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Size levels for arcs
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Abstract. We determine the size levels for any function on the hyperspace of an arc
as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is
a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element
of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)–3)
and conversely, if Z satisfies 1)–3), then Z is a diameter level for some arc.

1. Introduction. Let X be a continuum and let C(X) denote the
hyperspace of subcontinua of X [N1, p. 1]. A Whitney map for C(X) is
a continuous function µ : C(X) → [0,+∞) such that µ({x}) = 0 and if
A ⊂ B and A 6= B then µ(A) < µ(B). Much work has been done in the
study of Whitney levels (point inverses) of Whitney maps. More generally,
let us call a continuous function σ : C(X) → [0,+∞) a size map provided
that σ({x}) = 0 and, if A ⊂ B, σ(A) ≤ σ(B). For example, the diameter
map is a size map which is not in general a Whitney map. Point inverses of
size maps are called size levels. Whitney levels are continua [EN, p. 1032]
and, by the same proof as in [EN, p. 1032], size levels are continua. Whitney
levels for arcs are arcs (or degenerate). In this paper we shall determine the
size levels for any size function on the hyperspace of an arc as follows:

Theorem. Assume Z is a continuum and consider the following three

conditions:

1.1. Z is a planar AR.

1.2. Cut points of Z have component number two.

1.3. Any true cyclic element of Z contains at most two cut points of Z.

Then any size level for an arc satisfies 1.1–1.3 and conversely , if Z satisfies

1.1–1.3, then Z is a diameter level for some arc.
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We prove this theorem in Sections 3–6. In Section 7, we give an example
of a Peano continuum which has a diameter level which is not locally con-
nected. This is in contrast to the case of Whitney levels which, for Peano
continua, must again be Peano continua [N2, Th. 3].

2. Some general terminology and notation. Most of our terminol-
ogy and notation is standard or will be explained later. We note here the
following general definitions.

A Peano continuum is a locally connected continuum (continuum mean-
ing nonempty, compact, connected metric space). The notion of a cyclic
element may be found in [K] or [W].

If S is a connected space and p ∈ S, then the component number of p
(in S) is the cardinality of the set of all components of S −{p}. We say p is
a cut point of S provided that S −{p} is not connected, i.e., the component
number of p in S is ≥ 2.

The symbol A denotes the closure of A. If H ⊂ X, then Bd(H) denotes
the (topological) boundary of H in X, i.e., Bd(H) = H ∩ X − H.

An arc A in X with end points p and q is called a free arc (in X) provided
that A − {p, q} is open in X.

We shall let |A| denote the cardinality of a set A.

3. Proof of necessity of 1.1–1.3. Let I be the unit interval with any
metric d. Then C(I) is a 2-cell (see [N1]). The geometric representation we
use for C(I) is the set Γ given by (I2 = I × I)

Γ = {(x, y) ∈ I2 : y ≥ x}
where (x, y) represents the subarc [x, y] of I when x 6= y and (x, x) represents
the set {x}. A point in a size level Lt will be thought of interchangeably as
a subcontinuum of I or as a point in Γ .

We define a map π: C(I) → D, where D is the diagonal of I2, by

π(x, y) = ((x + y)/2, (x + y)/2) .

Also, for each z ∈ I, let

Fz = {(x, y) ∈ Γ : (x + y)/2 = z} = π−1(z, z) .

Let yt = min{y ∈ I : (0, y) ∈ Lt} and xt = max{x ∈ I : (x, 1) ∈ Lt}. Let
πt = π|Lt.

3.1. Box Lemma. Let z ∈ [0, 1]. If p, q ∈ Fz ∩ Lt where p = (x, y) and

q = (x′, y′), then [x, x′] × [y′, y] ⊂ Lt.

P r o o f. Let r ∈ [x, x′] and s ∈ [y′, y]. Then we see immediately that

[x′, y′] ⊂ [r, s] ⊂ [x, y] .

Thus, since p, q ∈ Lt, clearly [r, s] ∈ Lt. This proves 3.1.
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3.2. Lemma. The map πt : Lt → D is monotone (but not necessarily

onto D). In fact , for any (z, z) ∈ πt(Lt), π−1
t (z, z) is a one-point set or an

arc.

P r o o f. By 3.1, π−1
t (z, z) is a connected subset of Fz ∩ Lt.

