcal{A} = \{A_{x} : x \in X\}$. Recall that if X and Y are Polish spaces and X is uncountable, then for any $\alpha < \omega_{1}$ there is a universal set for $\Sigma_{\alpha}^{0}(Y)$ in the class $\Sigma_{\alpha}^{0}(X \times Y)$, and the same is true for the classes Σ_{n}^{1} , $n \in \mathbb{N}$ (see [Mo]).

Let $F \in {}^{X \times Y}\mathbb{R}$ and $(x, y) \in X \times Y$. We put $F_x(y) = F(x, y)$. A function $F \in {}^{X \times Y}\mathbb{R}$ is called a *universal function* for a class $\mathcal{H} \subseteq {}^{Y}\mathbb{R}$ if $\mathcal{H} = \{F_x : x \in X\}.$

We shall use the following known facts. Theorems 2.A and 2.B were formulated in [CMPS, Cor. 2.2 and Cor. 2.4] in a weaker form but, in fact, they are exactly the theorems proved there.

THEOREM 2.A. If \mathcal{A} is a σ -class of subsets of Z with the reduction property, then for every countable family of functions $\mathcal{H} \subseteq \mathbf{M}\mathcal{A}$ there exists $g \in \mathbf{M}\mathcal{A}$ such that $\inf |f - g| > 0$ for every $f \in \mathcal{H}$.

THEOREM 2.B. If \mathcal{A} is a σ -class of subsets of Z and $f \in \underline{\mathbf{M}}\mathcal{A}$, then the set $\{g \in \overline{\mathbf{M}}\mathcal{A} : \inf |f-g| > 0\}$ is open and dense in $\overline{\mathbf{M}}\mathcal{A}$.

THEOREM 2.C ([CM, Th. 2.1]). If $Z \in \mathcal{T}$ and \mathcal{A} is a hereditary σ -class such that $\mathcal{A}(Z)$ has a universal set in $\mathcal{A}(\mathcal{C} \times Z)$, then there exists a universal function for $\underline{\mathbf{M}}\mathcal{A}(Z)$ in $\underline{\mathbf{M}}\mathcal{A}(\mathcal{C} \times Z)$.

THEOREM 2.D (see, for instance, [CM, Prop. 1.1]). If $n \in \mathbb{N}$ and \mathcal{A} is a σ -class then $f \in R\underline{\mathbf{M}}_{[-n,n]}\mathcal{A}$ if and only if there exists $f^* \in \underline{\mathbf{M}}_{[-n,n]}\mathcal{A}$ such that $f = f^* | \text{dom } f$. A similar result holds for functions from $\overline{\mathbf{M}}_{[-n,n]}\mathcal{A}$.

Now to formulate Theorem 2.E ([H, XIV, p. 277]) we introduce some notation used in [H].

A family \mathcal{F} of real functions defined on a common domain D will be called an *ordinary function system* if

(i) every real function which is constant on D is in \mathcal{F} ;

(ii) the maximum and minimum of two functions from \mathcal{F} is in \mathcal{F} ;

(iii) the sum, difference, product, and quotient (with nowhere vanishing denominator) of two functions from \mathcal{F} is in \mathcal{F} .

An ordinary function system $\mathcal F$ is called complete if it also satisfies the following condition:

(iv) the limit of a uniformly convergent sequence of functions from \mathcal{F} is in \mathcal{F} .

Let \mathcal{A} and \mathcal{B} be two families of functions. The function f is said to be of class $(\mathcal{A}, \mathcal{B})$ if for each $c \in \mathbb{R}$ the set $f^{-1}((c, \infty))$ is in \mathcal{A} and the set $f^{-1}([c, \infty))$ is in \mathcal{B} ([H, p. 267]).

Let \mathcal{F} be a given family of functions defined on a common domain. Let f range over \mathcal{F} , and let g and h range over all real functions which are pointwise limits of, respectively, nondecreasing and nonincreasing sequences of functions from \mathcal{F} . Then the sets of the form $f^{-1}([c,\infty))$, $g^{-1}((c,\infty))$, $h^{-1}([c,\infty))$ will be called N, P, Q sets, respectively ([H, p. 270]). Countable intersections of N sets will be called N_{δ} sets. \mathcal{P} and \mathcal{Q} will stand for the families of all P and Q sets respectively.

The functions forming the least complete ordinary function system over \mathcal{F} will be called v *functions* ([H, VII, p. 272]).

The following theorem was proved in [H, XIV, p. 277].

THEOREM 2.E. Let \mathcal{F} be an ordinary function system. If Q_0 is a Q set, then each function $\phi : Q_0 \to \mathbb{R}$ which is of class $(\mathcal{P}|Q_0, \mathcal{Q}|Q_0)$ can be extended to a function of class $(\mathcal{P}, \mathcal{Q})$, that is (see [H, VII, p. 272]), to a v function.

We now derive a corollary we shall use in the sequel.

COROLLARY 2.F. If \mathcal{A} is a σ -class of subsets of some set Z and if $\phi \in \mathbf{M}(\mathcal{A}'|S)$ where $S \in \mathcal{A}_{\delta}$, then ϕ can be extended to some $\phi^* \in \mathbf{M}\mathcal{A}'$.

Proof. Notice that all $B \in \mathcal{A}$ are N sets for the ordinary function system $\mathbf{M}\mathcal{A}'$, because $\chi_B \in \mathbf{M}\mathcal{A}'$. Thus the sets from \mathcal{A}_{δ} are N_{δ} sets and therefore Q sets ([H, VI, p. 271]). Thus, by Theorem 2.E, the function ϕ can be extended to a v function ϕ^* . But, as $\mathbf{M}\mathcal{A}'$ is a complete ordinary function system ([H, III, p. 268]), every v function is in $\mathbf{M}\mathcal{A}'$.

