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Planting Kurepa trees and killing Jech–Kunen trees
in a model by using one inaccessible cardinal

by

Saharon She l ah (Jerusalem and New Brunswick, N.J.)
and Renling J i n (Berkeley, Calif.)

Abstract. By an ω1-tree we mean a tree of power ω1 and height ω1. Under CH
and 2ω1 > ω2 we call an ω1-tree a Jech–Kunen tree if it has κ-many branches for some
κ strictly between ω1 and 2ω1 . In this paper we prove that, assuming the existence of
one inaccessible cardinal, (1) it is consistent with CH plus 2ω1 > ω2 that there exist
Kurepa trees and there are no Jech–Kunen trees, which answers a question of [Ji2], (2)
it is consistent with CH plus 2ω1 =ω4 that there only exist Kurepa trees with ω3-many
branches, which answers another question of [Ji2].

A partially ordered set, or poset for short, 〈T,<T 〉 is called a tree if for
every t ∈ T the set {s ∈ T : s < T t} is well-ordered under < T . The order
type of that set is called the height of t in T , denoted by ht(t). We will not
distinguish a tree from its base set. For every ordinal α, let Tα, the α-th
level of T , be {t∈T : ht(t)=α} and T �α=

⋃
β<α Tβ . Let ht(T ), the height

of T , be the smallest ordinal α such that Tα =∅. By a branch of T we mean
a linearly ordered subset of T which intersects every nonempty level of T .
Let B(T ) be the set of all branches of T . T ′ is called a subtree of T if T ′⊆T ,
<T ′ =<T ∩ T ′ × T ′ (T ′ inherits the order of T ) and for every α < ht(T ′),
T ′

α⊆Tα.
T is called an ω1-tree if |T |=ω1 and ht(T )=ω1. An ω1-tree T is called

a Kurepa tree if |B(T )| > ω1 and for every α ∈ ω1, |Tα|<ω1. An ω1-tree is
called a Jech–Kunen tree if ω1 < |B(T )|<2ω1 .

T. Jech in [Je1] constructed by forcing a model of CH plus 2ω1>ω2 in
which there is a Jech–Kunen tree. In fact, it is a Kurepa tree with fewer than
2ω1-many branches. Late, K. Kunen [K1] found a model of CH plus 2ω1 >
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ω2 in which there are neither Kurepa trees nor Jech–Kunen trees. In his
paper he gave an equivalent form of Jech–Kunen trees in terms of compact
Hausdorff spaces. The detailed proof can be found in [Ju, Theorem 4.8].

The second author in [Ji1] started discussing the differences between
the existence of Kurepa trees and the existence of Jech–Kunen trees. He
showed that it is independent of CH plus 2ω1 > ω2 that (1) there exists
a Kurepa tree which has no Jech–Kunen subtrees, (2) there exists a Jech–
Kunen tree which has no Kurepa subtrees. In his proofs some strongly
inaccessible cardinals were assumed to exist and later, Kunen eliminated
the large cardinal assumption from one of the proofs.

In [SJ], we answered a question of [Ji2] by proving that, assuming the
existence of one inaccessible cardinal, it is consistent with CH plus 2ω1 > ω2

that there exist Jech–Kunen trees and there are no Kurepa trees.
In [Ji2], the second author proved that, assuming the existence of two

inaccessible cardinals, it is consistent with CH plus 2ω1 > ω2 that there exist
Kurepa trees and there are no Jech–Kunen trees.

Since the consistency of the nonexistence of Jech–Kunen trees implies the
consistency of the existence of an inaccessible cardinal [Ju, Theorem 4.10],
we have to use at least one inaccessible cardinal to build a model of CH
plus 2ω1 > ω2 in which there are Kurepa trees but there are no Jech–Kunen
trees. The question whether one inaccessible cardinal is enough was asked
in [Ji2]. In this paper, we will give a positive answer to the question. We also
discover that the same techniques can be used to answer another question
in [Ji2] by constructing a model of CH plus 2ω1 = ω4 in which there only
exist Kurepa trees with ω3-many branches.