3.3. Lemma. For each (x, y) ∈ Lt, yt ≤ y and x ≤ xt.

P r o o f. If y ≤ yt, then [x, y] ⊂ [0, y] ⊂ [0, yt]. Thus, since [x, y],
[0, yt] ∈ Lt, [0, y] ∈ Lt. Hence, y = yt. If xt ≤ x, then [x, y] ⊂ [x, 1] ⊂ [xt, 1].
Thus, since [x, y], [xt, 1] ∈ Lt, [x, 1] ∈ Lt. Hence, xt = x.

3.4. Lemma. Each of the points (0, yt) and (xt, 1) are noncut points of Lt.

P r o o f. Note that πt(Lt) is the arc in D with end points πt(0, yt) and
πt(xt, 1). Also note that

π−1
t (πt(0, yt)) = {(0, yt)} and π−1

t (xt, 1) = {(xt, 1)} .

Hence, the lemma follows easily from 3.2 and from 2.2 of [W, p. 138].

3.5. Lemma. A point p = (x, y) is a cut point of Lt if and only if p 6=
(0, yt), p 6= (xt, 1), and π−1

t (πt(p)) = {p}.
P r o o f. Assume p 6= (0, yt), p 6= (xt, 1), and π−1

t (πt(p)) = {p}. Then
the line Q of slope −1 in Γ through π(p) separates (0, yt) and (xt, 1) in Γ
by 3.3. Thus, since

Q ∩ Lt = π−1
t (πt(p)) = {p} ,

we see that p is a cut point of Lt. To prove the other half of the lemma,
assume p is a cut point of Lt. By 3.4, p 6= (0, yt) and p 6= (xt, 1). Let
πt(Lt) = A. Recall that A is an arc with end points π(0, yt) and π(xt, 1).
Thus, since p 6= (0, yt) and p 6= (xt, 1), A − {πt(p)} has exactly two compo-
nents A1 and A2. By 3.2 (and by 2.2 of [W, p. 138]), π−1

t (A1) and π−1
t (A2)

are connected. By the Box Lemma 3.1, any point in π−1
t (πt(p))−{p} would

be a limit point of both π−1
t (A1) and π−1

t (A2). Hence, if

π−1
t (πt(p)) − {p} 6= ∅ ,

then Lt − {p} would be connected, in contradiction to our assumption that
p is a cut point of Lt. Therefore, π−1

t (πt(p)) = {p}. This completes the
proof of 3.5.

3.6. Lemma. Each Lt is a retract of C(I).

P r o o f. Let A={(x, y)∈Γ : the straight line Q(x, y) in Γ through (x, y)
of slope −1 intersects Lt}. For any (x, y) ∈ A, let h(x, y) denote the highest
point of Q(x, y)∩Lt (i.e., the point of Q(x, y)∩Lt with largest y-coordinate),
and let l(x, y) denote the lowest point of Q(x, y) ∩ Lt (i.e., the point of
Q(x, y) ∩ Lt with smallest y-coordinate). It is easy using the Box Lemma
to see that if {(xi, yi)}∞i=1 is a sequence in A converging to (x, y) ∈ A, then
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{h(xi, yi)}∞i=1 converges to h(x, y) and {l(xi, yi)}∞i=1 converges to l(x, y).
Thus, h and l are continuous on A. We define a retraction r from Γ onto Lt

as follows. Fix (x, y) ∈ Γ , and let Q denote the straight line in Γ through
(x, y) of slope −1. If (x, y) ∈ Lt, let r(x, y) = (x, y). If (x, y) 6∈ Lt and
Q ∩ Lt 6= ∅, then we see by 3.2 that (1) y > second coordinate of h(x, y) or
(2) y < second coordinate of l(x, y); if (1) holds, let r(x, y) = h(x, y), and
if (2) holds, let r(x, y) = l(x, y). Finally, if Q ∩ Lt = ∅, let r(x, y) = (0, yt)
if y ≤ −x + yt and let r(x, y) = (xt, 1) if y ≥ −x + xt + 1. Thus, we have
defined a function r on all of C(I) to Lt. The continuity of r follows from
the continuity of h and l on A. Therefore, r is our desired retraction from
Γ onto Lt.

3.7. Lemma. Cut points of Lt have component number two.

P r o o f. This lemma follows immediately from 3.2 and 3.5 by using 2.2
of [W, p. 138].