3. Algebras of measurable functions

LEMMA 3.1. Let \mathcal{A} be a σ -class of subsets of Z. Let $h \in \overline{\mathbf{M}}\mathcal{A}$, $|\operatorname{Rg} h| < \aleph_0$, $v \in \overline{\mathbf{M}}\mathcal{A}$. Then for each $\varepsilon > 0$ there exists $g \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}$ such that $||g|| < \varepsilon$ and $\inf |g + h - v| > 0$.

Proof. Let $\operatorname{Rg} h = \{\alpha_1, \ldots, \alpha_n\}, \alpha_1 < \ldots < \alpha_n$. Let $A_i = \{z \in Z : h(z) = \alpha_i\}, i \leq n$. Assume $\varepsilon < 1$. By Theorem 2.B for each $i \leq n$ there exists $g_i \in \underline{\mathbf{M}}_{[-1,1]}(\mathcal{A}|A_i)$ with $\inf |g_i + \alpha_i - v| > 0$ and $||g_i - \varepsilon(n-i)/(2n)|| < \varepsilon/(4n)$. Observe that $\sup g_{i+1} < \inf g_i, i = 1, \ldots, n-1$. Define $g(z) = g_i(z)$ for $z \in A_i, i \leq n$. To see that $g \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}$ we check that $g^{-1}((a,1]) \in \mathcal{A}$ for each $a \in [0,1]$. Assume first that

(1)
$$\min g_k \le a \le \max g_k$$

for some $k \leq n$. Then

$$g^{-1}((a,1]) = \bigcup_{i=1}^{k-1} A_i \cup g_k^{-1}((a,1]) = \bigcup_{i=1}^{k-1} A_i \cup (B \cap A_k)$$

for some $B \in \mathcal{A}$. Further, we have

$$\bigcup_{i=1}^{k-1} A_i \cup (B \cap A_k) = \left(\bigcup_{i=1}^{k-1} A_i\right) \cup \left(\left(\bigcup_{i=1}^k A_i\right) \cap B\right) \in \mathcal{A}$$

If (1) is not satisfied one can easily see that either

$$g^{-1}((a,1]) = \bigcup_{i=1}^{k} A_i \in \mathcal{A}$$

for some $k \leq n$, or $g^{-1}((a, 1]) = \emptyset$.

We now apply Lemma 3.1 to prove the following:

LEMMA 3.2. Let $w \in \overline{\mathbf{M}}\mathcal{A}$. Then the set $\{(l, u) \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A} \times \overline{\mathbf{M}}_{[-1,1]}\mathcal{A} :$ inf $|u + l - w| > 0\}$ is residual in $\underline{\mathbf{M}}_{[-1,1]}\mathcal{A} \times \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}$, in fact open and dense.

Proof. Let $u \in \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}$, $l \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}$, $\varepsilon > 0$. Let $n \in \mathbb{N}$ and $n > \varepsilon^{-1}$. Define $A_i = u^{-1}([(i-1)n^{-1},in^{-1}))$ for $i \in \{-n+1,\ldots,n-1\}$, $A_n = u^{-1}([(n-1)n^{-1},1])$ and $h = \sum_{i=-n+1}^{n}(i-1)n^{-1}\chi_{A_i}$. Obviously, $h \in \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}$, $||u-h|| < \varepsilon$ and $|\operatorname{Rg} h| < \aleph_0$. Let $l' = \max(\min(l,1-\varepsilon),-1+\varepsilon)$ and -l' + w = v. The functions h and v satisfy the conditions of the hypothesis of Lemma 3.1 and, by that lemma, there exists $g \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}$ such that $||g|| < \varepsilon$ and $\delta = \inf |g+h+l'-w| > 0$. Of course $(l'+g,h) \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A} \times \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}$ and for any pair $(\tilde{l}, \tilde{u}) \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A} \times \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}$ such that $\|\tilde{u} - h\| < \delta/2$ and $\|\tilde{l} - (l'+g)\| < \delta/2$ we have $\inf |\tilde{u} + \tilde{l} - w| > 0$.

We also need the following dual lemma.

LEMMA 3.3. Let $w \in \underline{\mathbf{M}}\mathcal{A}$. Then the set $\{(l, u) \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A} \times \overline{\mathbf{M}}_{[-1,1]}\mathcal{A} :$ inf $|u + l - w| > 0\}$ is residual in $\underline{\mathbf{M}}_{[-1,1]}\mathcal{A} \times \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}$, in fact open and dense.

From Lemmas 3.2 and 3.3 and the Baire category theorem we derive the following corollary.

COROLLARY 3.4. If \mathcal{A} is a σ -class of subsets of Z, then for every countable family $\mathcal{H} \subseteq \underline{\mathbf{M}}\mathcal{A} \cup \overline{\mathbf{M}}\mathcal{A}$ there exists $f \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z) + \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z)$ such that $f(t) \neq g(t)$ for every $g \in \mathcal{H}$ and every $t \in Z$.

We are now able to prove our first decomposition theorem. The scheme of the proof is, in fact, the same as for Theorem 3.2 of [CMPS].

THEOREM 3.5. Let \mathcal{A} be a hereditary σ -class, and let $Z \in \mathcal{T}$ be uncountable and such that $\mathcal{A}(Z)$ has a universal set in $\mathcal{A}(\mathcal{C} \times Z)$. Then there exists $f \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z) + \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z)$ such that there is no countable partition of $Z, Z = \bigcup \{Z_n : n \in \mathbb{N}\}$, such that $f|Z_n \in \underline{\mathbf{M}}(\mathcal{A}(Z)|Z_n) \cup \overline{\mathbf{M}}(\mathcal{A}(Z)|Z_n)$ for every $n \in \mathbb{N}$. In other words,

$$\operatorname{dec}(\underline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z) + \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z), R\underline{\mathbf{M}}\mathcal{A}(Z) \cup R\overline{\mathbf{M}}\mathcal{A}(Z)) > \aleph_0$$

Proof. Let $C \subseteq Z$ be homeomorphic to \mathcal{C} . Let $F \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}(C \times Z)$ and $G \in \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}(C \times Z)$ be universal functions for $\underline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z)$ and $\overline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z)$, respectively. Let $\pi = (\pi_1, \pi_2, \ldots) : C \to {}^{\mathbb{N}}C$ be a fixed homeomorphism. For every $n \in \mathbb{N}$ let $f_n \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z)$ and $g_n \in \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z)$ be such that $f_n(t) = F(\pi_n(t), t)$ and $g_n(t) = G(\pi_n(t), t)$ for every $t \in C$. By Corollary 3.4 there exists $f \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z) + \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z)$ such that $f(t) \neq g_n(t)$ and $f(t) \neq f_n(t)$ for each $t \in Z$.