First let us look at the second author’s original idea in [Ji2] to construct
a model of CH plus 2ω1 > ω2 in which there are Kurepa trees and there are
no Jech–Kunen trees, by using two inaccessible cardinals. Let κ1 <κ2 be two
strongly inaccessible cardinals in a model M . First, Jin collapses κ2 down to
κ+

1 by forcing with a <κ1-support Lévy collapsing order. Next, he collapses
κ1 down to ω1 by forcing with a finite support Lévy collapsing order. This
step will create a very homogeneous Kurepa tree. Then he forces with
that Kurepa tree λ-many times for some regular cardinal λ which is greater
than κ2. In the resulting model, that Kurepa tree has λ-many branches and
λ=2ω1 . In that model there are no Jech–Kunen trees.

If we want to obtain the same result by using only one inaccessible car-
dinal, we may have to find a way to create a homogeneous ω1-tree with
every level countable, without the assistance of large cardinals. Then the
following questions arise. First, how can we create the desired tree? Second,
can we force with that tree many times (with countable supports) without
collapsing ω1? (Note that a normal ω1-tree with every level countable is
never ω1-closed.)
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In this paper, we construct a homogeneous generic ω1-tree with every
level countable by forcing with an ω1-closed poset whose elements are count-
able homogeneous normal subtrees of 〈2ω1 ,⊆〉. The generic tree is, in fact,
a Suslin tree. Then we force with that generic tree λ-many times with
countable supports. We will prove that this two-step forcing adds no new
countable sequences of ordinals, hence it will not collapse ω1. We will also
prove that if the ground model is Silver’s model (see [K2, p. 259]), then in
the final model there are no Jech–Kunen trees.

Before proving our results we need more notations and definitions.
A tree T is called normal if

(1) every t ∈ T which is not in the top level of T has at least two
immediate successors,

(2) for every limit ordinal α<ht(T ) and every B ∈ B(T �α), there exists
at most one least upper bound of B in T ,

(3) for every t ∈ T and α such that ht(t)<α<ht(T ), there exists t′ ∈ Tα

such that t<T t′.

Without loss of generality, we only consider the trees which are subtrees
of 〈2<ω1 ,⊆〉 with the unique root ∅. Let T be a tree and B⊆T be a totally
ordered subset of T . Then

⋃
B is the only candidate for the least upper

bound of B in T .
Let α ∈ ω1 and s, t ∈ 2α. We define a map Fs,t from 2<ω1 to 2<ω1 . Let

u ∈ 2β for some β <ω1. The domain of Fs,t(u) is β and for every γ <β, if
γ<α, then let

Fs,t(u)(γ)=u(γ) + t(γ)− s(γ) (mod 2) ,

otherwise let Fs,t(u)(γ)=u(γ).

Lemma 1. Fs,t(s)= t, Fs,t(t)=s and Fs,t is an isomorphism from 〈2<β ,⊆〉
to 〈2<β ,⊆〉 for any β ≤ ω1.

P r o o f. Trivial.

A normal tree T is called homogeneous if for any α < ht(T ) and any
s, t ∈ Tα, Fs,t�T is an isomorphism from T to T .

Let

Phom ={T : T is a countable homogeneous normal subtree of 〈2ω1 ,⊆〉}
be a poset ordered by letting

T <T ′ iff ht(T ′)<ht(T ) and T ′=T �ht(T ′) .

Lemma 2. Let T be a totally ordered subset of Phom. Then
⋃
T is a

homogeneous tree. Moreover , if T is countable, then
⋃
T ∈ Phom.

P r o o f. Trivial.
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R e m a r k. The above lemma says that Phom is ω1-closed, which means
that every countable decreasing sequence in Phom has a lower bound in Phom.

Lemma 3. Let T ∈ Phom with ht(T )=α for some limit ordinal α <ω1.
Let C be a countable subset of B(T ). Then there exists T ∈ Phom such that
T <T and for every C ∈ C,

⋃
C ∈ Tα.

P r o o f. Without loss of generality, we can assume that for every t ∈ T ,
there exists C ∈ C such that t ∈ C. (This will guarantee the normality of
the resulting tree.) We now construct inductively a sequence of countable
trees 〈Tn : n ∈ ω〉 such that:

(1) T0 =T ∪ {
⋃

C : C ∈ C},
(2) for every n ∈ ω, ht(Tn)=α + 1, and
(3) for every n ∈ ω,

Tn+1 =Tn ∪ {Fs,t(u) : s, t ∈ Tn,ht(s)=ht(t) and u ∈ (Tn)α} .