3.8. Lemma. Assume H is a true cyclic element of Lt, and assume p
and q are cut points of Lt such that p, q ∈ H and p 6= q. Let J be the arc

in D with end points πt(p) and πt(q) (note πt(p) 6= πt(q) by 3.5). Then

H = π−1
t (J).

P r o o f. Since H is connected and p, q ∈ H, clearly πt(H) ⊃ J . Suppose
there exists r ∈ H such that πt(r) 6∈ J . Then one of πt(p) or πt(q), say
πt(q), separates the other point from πt(r) in D. Hence, by 3.5, q separates
p from r in Lt. Therefore, q is a cut point of H, in contradiction to H being
a cyclic element. Hence, πt(H) ⊂ J . This completes the proof of 3.8.

3.9. Lemma. Each true cyclic element of Lt contains at most two cut

points of Lt.

P r o o f. The lemma follows immediately from 3.8.

By 3.6, 3.7 and 3.9, we have proved the necessity of 1.1–1.3.

4. Preliminary lemmas about cyclic elements

4.1. Lemma. Assume Z satisfies 1.1 and 1.2. If v is the vertex of a

simple triod K in Z, then v is a point of a true cyclic element of Z.

P r o o f. Using 1.2 in the case when v is a cut point of Z, we see that
there is an arc in Z −{v} irreducible between points of two different legs of
K. Hence, using 1.1, we see that v is a point of a two-cell and, therefore, v
belongs to a true cyclic element of Z.

4.2. Lemma. Assume Z satisfies 1.1 and 1.2. If p and q are distinct cut

points of Z, then either (1) p and q are end points of a free arc, (2) p and q
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are in the same true cyclic element of Z, or (3) there is a point w of a true

cyclic element of Z such that w separates p and q in Z.

P r o o f. Let A be an arc in Z from p to q. Assume (1) is false. Then,
by 4.1, there is a true cyclic element T of Z such that

T ∩ (A − {p, q}) 6= ∅ .

Assume (2) is false. Then at least one of p or q, say q, is not an element of
T . Hence, there is a point w such that

w ∈ Bd(T ) ∩ (A − {p, q}) .

Now, suppose (3) is false, i.e., suppose p and q are in the same component
of Z − {w}. Then there is an arc B from p to q such that w 6∈ B. It is easy
to see that there is an arc E ⊂ A ∪ B such E ∩ T is not connected. This
contradicts 3.4 and 3.5 of [W, p. 69].

4.3. Lemma. Assume Z satisfies 1.1 and 1.2 and that p and q are distinct

cut points of Z such that no point of any true cyclic element of Z separates

p and q in Z. If A is an arc in Z from p to q then either A is contained in

a true cyclic element of Z or A is a free arc in Z.

P r o o f. Assume A is not a free arc in Z. Then (1) of 4.2 is false since
if there were a free arc F in Z from p to q, A ∪ F would be a simple closed
curve containing a free arc and, therefore, A ∪ F would be a retract of Z
which would contradict 1.1. Thus, (2) of 4.2 must hold. Hence, by 3.4 and
3.5 of [W, p. 69], A is contained in a true cyclic element of Z.

4.4. Lemma. Assume Z is a Peano continuum satisfying 1.3. If T is

a true cyclic element of Z, then each point of Bd(T ) is a cut point of Z
(thus, |Bd(T )| ≤ 2).

P r o o f. Suppose p ∈ Bd(T ) such that p is a noncut point of Z. Then,
by the local arcwise connectedness of Z and 1.3, there is an arc A from a
point x ∈ Z − T to a point q ∈ T (near p) so that A ∩ T = {q} and q is a
noncut point of Z. Now, there is an arc B in Z −{q} from x to a point r in
T . Clearly, A∪B contains an arc E such that |E ∩T | = 2. This contradicts
3.4 and 3.5 of [W, p. 69]. This proves 4.4.

4.5. Lemma. Assume Z is nondegenerate and satisfies 1.1–1.3. Then

there exist distinct points pl and pr of Z such that every cut point separates

pl and pr.