Now assume that $f = \bigcup \{h_k : k \in \mathbb{N}\}$ and $h_k \in R\underline{\mathbf{M}}\mathcal{A}(Z) \cup R\overline{\mathbf{M}}\mathcal{A}(Z)$ for each $k \in \mathbb{N}$. Let $h_k^* \in \underline{\mathbf{M}}\mathcal{A}(Z) \cup \overline{\mathbf{M}}\mathcal{A}(Z)$ be an extension of h_k (see Theorem 2.D). There exists $c \in C$ such that for every $k \in \mathbb{N}$ and for every $t \in Z$ either $h_k^*(t) = F(\pi_k(c), t)$ or $h_k^*(t) = G(\pi_k(c), t)$. Thus $f(c) \in \{f_k(c) : k \in \mathbb{N}\} \cup \{g_k(c) : k \in \mathbb{N}\}$, which is impossible.

COROLLARY 3.6. If Z is an uncountable Polish space, then for any $\alpha < \omega_1$

$$\operatorname{dec}(\mathbf{L}_{\alpha}(Z) + \mathbf{U}_{\alpha}(Z), R\mathbf{L}_{\alpha}(Z) \cup R\mathbf{U}_{\alpha}(Z)) > \aleph_0.$$

COROLLARY 3.7. If Z is an uncountable Polish space, then for any $n \in \mathbb{N}$ $\operatorname{dec}(\mathbf{M}\Sigma_n^1(Z) + \overline{\mathbf{M}}\Sigma_n^1(Z), R\mathbf{M}\Sigma_n^1(Z) \cup R\overline{\mathbf{M}}\Sigma_n^1(Z)) > \aleph_0.$

We shall need the following lemma.

LEMMA 3.8. If \mathcal{A} is a hereditary σ -class, $Z \in \mathcal{T}$ and $\mathcal{A}(Z)$ has a universal set in $\mathcal{A}(\mathcal{C} \times Z)$, then for every $n \in \mathbb{N}$ the class $\underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z) + \overline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z)$ has a universal function in $\underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(\mathcal{C} \times Z) + \overline{\mathbf{M}}_{[-n,n]}\mathcal{A}(\mathcal{C} \times Z)$.

Proof. Let $\phi = (\phi_1, \phi_2) : \mathcal{C} \to \mathcal{C}^2$ be any homeomorphism. Let $F \in \underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(\mathcal{C} \times Z)$ and $G \in \overline{\mathbf{M}}_{[-n,n]}\mathcal{A}(\mathcal{C} \times Z)$ be universal functions for $\underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z)$ and $\underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z)$, respectively. Then $H(c, x) = F(\phi_1(c), x) + G(\phi_2(c), x)$ is a universal function for $\underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z) + \overline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z)$.

LEMMA 3.9. Let \mathcal{A} be a σ -class of subsets of some set Z. If $A \in r(\mathcal{A})$ then $\chi_A \in b \underline{\mathbf{M}} \mathcal{A} + b \overline{\mathbf{M}} \mathcal{A}$.

Proof. The family

$$\mathcal{S} = \{ A \in r(\mathcal{A}) : \chi_A \in \mathbf{b} \underline{\mathbf{M}} \mathcal{A} + \mathbf{b} \overline{\mathbf{M}} \mathcal{A} \}$$

is obviously closed under finite intersections and taking complements and at the same time $\mathcal{A} \subseteq \mathcal{S}$. Thus $\mathcal{S} = r(\mathcal{A})$.

LEMMA 3.10. Let $n \in \mathbb{N}$, let \mathcal{A} be a σ -class of subsets of some set Z and $g \in \underline{\mathbf{M}}_{[-N,N]}\mathcal{A} + \overline{\mathbf{M}}_{[-N,N]}\mathcal{A}$, $N \in \mathbb{N}$. Then there exists $w \in \mathbf{b}\underline{\mathbf{M}}\mathcal{A} + \mathbf{b}\overline{\mathbf{M}}\mathcal{A}$ such that $||g - w|| < 2^{-n+1}$ and

$$w = \sum_{i=-2^{n+1}N}^{2^{n+1}N} i \cdot 2^{-n} \chi_{A_i}$$

where the sets A_i are pairwise disjoint and, for each $i, A_i \in r(\mathcal{A})$ and therefore $\chi_{A_i} \in \mathbf{b} \underline{\mathbf{M}} \mathcal{A} + \mathbf{b} \overline{\mathbf{M}} \mathcal{A}$.

Proof. Let g = u + l, $l \in \underline{\mathbf{M}}_{[-N,N]}\mathcal{A}$ and $u \in \overline{\mathbf{M}}_{[-N,N]}\mathcal{A}$. Let $B_i = l^{-1}((i \cdot 2^{-n}, (i+1) \cdot 2^{-n}))$ and $C_i = u^{-1}([i \cdot 2^{-n}, (i+1) \cdot 2^{-n}))$. The sets B_i and C_i belong to $r(\mathcal{A})$. Let

$$w = \sum_{i=-2^{n}N}^{2^{n}N} i \cdot 2^{-n} \chi_{B_{i-1}} + \sum_{i=-2^{n}N}^{2^{n}N} i \cdot 2^{-n} \chi_{C_{i}} = \sum_{j=-2^{n+1}N}^{2^{n+1}N} j \cdot 2^{-n} \chi_{A_{j}},$$

where $A_j = \bigcup \{B_i \cap C_k : i + k + 1 = j\}$. It follows from Lemma 3.9 that w is the function we need.