Note that if I is an isomorphism from T to T , then for every B ∈ B(T ),
I[B] ∈ B(T ).

Let T =
⋃

n∈ω Tn. It is obvious that T is countable and for any s, t ∈ T

such that ht(s)=ht(t), Fs,t is an isomorphism from T to T . Hence T ∈ Phom,
T <T and for every C ∈ C,

⋃
C ∈ T0⊆T .

Next we discuss our forcing method. For the terminology and basic facts
on forcing, see [K2] and [Je2]. We always assume the consistency of ZFC
and let M be a countable transitive model of ZFC. In the forcing arguments,
we always let ȧ be a name of a. For every element a in the ground model,
we may use a itself as its name. Let P be a poset in a model M , ȧ be a
P-name for a and G be a P-generic filter over M . Then ȧG is the value of ȧ
in M [G] (see [K2, p. 189] for the definition of ȧG).

Let I, J be two sets. Let

Fn(I, J, ω1)={p : p⊆I × J is a function and |p|<ω1}

be a poset ordered by reverse inclusion. Let I be a subset of a cardinal κ.
Let

Lv(I, ω1)={p : p⊆(I × ω1)× κ is a function, |p|<ω1

and ∀〈α, β〉 ∈ dom(p) (p(α, β) ∈ α)}

be a poset ordered by reverse inclusion. The poset Lv(κ, µ) for some regular
cardinals κ > µ is usually called a <µ-support Lévy collapsing order . Let
T be a tree and I be an index set. For a function p from I to T , let supt(p),
the support of p, be the set {i ∈ I : p(i) 6=∅}. Let

P(T, I, ω1)={p : p ∈ T I , |supt (p)|<ω1} .
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For any p, p′ ∈ P(T, I, ω1), define p ≤ p′ iff for every i ∈ I, p′(i) ≤T p(i).
Let R be a poset and Ṫ be an R-name for a tree T . Let

P(Ṫ , I, ω1)={q̇ : q̇ ∈ (Ṫ )I , |supt (q̇)|<ω1} .

Then P(Ṫ , I, ω1) is an R-name for the poset P(T, I, ω1) if forcing with R
adds no new countable sequence. Let Q = P(T, I, ω1) (or P(Ṫ , I, ω1)) and
J ⊆ I. We write Q�J for the set {p�J : p ∈ Q}. If H is a Q-generic filter,
then let HJ ={p�J : p ∈ H}.

Lemma 4. Let T be an ω1-tree and P be an ω1-closed poset in a model M .
Let G be a P-generic filter over M . Assume that there exists a branch of T
in M [G]\M . Then T is neither a Kurepa tree nor a Jech–Kunen tree in M .
Moreover , there exists an isomorphic embedding from 〈2<ω1 ,⊆〉 into T .

P r o o f. See [K2, p. 260] and [Ju, Theorem 4.9].

Lemma 5. Let M be a model , P = (Phom)M and let G be a P-generic
filter over M . Let TG =

⋃
G. Then the generic tree TG is a homogeneous

normal ω1-tree with every level countable. In fact , TG is a Suslin tree.

P r o o f. See [Je2, Theorem 48] for the proof. The homogeneity of TG

follows from Lemma 2.

Lemma 6. Let M be a model , I be an index set in M , P=(Phom)M , TĠ

be a P-name for the P-generic tree TG, and Q̇ = P(TĠ, I, ω1), which is a
P-name for P(TG, I, ω1). Let G ∗H be a P ∗ Q̇-generic filter over M . Then
Mω ∩M [G ∗H]⊆M .

P r o o f. Suppose that there is an f ∈ Mω ∩M [G ∗H] such that f 6∈ M .
Let 〈p, q̇〉 ∈ P ∗ Q̇ such that

〈p, q̇〉 
 ḟ ∈ Aω \M

for some A ∈ M .
We now want to construct a sequence 〈〈pn, q̇n〉 ∈ P ∗ Q̇ : n ∈ ω〉 in M

such that for every n ∈ ω,

(1) 〈pn+1, q̇n+1〉 ≤ 〈pn, q̇n〉 ≤ 〈p, q̇〉,
(2) ∃an ∈ A (〈pn, q̇n〉 
 ḟ(n)=an),
(3) ∀i ∈ supt(q̇n)∃tn(i) ∈ pn \ pn−1 (pn 
 q̇n(i)= tn(i)).