P r o o f. Assume there is a cut point of Z. Then, by 8.2 of [W, p. 77],
Z has at least two nodes Nl and Nr. Let pl ∈ Nl and pr ∈ Nr such that
pl and pr are noncut points of Z. Suppose there is a cut point c of Z such
that c does not separate pl and pr in Z. Note that c 6∈ Nl ∪ Nr since c is a
cut point of Z and cannot be the boundary point of Nl or Nr. Then there
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is an arc A in Z − {c} from pl to pr. Since pl and pr are either end points
of Z or non-boundary points of nodal sets, pl 6∈ Nr and pr 6∈ Nl. Thus,

(1) Bd(Nl) ∩ A 6= ∅ 6= Bd(Nr) ∩ A .

Hence

(2) Bd(Nl) ∩ A = Bd(Nl) and Bd(Nr) ∩ A = Bd(Nr) .

Since c 6∈ Nl ∪ Nr, there is an arc B from c to a point w of A such that
A ∩ B = {w}. By (2),

(B − {w}) ∩ (Nl ∪ Nr) = ∅ .

If w ∈ Bd(Nl)∪Bd(Nr), then at least two of Nl−Bd(Nl), Nr−Bd(Nr), and
c are, by 1.2, in the same component of Z − {w} and, therefore, it follows
that at least one of Nl or Nr has a boundary point not in A, which is a
contradiction to (2). Assume

w 6∈ Bd(Nl) ∪ Bd(Nr) .

Then, by 4.1, w is a point of some true cyclic element H of Z. Recalling
that c is a cut point of Z, it follows easily that either w does not satisfy 1.2
or H does not satisfy 1.3. This proves 4.5.

For each Z satisfying 1.1 through 1.3, we shall construct an arc A in the
plane with the max metric d,

d((x1, y1), (x2, y2)) = max{|x2 − x1|, |y2 − y1|} ,

such that Z is a diameter level for A. In the next two sections we shall use
the set C defined as follows:

C = {c ∈ Z : c is a cut point of Z and either

c is a point of a true cyclic element of Z or

c is an end point of a maximal free arc of Z} .

We shall first consider the case where the number of true cyclic elements is
finite.

5. Finite case. For convenience we first note the following special case:

C a s e 1: Z is a point , an arc or a 2-cell. Let I = {(x, y) : 0 ≤ x ≤ 1,
y = 0}. Then L0(I) is an arc and L1(I) is a point. If Z is a 2-cell, then let

A = ([1/2, 1] × {0}) ∪ ({1} × [0, 1]) ∪ ([1, 3/2] × {1}) .

Then L1(A) is homeomorphic to Z.
Next, we consider the following case:

C a s e 2: Z has at least one and at most a finite number of true cyclic

elements and Z contains a cut point which is a point of a true cyclic element

of Z. We see that Case 2 covers all the finite cases that were not considered
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in Case 1 as follows. Suppose that Z does not satisfy the conditions of
Case 2. Then either Z contains no true cyclic element or Z contains no
cut point which is a point of a true cyclic element of Z. If Z contains no
true cyclic element, then, by [W, p. 89] and 1.1, Z must be a dendrite or a
point. Assume Z is nondegenerate. Then, by 1.2, [W, Th. 6.1, p. 54] and
[W, Th. 1.1(ii), p. 88], Z has exactly two noncut points. Hence, Z is an
arc. If Z contains a true cyclic element T such that Z − T is nonempty,
then, by [W, 2.1, p. 66], T contains a cut point of Z. Consequently, by our
assumption, Z = T and thus by 1.1 and [K, p. 534], Z is a 2-cell.

Assume that Z is a continuum satisfying 1.1–1.3 and the conditions of
this case. Then the set C is finite and we let n be the cardinality of C.
We can label the points of C by c1, . . . , cn, using 4.5 and the following
scheme. Let c1 be the element of C such that C ∩ Nl = ∅ where Nl is the
component of Z − {c1} containing pl. In general for i = 2, . . . , n, let ci be
the point of C such that C ∩Ni = {c1, . . . , ci−1} where Ni is the component
of Z − {ci} containing pl. We shall represent Z by an (n + 1)-tuple of
points (x1, . . . , xn+1) as follows. Let pl = c0 and pr = cn+1. For a given
i = 1, . . . , n − 1, we let xi = 2 if ci−1 and ci are points of the same true
cyclic element of Z and we let xi = 1 if ci−1 and ci are the end points of a
maximal free arc in Z. Note that by 4.2, this defines xi for each i.