LEMMA 3.11. Let \mathcal{A} be a σ -class of subsets of some set Z. Let $f, g \in \mathbf{b}\mathbf{M}\mathcal{A} + \mathbf{b}\mathbf{M}\mathcal{A}$. Let $\varepsilon > 0$. Then there exists $h \in \mathbf{b}\mathbf{M}\mathcal{A} + \mathbf{b}\mathbf{M}\mathcal{A}$ such that $\|h - g\| < 3\varepsilon$ and $\inf |h - f| \ge \varepsilon/3$.

Proof. By Lemma 3.10 there exist $\phi = \sum_{i=1}^{N} c_i \chi_{A_i}$ and $\psi = \sum_{j=1}^{M} d_j \chi_{B_j}$ such that $A_i, B_j \in r(\mathcal{A}), i \leq N, j \leq M$, the sets A_i are pairwise disjoint, the B_j are pairwise disjoint, $||f - \phi|| < \varepsilon/3$, and $||g - \psi|| < \varepsilon/3$. Taking appropriate intersections we can assume that for each $j \leq M$ there exists

 $i \leq N$ such that $B_j \subseteq A_i$. Let $B_j \subseteq A_i$. Then we define h on B_j in the following way:

$$h|B_j = \begin{cases} \psi|B_j & \text{if } |d_j - c_i| \ge 2\varepsilon/3, \\ \psi|B_j + 2\varepsilon & \text{if } |d_j - c_i| < 2\varepsilon/3. \end{cases}$$

LEMMA 3.12. If \mathcal{A} is a σ -class of subsets of Z then for every countable family $\mathcal{G} \subseteq \operatorname{cl}(\mathrm{b}\mathbf{M}\mathcal{A} + \mathrm{b}\mathbf{M}\mathcal{A})$ there exists $g \in \operatorname{cl}(\mathrm{b}\mathbf{M}\mathcal{A} + \mathrm{b}\mathbf{M}\mathcal{A})$ such that $\inf |f - g| > 0$ for every $f \in \mathcal{G}$.

Proof. By Lemma 3.11 for any $f \in \mathcal{G}$ the family $\{h \in \operatorname{cl}(b\underline{\mathbf{M}}\mathcal{A}+b\overline{\mathbf{M}}\mathcal{A}) : \inf |f-h| > 0\}$ is residual in $\operatorname{cl}(b\underline{\mathbf{M}}\mathcal{A}+b\overline{\mathbf{M}}\mathcal{A})$. As the latter space is complete, the lemma follows by the Baire category theorem.

THEOREM 3.13. Let \mathcal{A} be a hereditary σ -class on \mathcal{T} . Let $\mathcal{A}(Z)$, for some uncountable $Z \in \mathcal{T}$, have a universal set in $\mathcal{A}(\mathcal{C} \times Z)$. Then there exists a function $f \in \operatorname{cl}(\mathrm{b}\mathbf{M}\mathcal{A}(Z) + \mathrm{b}\mathbf{M}\mathcal{A}(Z))$ for which there is no countable partition $Z = \bigcup \{Z_m : m \in \mathbb{N}\}$ such that $f|Z_m \in \mathbf{M}\mathcal{A}(Z)|Z_m + \mathbf{M}\mathcal{A}(Z)|Z_m$ for each $m \in \mathbb{N}$. In other words,

 $\operatorname{dec}(\operatorname{cl}(\operatorname{b}\mathbf{\underline{M}}\mathcal{A}(Z) + \operatorname{b}\mathbf{\overline{M}}\mathcal{A}(Z)), R(\mathbf{\underline{M}}\mathcal{A}(Z) + \mathbf{\overline{M}}\mathcal{A}(Z))) > \aleph_0.$

Proof. Let $C \subseteq Z$ be homeomorphic to C. By Lemma 3.8 for each $n \in \mathbb{N}$ there exists $G_n \in \underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(C \times Z) + \overline{\mathbf{M}}_{[-n,n]}\mathcal{A}(C \times Z)$ which is a universal function for $\underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z) + \overline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z)$. Let $\pi = (\pi_1, \pi_2, \ldots) : C \to {}^{\mathbb{N}}C$ be a fixed homeomorphism. Let $g_n(t) = G_n(\pi_n(t), t)$ for every $t \in C$. It is easy to see that $g_n \in \underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z) + \overline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z)$. By Lemma 3.12 there exists $f \in \mathrm{cl}(\mathrm{b}\underline{\mathbf{M}}\mathcal{A}(Z) + \mathrm{b}\overline{\mathbf{M}}\mathcal{A}(Z))$ such that $f(t) \neq g_n(t)$ for each $t \in Z$ and for each $n \in \mathbb{N}$.