The contradiction follows from the construction. Let pω =
⋃

n∈ω pn. For
every i ∈

⋃
n∈ω supt(q̇n), let

Ci ={t ∈ pω : ∃n ∈ ω (t<tn(i))} .

By (3), Ci ∈ B(pω). By Lemma 3, there is a pω ∈ P, pω ≤ pω, such that
⋃

Ci

∈ pω. Define q̇ω from I to TĠ such that q̇ω(i) =
⋃

Ci if i ∈
⋃

n∈ω supt(q̇n)
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and q̇ω(i) = ∅ otherwise. (In fact, q is in M .) Then 〈pω, q̇ω〉 ≤ 〈pn, q̇n〉 for
every n ∈ ω. Hence, for every n ∈ ω,

〈pω, q̇ω〉 
 ḟ(n)=an .

This contradicts f 6∈ M .
Assume that we have already had 〈pn, q̇n〉 for every n ≤ m.
First, let 〈r, ṡ〉 ≤ 〈pm, q̇m〉 and am+1 ∈ A such that

〈r, ṡ〉 
 ḟ(m + 1)=am+1 .

For every i ∈ supt(ṡ),

r 
 ∃α ∈ ω1 (ṡ(i) ∈ 2α) .

Then there exist α ∈ ω1 and r′ ≤ r such that

r′ 
 ṡ(i) ∈ 2α .

Since P is ω1-closed and

r′ 
 The domain of ṡ(i) is α, a countable ordinal ,

there exist t(i) ∈ 2α and r′′ ≤ r′ such that

r′′ 
 ṡ(i)= t(i) .

Let r′′′ ≤ r′′ such that ht(r′′′) > max{α, ht(pm)}. Then

r′′′ 
 ṡ(i)= t(i) ∈ r′′′

because 
 ṡ(i) ∈ TĠ.
Since supt(ṡ) is countable and P is ω1-closed, we can find pm+1 ≤ r′′′

such that

∀i ∈ supt(ṡ)∃α<ht(pm+1)∃t(i) ∈ (pm+1)α (pm+1 
 ṡ(i)= t(i)) .

Let tm+1(i) ∈ pm+1 \ pm such that t(i) ≤ tm+1(i) and define q̇m+1(i) =
tm+1(i) if i ∈ supt(ṡ) and q̇m+1(i)=∅ otherwise. This ends the construction
and the sequence we have constructed does obviously satisfy (1)–(3).

R e m a r k. The poset P∗Q in Lemma 6 is, in fact, strategically complete.
Let R be any poset. Two players, I and II, choose from R successively the
members of a decreasing sequence

a0 ≥ b0 ≥ a1 ≥ b1 ≥ . . . ≥ an ≥ bn ≥ . . .

I chooses the an’s and II chooses the bn’s. II wins the game if and only if
the sequence has a lower bound in R. We call R strategically complete if II
has a winning strategy. It has been shown that R is strategically complete
if and only if there exists a poset S such that R×S has a dense subset which
is ω1-closed (see [Je3, p. 90]). In our case, the poset P ∗ Q̇ has an ω1-closed
dense subset.



Kurepa trees and Jech–Kunen trees 293

Theorem 7. Assuming the existence of an inaccessible cardinal , it is
consistent with CH plus 2ω1 > ω2 that there exist Kurepa trees but there are
no Jech–Kunen trees.

P r o o f. Let M be a model of GCH, κ be an inaccessible cardinal and
λ > κ be a regular cardinal in M . In M , let P1 =Lv(κ, ω1), P2 =Phom, TĠ2

be a P2-name for the P2-generic tree TG2 =
⋃

G2, where G2 is a P2-generic
filter, and Q̇=P(TĠ2

, λ, ω1). Let G1 × (G2 ∗ H) be a P1 × (P2 ∗ Q̇)-generic
filter over M . We will show that M [G1 × (G2 ∗H)]=M [G1][G2 ∗H] is the
model we are looking for.

Claim 7.1. Mω ∩M [G1][G2 ∗H]⊆M .