Let t be the number of true cyclic elements in Z, and let f be the number
of maximal free arcs in Z; thus t is the number of 2’s and f is the number
of 1’s in (x1, . . . , xn+1). We define numbers v and h as follows. First, let
k be the greatest integer less than or equal to t/2. Then let v = k + f , let
h = k + f if t = 2k, and let h = k + f + 1 if t = 2k + 1.

Let Y = ([0, 1]×[0, 1])∪([1, 2]×[1, 2])∪([2, 3]×[2, 3]). We shall construct
an arc A in Y such L2(A) is homeomorphic to Z. First, we construct n + 1
arcs such that the union of these arcs is an arc in [0, 1]×[0, 1] with end points
(0, 0) and (1, 1). Let e1

0 = (0, 0). If x1 = 1, let e1
1 = (1/h, 1/v). If x1 = 2,

let e1
1 = (1/h, 0). Let A1 = e1

0e
1
1, the convex arc from e1

0 to e1
1. We define

Ak for k=2, . . . , n + 1 by induction. Assume we have defined ej
0e

j
1. We let

ej+1
0 =ej

1. If xj+1 =1, let ej+1
1 =ej+1

0 +(1/h, 1/v). If xj+1 =2 and the number

of coordinates which are 2 in (x1, . . . , xj) is even, let ej+1
1 =ej+1

0 + (1/h, 0).
If xj+1 =2 and the number of coordinates which are 2 in (x1, . . . , xj) is odd,

let ej+1
1 =ej+1

0 + (0, 1/v). Now, let Aj+1 =ej+1
0 ej+1

1 .

It is clear that
⋃n+1

i=1 Ai is an arc. We show that
⋃n+1

i=1 Ai ⊂ [0, 1]× [0, 1]
with end points (0, 0) and (1, 1) as follows. If t = 2k then

en+1
1 = (0, 0) + f

(

1

h
,
1

v

)

+ k

(

1

h
, 0

)

+ k

(

0,
1

v

)

=

(

f + k

h
,
f + k

v

)

= (1, 1) .
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If t = 2k + 1 then

en+1
1 = (0, 0) + f

(

1

h
,
1

v

)

+ (k + 1)

(

1

h
, 0

)

+ k

(

0,
1

v

)

=

(

f + k + 1

h
,
f + k

v

)

= (1, 1) .

In both cases, en
1 = (1, 1). Therefore, (0, 0) and (1, 1) are the end points of

B =
⋃n+1

i=1 Ai and hence B ⊂ [0, 1] × [0, 1]. Now, let

A = B ∪ {(x, x) : x ∈ [1, 2]} ∪ {(x + 2, y + 2) : (x, y) ∈ B} .

By inspection we can see that L2(A) is homeomorphic to Z (recall that we
are using the max metric d).

For use later on, note the following two facts.

5.1. In the construction above, we could have chosen the first horizontal
arc to have been vertical (and make appropriate changes for the other arcs).

5.2. We shall use the following terminology. An admissible staircase is an
arc B constructed as above (consisting of horizontal, vertical and diagonal
segments) but perhaps in a rectangle or in a square other than [0, 1]× [0, 1].

6. Infinite case. In this case the set C associated with X is countably
infinite. We construct an arc B in I × I and an arc A by

A = B ∪ {(x, x) : x ∈ [1, 2]} ∪ {(x + 1, y + 1) : (x, y) ∈ B}
and show that L2(A) is homeomorphic to Z.

Pick c1 ∈ C. Then X − {c1} = U0/U∞ where pr ∈ U0 and pl ∈ U∞.
We begin the construction of B in (a)–(g) below.

(a) U0∩C is nonempty and finite. Then let A1 be an admissible staircase
in [0, 1/2] × [0, 1/2] with end points (0, 0) and (1/2, 1/2).

(b) U∞ ∩ C is nonempty and finite. Let A1 be an admissible staircase
in [1/2, 1] × [1/2, 1] with end points (1/2, 1/2) and (1, 1).