Assume there is a partition $Z = \bigcup \{Z_m : m \in \mathbb{N}\}$ such that $f|Z_m \in \underline{\mathbf{M}}(\mathcal{A}(Z)|Z_m) + \overline{\mathbf{M}}(\mathcal{A}(Z)|Z_m)$ for each $m \in \mathbb{N}$. Let $f|Z_m = l_m + u_m$ where $l_m \in \underline{\mathbf{M}}\mathcal{A}(Z)|Z_m$ and $u_m \in \overline{\mathbf{M}}\mathcal{A}(Z)|Z_m$. Let $Z_{m,n} = \{x \in Z_m : |l_m(x)| \leq n \text{ and } |u_m(x)| \leq n\}$. Of course $\bigcup \{Z_{m,n} : n \in \mathbb{N}\} = Z_m$. Let $l_{m,n} \in \underline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z)$ and $u_{m,n} \in \overline{\mathbf{M}}_{[-n,n]}\mathcal{A}(Z)$ be extensions of $l_m|Z_{m,n}$ and $u_m|Z_{m,n}$, respectively (see Theorem 2.D). There exists $c \in C$ such that for each pair $m, n \in \mathbb{N}$ there exists $i(m, n) \in \mathbb{N}$ such that $l_{m,n}(t) + u_{m,n}(t) = G_{i(m,n)}(\pi_{i(m,n)}(c), t)$ for each $t \in \mathbb{N}$. Let $c \in Z_{m,n}$ for some $m, n \in \mathbb{N}$. Then $f(c) = l_{m,n}(c) + u_{m,n}(c) = g_{i(m,n)}(c)$, which is a contradiction.

COROLLARY 3.14. If Z is an uncountable Polish space, then for any $\alpha < \omega_1$

 $\operatorname{dec}(\operatorname{cl}(\operatorname{b}\mathbf{L}_{\alpha}(Z) + \operatorname{b}\mathbf{U}_{\alpha}(Z)), R(\mathbf{L}_{\alpha}(Z) + \mathbf{U}_{\alpha}(Z))) > \aleph_{0}. \blacksquare$

COROLLARY 3.15. If Z is an uncountable Polish space, then for any $n \in \mathbb{N}$ $\operatorname{dec}(\operatorname{cl}(\operatorname{b}\mathbf{M}\Sigma_n^1(Z) + \operatorname{b}\overline{\mathbf{M}}\Sigma_n^1(Z)), R(\mathbf{M}\Sigma_n^1(Z) + \overline{\mathbf{M}}\Sigma_n^1(Z))) > \aleph_0.$ LEMMA 3.16. Let \mathcal{A} be a σ -class of subsets of some set Z. If $f \in cl(b\underline{M}\mathcal{A} + b\overline{M}\mathcal{A})$, then for given $n \in \mathbb{N}$ and $\delta > 0$ there exists $v \in b\underline{M}\mathcal{A} + b\overline{M}\mathcal{A}$ such that $||f - v|| < 2^{-n+1}$, $\operatorname{Rg} v \subseteq \{i \cdot 2^{-n} : i \in \mathbb{Z}\}$ and v(x) < v(y) implies $f(x) < f(y) + \delta$ for all $x, y \in Z$.

Proof. Let $m \in \mathbb{N}$, m > n + 1 and $2^{-m+2} < \delta$. Let $g \in \mathbf{b}\underline{\mathbf{M}}\mathcal{A} + \mathbf{b}\overline{\mathbf{M}}\mathcal{A}$ and $\|f - g\| < 2^{-m}$. By Lemma 3.10 there exists

$$w = \sum_{i=-M}^{M} i \cdot 2^{-m-1} \chi_{A_i}$$

where $M \in \mathbb{N}$, $||g-w|| < 2^{-m}$, the sets A_i are pairwise disjoint and, for each $i, A_i \in r(\mathcal{A})$ and thus $\chi_{A_i} \in \mathbf{b} \underline{\mathbf{M}} \mathcal{A} + \mathbf{b} \overline{\mathbf{M}} \mathcal{A}$. Then $||w - f|| < 2^{-m+1}$. Let $v(x) = [2^n w(x)] \cdot 2^{-n}$. Obviously $\operatorname{Rg} v \subseteq \{i \cdot 2^{-n} : i \in \mathbb{Z}\}$ and $||f-v|| < 2^{-n+1}$. If v(x) < v(y) then w(x) < w(y), whence $f(x) < f(y) + 2^{-m+2} < f(y) + \delta$.

THEOREM 3.17. Let \mathcal{A} be a σ -class of subsets of some set Z. Then each $f \in \operatorname{cl}(\mathrm{b}\mathbf{M}\mathcal{A} + \mathrm{b}\mathbf{\overline{M}}\mathcal{A})$ can be expressed as the superposition $f = g \circ h$ where $h \in \mathrm{b}\mathbf{M}_{[-1,1]}\mathcal{A} + \mathrm{b}\mathbf{\overline{M}}_{[-1,1]}\mathcal{A}$ and $g \in C([-2,2]) \cap VB([-2,2])$.

Proof. Let $f \in cl(b\mathbf{M}\mathcal{A} + b\mathbf{M}\mathcal{A})$. Let $||f|| < N \in \mathbb{N}$. The function f is the uniform limit $f = \lim_{n \to \infty} v_n$ of functions $v_n \in b\mathbf{M}\mathcal{A} + b\mathbf{M}\mathcal{A}$. By Lemma 3.16 we can assume that $\operatorname{Rg} v_n \subseteq \{i/2^n : i \in \mathbb{Z}\}, ||f - v_n|| < 2^{-n+1}$ and that

(*)
$$v_n(x) < v_n(y)$$
 implies $f(x) < f(y) + \delta_n$,

where $\delta_n = (N+1)^{-1} \cdot 2^{-2n-2}$. Let $v_n = l_n + u_n$, where $l_n \in \mathbf{b} \underline{\mathbf{M}} \mathcal{A}$ and $u_n \in \mathbf{b} \overline{\mathbf{M}} \mathcal{A}$. Let $\mathbf{v}(x) = (v_1(x), v_2(x), \ldots)$. Let s be the function defined on $\operatorname{Rg} \mathbf{v}$ as $s(v_1(x), v_2(x), \ldots) = \lim_{n \to \infty} v_n(x)$. Of course $f = s \circ \mathbf{v}$.