P r o o f o f C l a i m 7.1. By Lemma 6, Mω ∩ M [G2 ∗ H] ⊆ M . This
implies that P1 is still ω1-closed in M [G2 ∗ H]. Hence (M [G2 ∗ H])ω ∩
M [G2 ∗H][G1]⊆M [G2 ∗H]. So for every f ∈ Mω ∩M [G2 ∗H][G1], f is in
M [G2 ∗H] and hence, f is in M . The claim is true because M [G1][G2 ∗H]=
M [G2 ∗H][G1].

Claim 7.2. P1 × (P2 ∗ Q̇) has the κ-c.c.

P r o o f o f C l a i m 7.2. A poset R is called λ-centered for some regular
cardinal λ if for any subset S⊆R with |S| ≥ λ, there exists S′⊆S, |S′| ≥ λ,
such that any two elements in S′ are compatible. By a simple ∆-system
lemma argument, we can show that P1 is κ-centered. Since |P2|= ω1, we
have |TĠ2

| ≤ (|P2|ω1)ω1 =ω2. Again by a simple ∆-system lemma argument,
we can show that P2 ∗ Q̇ is κ-centered. In fact, it is also ω3-centered. Hence
P1 × (P2 ∗ Q̇) is κ-centered, which implies the κ-c.c.

R e m a r k. By Claims 7.1 and 7.2 and the fact that M [G1] � [CH+2ω1 =
ω2 = κ], we know that ω1 and all the cardinals greater than or equal to κ
in M are preserved in M [G1][G2 ∗H]. We also know that M [G1][G2 ∗H] �
[CH + 2ω1 =λ > κ].

Claim 7.3. TG2 is a Kurepa tree with λ-many branches in M [G1][G2∗H].

P r o o f o f C l a i m 7.3. It is obvious that TG2 is an ω1-tree with every
level countable (in fact, it is a Suslin tree in M [G2]). In M [G1][G2], Q̇G2 =
P(TG2 , λ, ω1) is a countable support (note that no new countable sequences
of ordinals are added) product of λ-many copies of TG2 . Then forcing with
Q will add at least λ-many new branches to TG2 . Hence λ ≤ |B(TG2)| ≤
2ω1 =λ.

Claim 7.4. There are no Jech–Kunen trees in M [G1][G2 ∗H].

P r o o f o f C l a i m 7.4. Suppose that T is a Jech–Kunen tree in
M [G1][G2 ∗ H]. Since |T |=ω1, there exists a cardinal θ<κ and a subset I
of λ with |I| ≤ ω2 such that T ∈ M [G′

1][G2 ∗HI ], where G′
1 =G1∩Lv(θ, ω1)
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and HI =H ∩Q�I. This is true because P1 has the κ-c.c. and P2 ∗ Q̇ has the
ω3-c.c. In M [G′

1][G2 ∗ HI ], 2ω1 <κ, so that there exists a branch b of T in
M [G1][G2 ∗H] \M [G′

1][G2 ∗HI ]. Since Lv(κ \ θ, ω1) in M is still ω1-closed
in M [G′

1][G2 ∗HI ] and T is a Jech–Kunen tree in M [G1][G2 ∗H], it follows
from Lemma 4 that b 6∈ M [G1][G2 ∗HI ].

Let M ′=M [G1][G2 ∗HI ]. We now work in M ′. In M ′, Q�(λ\I) has the
ω1-c.c. Then there exists J⊆λ\I with |J |=ω1 in M ′ such that b ∈ M ′[HJ ].
Let r ∈ HJ be such that

r 
Q�J ∃b ∈ B(T ) \M ′ .

Since TG2 is homogeneous (here we use the homogeneity of the tree), we can
assume that


Q�J ∃b ∈ B(T ) \M ′ .

By the maximal principle we can find a Q�J-name ḃ in M ′ such that


Q�J ḃ ∈ B(T ) \M ′ .

Since b 6∈ M ′, it follows that in M ′, the sentence Φ(Q�J, T, ḃ) is true, where
Φ(X, Y, Z) is

∀s ∈ X ∃s0, s1 ≤ s∃α ∈ ω1 ∃t0, t1 ∈ Yα, t0 6= t1 (si 
 ti ∈ Z) for i=0, 1 .