(c) U0 ∩ C = ∅ and U0 ∪ {c1} is a free arc. Let A1 = (0, 0)(1/2, 1/2).
(d) U∞ ∩ C = ∅ and U∞ ∪ {c1} is a free arc. Let A1 = (1/2, 1/2)(1, 1).

a b c d

(e) U0 ∩ C = ∅ and U0 ∪ {c1} is a true cyclic element of Z. Then let
A1 = {0} × [0, 1/2]. Now pick c2 ∈ C − {c1}. Let X − {c2} = V0/V∞. We
consider the following subcases.
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(e1) V∞ ∩ C = ∅ and V∞ ∪ {c2} is a free arc. Let A2 = (1/4, 3/4)(1, 1).
(e2) V∞ ∩ C = ∅ and V∞ ∪ {c2} is a true cyclic element of Z. Then let

A2 = [1/2, 1] × {1}.
(e3) V∞ ∩ C is nonempty and finite. Then let A2 be an admissible

staircase in [1/4, 1] × [3/4, 1] with end points (1/4, 3/4) and (1, 1).

e1 e2 e3

(e4) V0 ∩ C = {c1} and c1 and c2 are end points of the same maximal

free arc. Let A2 = (0, 1/2)(3/4, 3/4).
(e5) V0 ∩ C = {c1} and c1 and c2 are end points of the same true cyclic

element of Z. Let A2 = (0, 1/2)(1/2, 1/2).
(e6) V0 ∩C −{c1} is nonempty and finite. Then let A2 be an admissible

staircase in [0, 3/4] × [1/2, 3/4] with end points (0, 1/2) and (3/4, 3/4).

e4 e5 e6

(e7) V0 ∩ C and V∞ ∩ C are both infinite. Then we pick a point c3 ∈ C
such that either (e7a) c2 and c3 are the end points of a maximal free arc,
or (e7b) c1 and c2 are points of the same true cyclic element of Z. By the
definition of C we can pick a point c3 satisfying either (e7a) or (e7b).

If (e7a) holds, then let A2 = (1/8, 5/8)(7/8, 7/8). If (e7b) holds, then let
A2 = [1/4, 3/4] × {3/4}.

e7a e7b

(f) U∞ ∩ C = ∅ and U∞ ∪ {c1} is a true cyclic element of Z. This case
is similar to (e).

By (a)–(f) only one general case remains to be considered for the first
step in this construction.

(g) U0 ∩ C and U∞ ∩ C are infinite. Then pick c2 ∈ C such that either
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(ga) c1 and c2 are end points of a maximal free arc, or (gb) c1 and c2 are
points of the same true cyclic element of Z. By the definition of C we can
pick a point c2 satisfying either (ga) or (gb). We shall assume without loss
of generality, by reindexing c1 and c2, that c1 separates pl and c2 in Z.

If (ga) holds, then let A1 = (1/4, 1/4)(3/4, 3/4). If (gb) holds, then let
A1 = {1/2} × [1/4, 3/4].

ga gb

Then pick c3 ∈ C such that c3 separates pl and c1 in Z. Let X − {c3} =
V0/V∞ where pl ∈ V0 and pr ∈ V∞. We consider the following seven subcases
for the construction in [0, 3/8] × [0, 1/8].

(gb1) V0 ∩ C is nonempty and finite. Then we let A2 be an admissible
staircase in [0, 3/8] × [0, 1/8] with end points (0, 0) and (3/8, 1/8).

(gb2) V0 ∩ C = ∅ and V0 ∪ {c3} is a maximal free arc in Z. Then let
A2 = (0, 0)(3/8, 1/8).

(gb3) V0 ∩ C = ∅ and V0 ∪ {c3} is a true cyclic element of Z. Then let
A2 = [0, 1/4] × {0}.

gb1 gb2 gb3

(gb4) V∞ ∩U0 ∩C is nonempty and finite. Then let A2 be an admissible
staircase in [1/8, 1/2] × [1/8, 1/4] with end points (1/8, 1/8) and (1/2, 1/4).

(gb5) V∞ ∩ U0 ∩ C = ∅ and c3 and c1 are end points of a maximal free

arc in Z. Then let A2 = (1/8, 1/8)(1/2, 1/4).
(gb6) V∞ ∩ U0 ∩ C = ∅ and c3 and c1 are points of the same true cyclic

element of X. Then let A2 = [1/4, 1/2] × {1/4}.

gb4 gb5 gb6

(gb7) V0 ∩ C and V∞ ∩ U0 ∩ C are both infinite. Then pick c4 ∈ C such
that either (g′b7) c3 and c4 are end points of a maximal free arc, or (g′′b7) c3
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and c4 are points of the same true cyclic element of Z. By the definition of
C we can pick c4 satisfying either (g′b7) or (g′′b7).