Now, let $\alpha_n, n \in \mathbb{N}$, satisfy the following conditions:

 $\begin{array}{l} 1^{\rm o} \ \alpha_n > 0, \ n \in \mathbb{N}; \\ 2^{\rm o} \ \alpha_n \sup |l_n| < 2^{-n} \ \text{and} \ \alpha_n \sup |u_n| < 2^{-n}; \\ 3^{\rm o} \ \alpha_n 2^{-n} > 2 \sum_{i > n} \alpha_i (\sup |l_i| + \sup |u_i|). \end{array}$

Let

$$\phi(\mathbf{v}(x)) = \sum_{n=1}^{\infty} \alpha_n v_n(x) = \sum_{n=1}^{\infty} \alpha_n l_n(x) + \sum_{n=1}^{\infty} \alpha_n u_n(x) \,.$$

The convergence of the series follows from 2°. From 3° it follows that ϕ is 1-1. We have $f = s \circ \mathbf{v} = (s \circ \phi^{-1}) \circ (\phi \circ \mathbf{v})$. Of course $\phi \circ \mathbf{v} \in \underline{\mathbf{M}}_{[-1,1]} \mathcal{A} + \overline{\mathbf{M}}_{[-1,1]} \mathcal{A}$ and we put $h = \phi \circ \mathbf{v}$.

Now we show that $\varphi = s \circ \phi^{-1}$ can be extended to a function $g \in VB([-2,2]) \cap C([-2,2])$. To this end it is enough to show that φ can be extended to a continuous function $\tilde{\varphi}$ on $cl(\operatorname{dom} \varphi)$ and that φ is of bounded variation on its domain.

Let $s_k = \sum_{n=1}^{\infty} \alpha_n v_n(x_k)$ and $t_k = \sum_{n=1}^{\infty} \alpha_n v_n(x'_k)$ and $s_k \nearrow q \swarrow t_k$. We shall show that the sequences $\varphi(s_k)$ and $\varphi(t_k)$ converge to the same limit $\tilde{\varphi}(q)$. For each $n \in \mathbb{N}$ there is some k(n) such that $v_n(x_k) = v_n(x'_k)$ for k > k(n). Indeed, as ϕ preserves the lexicographic order on $\mathbf{v}(Z)$ the sequence $v_1(x_k)$ is nondecreasing and, as $|\operatorname{Rg} v_1| < \aleph_0$, it is constant for $k \ge n_1$, for some $n_1 \in \mathbb{N}$. Then for $k \ge n_1$ the sequence $v_2(x_k)$ is nondecreasing and is constant for $k \ge n_2$ for some $n_2 \ge n_1$. Inductively we prove that for each $m \in \mathbb{N}$ the sequence $v_m(x_k)$ is constant for $k \ge n_{m-1}$. Similarly, putting $n'_0 = 0$, by induction we show that for each $m \in \mathbb{N}$ the sequence $v_m(x'_k)$ is nonincreasing for $k \ge n'_{m-1}$ and constant for $k \ge n'_m$ for some $n'_m \ge n'_m$ for some $n'_m \ge n'_m$.

If $v_1(x_{n_1}) < v_1(x'_{n'_1})$ then for all $k \ge \max(n_1, n'_1)$ we would have $v_1(x'_k) = v_1(x'_{n'_1}) > v_1(x_{n_1}) = v_1(x_k)$ and by 3°, $t_k - s_k > \varepsilon$ for some fixed $\varepsilon > 0$, which is a contradiction. Inductively $v_m(x_{n_m}) = v_m(x'_{n'_m})$ for each $m \in \mathbb{N}$. As the sequence v_m is uniformly convergent to f and for any $m \in \mathbb{N}$ we have $v_m(x_k) = v_m(x'_k)$ for $k \ge \max(n_m, n'_m)$, the sequences $f(x_k) = \varphi(s_k)$ and $f(x'_k) = \varphi(t_k)$ are convergent and $f(x_k) - f(x'_k) \to 0$. Thus φ can be extended to a continuous function $\tilde{\varphi}$ defined on cl(dom φ).

Now we show that φ is of bounded variation on its domain. Let $t_1 < \ldots < t_m$, where $t_i = \sum_{n=1}^{\infty} \alpha_n v_n(x_i) = \phi \circ \mathbf{v}(x_i), i \leq m$. We shall estimate the sum $\sum_{i \in \mathcal{I}} (\varphi(t_i) - \varphi(t_{i+1}))$, where $\mathcal{I} \subseteq \{1, \ldots, m-1\}$ is the set of all i for which $\varphi(t_i) - \varphi(t_{i+1}) > 0$. Let $A_n = \{i \in \mathcal{I} : \min\{j : v_j(x_i) < v_j(x_{i+1})\} = n\}$. We have

$$\sum_{i \in \mathcal{I}} (\varphi(t_i) - \varphi(t_{i+1})) = \sum_{n=1}^{\infty} \sum_{i \in A_n \cap \mathcal{I}} (\varphi(t_i) - \varphi(t_{i+1})).$$

For $i \in A_n$ we have, by (*), $\varphi(t_i) - \varphi(t_{i+1}) = f(x_i) - f(x_{i+1}) < \delta_n$, whence

$$\sum_{i\in\mathcal{I}}(\varphi(t_i)-\varphi(t_{i+1})) < \sum_{n=1}^{\infty} 2(N+1)\cdot 2^n \delta_n < 1.$$

Thus φ is of bounded variation.

By [Ma, Th. 2] we have the following converse theorem:

THEOREM 3.18. If \mathcal{R} is any algebra of functions such that $\operatorname{cl} \mathcal{R} = \mathcal{R}$ then for any $f \in \operatorname{b} \mathcal{R}$ and any function g continuous on a closed interval containing $\operatorname{Rg} f$ we have $g \circ f \in \mathcal{R}$.

Remark. Corollary 3.14 and Theorem 3.17 show that Theorem 14 in [L] is false. That there was a mistake in its proof in [L] was already noticed by A. Lindenbaum himself in [L, corr.].