In M [G1][G2 ∗H], T has fewer than λ-many branches, so there exists µ<λ
such that I ∪ J ⊆µ and every branch of T in M [G1][G2 ∗ H] is already in
M ′[Hµ\I ]. Let J ′ ⊆ λ \ µ be such that |J ′|= |J | and let π be the natural
isomorphism from Q�J to Q�J ′. Then in M ′


Q�J′ π∗(ḃ) ∈ B(T )

is true and

M ′ � Φ(Q�J ′, T, π∗(ḃ)) ,

where π∗ is the map from Q�J-names to Q�J ′-names induced by π (see [K2,
p. 222] for the definition of π∗).

Subclaim 7.4.1. M ′[Hµ\I ]�[Φ(Q�J ′, T, π∗(ḃ)) and 
Q�J′ π∗(ḃ)∈B(T )].

P r o o f o f S u b c l a i m 7.4.1. Let HJ′ be a Q�J ′-generic filter over
M ′[Hµ\I ]. Then HJ′ is also a Q�J ′-generic filter over M ′. Hence in M ′[HJ′ ],
(π∗(ḃ))HJ′ ∈ B(T ). If si ∈ HJ′ , then ti ∈ (π∗(ḃ))HJ′ is also true in M ′[HJ′ ].

In M ′[HJ′ ], forcing with Q�(µ\I) will not change the truth of the above
sentences. Hence in M ′[HJ′ ][Hµ\I ]=M ′[Hµ\I ][HJ′ ], (π∗(ḃ))HJ′ ∈ B(T ) and
ti ∈ (π∗(ḃ))HJ′ are also true. This implies that

M ′[Hµ\I ] � [Φ(Q�J ′, T, π∗(ḃ)) and 
Q�J′ π∗(ḃ) ∈ B(T )] .

This ends the proof of Subclaim 7.4.1.
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Since forcing with Q�J ′ will not add new branches of T , it follows that
B=(π∗(ḃ))HJ′ is already in M ′[Hµ\I ]. In M ′[Hµ\I ], let

D={r ∈ Q�J ′ : ∃t 6∈ B (r 
Q�J′ t ∈ π∗(ḃ))} .

Then D is dense in Q�J ′ because Φ(Q�J ′, T, π∗(ḃ)) is true in M ′[Hµ\I ]. If
r0 ∈ D ∩HJ′ , then r0 
 π∗(ḃ) 6=B. This contradicts (π∗(ḃ))HJ′ =B.

Theorem 8. Assuming the existence of an inaccessible cardinal , it is
consistent with CH plus 2ω1 = ω4 that there only exist Kurepa trees with
ω3-many branches.

P r o o f. Let us follow the notation of the proof of Theorem 7. Let λ=κ+

in M . Let
P3 =Fn(κ++, 2, ω1)=Fn(ω4, 2, ω1)

in M [G1][G2∗H] (note P3 is absolute with respect to M and M [G1][G2∗H]).
Let G3 be a P3-generic filter over M [G1][G2 ∗ H]. In M [G1][G2 ∗ H][G3],
the number of branches of TG2 is λ=κ+ =ω3 by Lemma 4.

Let T be any ω1-tree in M [G1][G2 ∗ H][G3]. Then there exists K ⊆
κ++ with |K| = ω1 such that T ∈ M [G1][G2 ∗ H][G′

3], where G′
3 = G3 ∩

Fn(K, 2, ω1).
If |B(T )|=ω4 in M [G1][G2 ∗H][G3], then forcing with Fn(κ++ \K, 2, ω1)

will add new branches to T . This implies T is not a Kurepa tree by Lemma 4.
If |B(T )|= ω2 in M [G1][G2 ∗ H][G3], then by Lemma 4, T is already a

Jech–Kunen tree with ω2-many branches in M [G1][G2 ∗ H][G′
3]. Without

loss of generality we can assume that K =ω1. So

M [G1][G2 ∗H][G′
3] �

“There exists a Jech–Kunen tree with ω2-many branches” .

But

M [G1][G2 ∗H][G′
3]=M [G′

3][G1][G2 ∗H]=M [G1][G2 ∗H] ,

where M =M [G′
3]. By the same proof of Theorem 7, we can also show that

there are no Jech–Kunen trees in M [G1][G2 ∗H], a contradiction.
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