If (g′b7) holds, then let A2 = (1/16, 1/16)(7/16, 3/16). If (g′′b7) holds,
then let A2 = [1/8, 3/8] × {1/8}.

g′b7 g′′b7
Construct an arc A3 in [1/2, 1] × [3/4, 1] in a manner similar to the

construction of A2 in cases (gb1) through (gb7).
In each of the cases above there are one, two, three, or four squares

determined by the arcs and the points (0, 0) and (1, 1). The procedure done
in (a) through (g) can be repeated in each of these squares thereby leaving
a finite number of squares of at most half the diameter. Thus, an inductive
argument results in a set whose closure is the required arc B. The fact that
B is an arc can be shown by first showing that it is connected and then
showing that for any point in it other than (0, 0) and (1, 1), the horizontal
line in the plane through that point or the vertical line in the plane through
that point intersects B only in that point—thus (0, 0) and (1, 1) are the only
two noncut points of B (see Th. 1 of [K, p. 179]).

7. Examples

Example 1. We describe a diameter level for a metric on a 2-cell which
in not locally connected. The example is similar to one in [P]. Let i = 0, 1, . . .
For t ∈ [3/2i+2, 1/2i], let St = {(x, y, t) : x2 + y2 = (1 + 1/2i − t)2}. For
t ∈ [1/2i+1, 3/2i+2), let St = {(x, y, t) : x2 + y2 = (1 − 1/2i+1 + t)2}. Let
Y = {(x, y, 1) : x2 + y2 < 1} and S0 = {(x, y, 0) : x2 + y2 = 1}. Let

X =
[

⋃

t∈[0,1]

St

]

∪ Y .

We will show that any arc in L2 from S1/2i to S1/2i+1 , where i ≥ 1, must

be of diameter larger than or equal to
√

2.
Let f be a homeomorphism from [0, 1] to a subset of L2 such that

f(0) = S1/2i and f(1) = S1/2i+1 . Using cylindrical coordinates, we de-
fine a projection π :

⋃

t∈[0,1] St → S1/2i+1 by π(θ, r, h) = (θ, 1, 1/2i+1) where

0 ≤ θ ≤ 2π, 1 ≤ r ≤ 11
4 , and 0 ≤ h ≤ 1.

We say that two lines π−1(p) and π−1(p′) are antipodal lines if p and p′

are antipodal points on Si+1. We note the following observation which will
be used in our exposition.



254 S. B. Nadler, Jr. and T. West

(∗) If π−1(p) and π−1(p′) are antipodal lines and if q ∈ π−1(p) such that
q 6∈ (

⋃

∞

i=0 S1/2i) ∪ S0, then d(q, π−1(p′)) > 2.

Let t′ = min{t ∈ [0, 1] : f(t) contains antipodal points on S1/2i+1}.
There are two cases to consider.

C a s e 1: t′ = 1. Let 0 < ε < 1/2i+2. Let δ > 0 such that if t ∈ (1 − δ, 1]
then Hd(f(1), f(t)) < ε. Let t0 ∈ (1 − δ, 1). So, f(t0) ⊂

⋃

p∈S
1/2i+1

B(p, ε).

Clearly, Hd(S1/2i+1 , f(t0)) ≥ Hd(S1/2i+1 , πf(t0)). The set πf(t0) must be a
connected subset of S1/2i+1 which properly contains a semicircle, since f(t0)

is connected, π is continuous, and Hd(S1/2i+1 , πf(t0)) <
√

2. Let p and p′

be antipodal points of π(f(t0)). Then {p, p′} 6⊆ f(t0) since t0 < 1. Let
q ∈ π−1(p) ∩ f(t0) and q′ ∈ π−1(p′) ∩ f(t0). By (∗), d(q, q′) > 2. Hence,
diam f(t0) > 2. Consequently, t′ 6= 1.