LEMMA 3.19. Let \mathcal{A} be a σ -class of subsets of some set Z. Let $X \subseteq Z$. Then

every $f \in cl(b\underline{\mathbf{M}}(\mathcal{A}(Z)|X) + b\overline{\mathbf{M}}(\mathcal{A}(Z)|X))$ can be extended to a function $f^* \in cl(b\underline{\mathbf{M}}\mathcal{A}(Z) + b\overline{\mathbf{M}}\mathcal{A}(Z)).$

Proof. By Theorem 3.17, $f = h \circ g$ where $h \in C(\mathbb{R})$ and $g \in b\underline{\mathbf{M}}(\mathcal{A}(Z)|X) + b\overline{\mathbf{M}}(\mathcal{A}(Z)|X)$. The function g can be extended to some $g^* \in b\underline{\mathbf{M}}\mathcal{A}(Z) + b\overline{\mathbf{M}}\mathcal{A}(Z)$. Then $f^* = h \circ g^* \in cl(b\underline{\mathbf{M}}\mathcal{A}(Z) + b\overline{\mathbf{M}}\mathcal{A}(Z))$ by Theorem 3.18. \blacksquare

THEOREM 3.20. Let \mathcal{A} be a hereditary σ -class on \mathcal{T} and suppose $\Sigma_1^0(X) \subseteq \mathcal{A}(X)$ for every $X \in \mathcal{T}$. Let $Z \in \mathcal{T}$ and suppose $\mathcal{A}(Z)$ has a universal set in $\mathcal{A}(\mathcal{C} \times Z)$. Then there is an $F \in \mathbf{M}\mathcal{A}'(\mathcal{N} \times Z)$ which is a universal function for $\mathrm{cl}(\mathrm{b}\mathbf{M}\mathcal{A}(Z) + \mathrm{b}\mathbf{M}\mathcal{A}(Z))$.

Proof. By Lemma 3.8 there is a function $H \in \underline{\mathbf{M}}_{[-1,1]}\mathcal{A}(\mathcal{C} \times Z) + \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}(\mathcal{C} \times Z)$ universal for $\underline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z) + \overline{\mathbf{M}}_{[-1,1]}\mathcal{A}(Z)$. Let $\phi : \mathcal{N} \to \mathcal{C}$ be a continuous surjection ([Ku, 37, I, Th. 1]). Let $G(w, x) = H(\phi(w), x)$ for $w \in \mathcal{N}$ and $x \in Z$. Then $G \in \mathbf{M}\mathcal{A}'(\mathcal{N} \times Z)$ because $H \in \mathbf{M}\mathcal{A}'(\mathcal{C} \times Z)$ and, as is easy to see, \mathcal{A}' is closed under continuous substitutions. Let $\psi : \mathcal{N} \to C([-2,2])$ be a continuous surjection ([Ku, 37, I, Th. 1]). We write $\psi_w(\cdot)$ for $\psi(w)$ in the sequel. Let $\xi = (\xi_1, \xi_2)$ be any homeomorphism from \mathcal{N} onto \mathcal{N}^2 . Let $F(w, x) = \psi_{\xi_1(w)}(G(\xi_2(w), x))$. By Theorems 3.17 and 3.18, F is universal for $cl(b\underline{\mathbf{M}}\mathcal{A}(Z) + b\overline{\mathbf{M}}\mathcal{A}(Z))$.

We show that $F \in \mathbf{MA}'(\mathcal{N} \times Z)$. Let $\Psi(w, s) = \psi_{\xi_1(w)}(s), w \in \mathcal{N}, s \in [-2, 2], \widetilde{G}(w, x) = G(\xi_2(w), x)$ and $\Phi(w, x) = (w, \widetilde{G}(w, x))$. We have $F(w, x) = \Psi(\Phi(w, x))$. Then $\widetilde{G} \in \mathbf{MA}'(\mathcal{N} \times Z)$ because \mathcal{A}' is closed under continuous substitutions. An easy argument shows that Ψ is continuous. Finally, $\Phi^{-1}(U) \in \mathcal{A}'(\mathcal{N} \times Z)$ for any open set $U \subseteq \mathcal{N} \times \mathbb{R}$: indeed, as $U = \bigcup_{i=1}^{\infty} V_i \times W_i$, where the V_i are open in \mathcal{N} and W_i are open in \mathbb{R} , we have

$$\Phi^{-1}(U) = \bigcup_{i=1}^{\infty} (V_i \times Z) \cap \widetilde{G}^{-1}(W_i) \in \mathcal{A}'(\mathcal{N} \times Z). \blacksquare$$

In the next theorem we add new assumptions on the hereditary σ -class \mathcal{A} and the family \mathcal{T} . Namely, we assume that \mathcal{T} satisfies the following stronger form of (i):

(i^{*}) if $X \subseteq Z \in \mathcal{T}$ and X, as a subspace of Z, is completely metrizable by some metric ρ , then $(X, \rho) \in \mathcal{T}$.

We then assume that \mathcal{A} satisfies for any $Z \in \mathcal{T}$ and $X \subseteq Z$:

(II*) $\mathcal{A}(Z)|X = \mathcal{A}(X)$ where X is considered with any metric ρ such that $(X, \rho) \in \mathcal{T}$ is topologically a subspace of Z.

Assume also $\Sigma_1^0 \subseteq \mathcal{A}$.

However, the conditions imposed on \mathcal{A} are not very restrictive as the classes Σ_{α}^{0} , Σ_{n}^{0} still satisfy them.