C a s e 2: t′ < 1. Let q and q′ be antipodal points of f(t′) ∩ S1/2i+1 . Let
p ∈ S1/2i+1 such that π−1(p) ∩ f(t′) = ∅. To see that such a point p exists,
we make the following observations. If f(t′) ⊂ S1/2i+1 then it is clear there
exists such a p since t′ 6= 1 and f(t′) 6= S1/2i+1 . If f(t′) ∩ (X − S1/2i+1) 6= ∅
then let p′ ∈ f(t′) ∩ (

⋃

t∈J St) where J = (1/2i+2, 1/2i+1) ∪ (1/2i+1, 1/2i).
Clearly, such a point p′ exists since if f(t′) is connected, f(t′) 6⊆ S1/2i+1 ,
and f(t′) ∩ S1/2i+1 6= ∅ then f(t′) 6⊆ Y ∪ (

⋃

t∈I St) ∪ S1/2i+1 , where I =
[0, 1/2i+1] ∪ [1/2i, 1]. Let p be the point on S1/2i+1 which is antipodal to
π(p′). By (∗), d(p, π−1(π(p′)) > 2, so π−1(p) ∩ f(t′) = ∅. Let 0 < ε <
min{1/2i+2, d(f(t′), π−1(p))/2}. Pick δ > 0 such that if t ∈ (t′ − δ, t′] then
Hd(f(t), f(t′)) < ε. Let t0 ∈ (t′ − δ, t′). Note that π−1(p) ∩ f(t0) = ∅, since
d(π−1(p), f(t′)) > 2ε and Hd(f(t′)), f(t0)) < ε.

Let a ∈ f(t0)∩B(q, ε) and b ∈ f(t0)∩B(q′, ε). Note that π(a) ∈ B(q, ε)
and π(b) ∈ B(q′, ε). Let a′ be the point which is antipodal to π(a). If
π(a) 6= a then π−1(a′) ∩ f(t0) = ∅ by (∗) since a 6∈ (

⋃

∞

i=0 S1/2i) ∪ S0. If
π(a) = a then a′ 6∈ f(t0) since t0 < t′. Hence, f(t0) ∩ π−1(a′) = ∅ by (∗).
In either case f(t0)∩ π−1(a′) = ∅. Let b′ be the point which is antipodal to
π(b). Similarly, we see that f(t0) ∩ π−1(b′) = ∅.

Since f(t0) is connected and π(f(t0)) ⊂ S0 − {p, b′, a′} we have either

π(f(t0))  

)

a′p where

)

a′p is the arc on S0 which does not contain b′, or

π(f(t0))  

)

pb′ where

)

pb′ is the arc on S0 which does not contain a′, or

π(f(t0)) ⊆

)

b′a where

)

b′a is the arc on S0 which does not contain p. Let

)

qq′ be

the arc on S0 which does not contain p. So,

)

b′a′ ⊂ )

qq′ ∪B(q, ε)∪B(q′, ε) and

Hd(

)

b′a′, S0) >
√

2−ε. Consequently, if π(f(t0)) ⊂

)

b′a′ then Hd(S0, f(t0)) ≥
Hd(S0, π(f(t0))) ≥ Hd(S0,

)

b′a′) >
√

2− ε. Similarly,

)

a′p∪

)

pb′ ⊂ (S0 −

)

qq′)∪
B(q, ε) ∪ B(q′, ε) and Hd(

)

a′p∪

)

pb′, S0) >
√

2 − ε. So, if π(f(t0)) ⊂

)

a′p∪

)

pb′
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then Hd(S0, f(t0)) ≥ Hd(S0, π(f(t0))) ≥ Hd(S0,

)

a′p∪ )

pb′) >
√

2− ε. Hence,
for every ε > 0, diam f([0, 1]) >

√
2− ε. Consequently, diam f([0, 1]) ≥

√
2.

Hence, we see that L2 is not locally connected.

Example 2. We describe a one-dimensional Peano continuum X which
has a non-locally connected diameter level. Let

X =

∞
⋃

i=0

S1/2i ∪
[

∞
⋃

i=1

2i
⋃

j=1

2
⋃

k=1

Li,j,k

]

∪ S0

where S1/2i is a circle as defined in Example 1 for i = 0, 1, . . . and S0 is as
defined in Example 1. For each pair (i, j), Li,j,1 is the straight line segment
joining the points xi,j and yi,j and Li,j,2 is the straight line segment joining
the points yi,j and zi,j where

xi,j = ((j − 1)π21−i, 1, 21−i) ,

yi,j = ((j − 1)π21−i, 1 + 2−i−1, 3 · 2−i−1) .

zi,j = ((j − 1)π21−i, 1, 2−i) .

By a proof similar to the one in the first example, we see that L2 of C(X)
is not locally connected.

We remark that when X is a one-dimensional absolute retract then all
the levels for size maps are locally connected.
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