THEOREM 3.21. Let \mathcal{A} be a hereditary σ -class satisfying (II*). Let $Z \in \mathcal{T}$ be uncountable and suppose $\mathcal{A}(Z)$ has a universal set in $\mathcal{A}(\mathcal{C} \times Z)$. Then there exists $g \in \mathbf{M}\mathcal{A}'(Z)$ for which there is no countable partition $Z = \bigcup\{Z_n : n \in \mathbb{N}\}$ such that $g|Z_n \in \mathrm{cl}(\mathrm{b}\mathbf{M}(\mathcal{A}(Z)|Z_n) + \mathrm{b}\mathbf{M}(\mathcal{A}(Z)|Z_n))$ for each $n \in \mathbb{N}$. In other words,

$$\operatorname{dec}(\mathbf{M}\mathcal{A}'(Z), R(\operatorname{cl}(\mathrm{b}\underline{\mathbf{M}}\mathcal{A}(Z) + \mathrm{b}\overline{\mathbf{M}}\mathcal{A}(Z))) > \aleph_0.$$

Proof. Let \mathcal{N}' be any subset of Z homeomorphic to \mathcal{N} ([Ku, 36, IV, Cor. 2]). Let $\varphi = (\varphi_1, \varphi_2, \ldots) : \mathcal{N}' \to {}^{\mathbb{N}}\mathcal{N}$ be any homeomorphism. By Theorem 3.20 there exists a universal function $F \in \mathbf{M}\mathcal{A}'(\mathcal{N} \times Z)$. Let $F_n(s,x) = F(\varphi_n(s),x)$ for $s \in \mathcal{N}'$ and $x \in Z$. Then $F_n \in \mathbf{M}\mathcal{A}'(\mathcal{N}' \times Z)$ and thus $f_n : \mathcal{N}' \to \mathbb{R}$ defined as $f_n(s) = F_n(s,s)$ belongs to $\mathbf{M}\mathcal{A}'(\mathcal{N}')$ because, by our assumption on \mathcal{A} , $\mathcal{A}'(\mathcal{N}' \times \mathcal{N}') = \mathcal{A}'(\mathcal{N}' \times Z)|(\mathcal{N}' \times \mathcal{N}')$. By Corollary 2.F and the fact that $\mathcal{A}'(\mathcal{N}') = \mathcal{A}'(Z)|\mathcal{N}'$ and $\mathcal{N}' \in (\mathcal{A}(Z))_{\delta}$, f_n can be extended to a function $f_n^* \in \mathbf{M}\mathcal{A}'(Z)$. By Theorem 2.A there exists $g \in \mathbf{M}\mathcal{A}'(Z)$ such that $g(x) \neq f_n^*(x)$ for each $x \in Z$ and $n \in \mathbb{N}$.

Now assume that $g = \bigcup \{g_n : n \in \mathbb{N}\}$ and for each $n \in \mathbb{N}$, $g_n \in cl(b\underline{\mathbf{M}}(\mathcal{A}(Z)|\text{dom } g_n) + b\overline{\mathbf{M}}(\mathcal{A}(Z)|\text{dom } g_n))$. By Lemma 3.19 each g_n has an extension $g_n^* \in cl(b\underline{\mathbf{M}}\mathcal{A}(Z) + b\overline{\mathbf{M}}\mathcal{A}(Z))$ for all $n \in \mathbb{N}$. There is an $s \in \mathcal{N}'$ such that $F_n(s, x) = g_n^*(x)$ for each $n \in \mathbb{N}$. But then $f_n(s) = g_n(s)$ for each $n \in \mathbb{N}$ and, as $g(s) \in \{g_n(s) : n \in \mathbb{N}\}$, we obtain $g(s) = f_{n_0}(s)$ for some $n_0 \in \mathbb{N}$, which is a contradiction.

For any uncountable Polish space Z we derive from Theorem 3.21 the following immediate corollaries.

COROLLARY 3.22.

$$\operatorname{dec}(\mathbf{B}_{\alpha+1}(Z), R(\operatorname{cl}(\mathrm{b}\mathbf{L}_{\alpha}(Z) + \mathrm{b}\mathbf{U}_{\alpha}(Z))) > \aleph_0. \blacksquare$$

COROLLARY 3.23.

$$\operatorname{dec}(\mathbf{M}\Sigma_{n+1}^1(Z), R(\operatorname{cl}(\mathrm{b}\underline{\mathbf{M}}\Sigma_n^1(Z) + \mathrm{b}\overline{\mathbf{M}}\Sigma_n^1(Z))) > \aleph_0. \blacksquare$$

Acknowledgment. I wish to thank Professor Czesław Ryll-Nardzewski for his remarks concerning the subject of this paper.

I would also like to thank Professor Zbigniew Lipecki for his bibliographical remarks.

References

[CM] J. Cichoń and M. Morayne, Universal functions and generalized classes of functions, Proc. Amer. Math. Soc. 102 (1988), 83-89.

M. Morayne

- [CMPS] J. Cichoń, M. Morayne, J. Pawlikowski and S. Solecki, Decomposing Baire functions, J. Symbolic Logic 56 (1991), 1273-1283.
 - [H] F. Hausdorff, Set Theory, Chelsea, New York 1962.
 - [Ke] S. Kempisty, Sur les séries itérées des fonctions continues, Fund. Math. 2 (1921), 64–73.
 - [Ku] K. Kuratowski, Topology I, Academic Press, New York 1966.
 - [L] A. Lindenbaum, Sur les superpositions de fonctions represéntables analytiquement, Fund. Math. 23 (1934), 15-37; Corrections, ibid., 304.
 - [Ma] R. D. Mauldin, On the Baire system generated by a linear lattice of functions, ibid. 68 (1970), 51–59.
 - [Mo] Y. N. Moschovakis, *Descriptive Set Theory*, North-Holland, Amsterdam 1980.
 - [S1] W. Sierpiński, Sur les fonctions développables en séries absolument convergentes de fonctions continues, Fund. Math. 2 (1921), 15–27.

INSTITUTE OF MATHEMATICS UNIWERSITY OF WROCŁAW PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND Current address: INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES ŚNIADECKICH 8 00-950 WARSZAWA, POLAND

Received 21 April 1991; in revised form 3 March 1992