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A weak molecule condition
for certain Triebel-Lizorkin spaces

by

STEVE HOFMANN (Dayfon, 0.)

Abstraet. A weak molecule condition is given for the Triebel-Lizorkin spaces Fga,
with 0 < o < 1 and 1 < p,q < 00, As an easy corollary, one may deduce, by atomic-
molecular methods, a Triebel-Lizorkin space “T1” Theorem of Han and Sawyer, and
Han, Jawerth, Taibleson and Weiss, for Calderén-Zygmund kernels K{x,y) which are not
assumed to satisly any regularity condition in the y variable.

0. Introduction and statement of results. In recent years, there has
been consideralle interest in two problems concerning function spaces, or
more generally, spaces of distributions. The first is the decomposition of su”ch
spaces into building blocks (usually referred to as “atoms” and “molecules” ).
The second is the boundedness on such spaces of various types of operators,
for example Calderén~Zygmund, or (C-Z), operators, which are g?neral—
izations of the classical principal value convolution operators studied by
Calderén and Zygmund (e.g. [CZ]). The two problems are in some sense
related: to show that a linear operator T is bounded on some distnb.ut]on
space, it is often enough to consider the action of T on the relative}}y simple
“atoms”, and show that T maps atoms uniformly into “molecule§ .

The class of Triehel-Lizorkin spaces is one class of distribution spaces
which has been studied by means of atomic and molecular def?mp051t1ons.
Let ¢ be a Schwartz function such that its Fourier trla,nsform @ is supported
on the annulus {1/2 < |€] < 2}, with |§(£)| 2 ¢> 0 if3/5< lft_g 5/3. One
can define the homogeneous Triebel-Lizorkin space F¥07, 0 < ¢ 5 00, 0 <
p < 0o, @ € R, as the space of tempered distributions modulo p.olynoml‘a,ls
(becanse all the moments of  are zero) with the norm (or quasi-norm, if p
or ¢ < 1) '

Il = || ( i (2’°°‘iaok*f|)").]/q“p,

k=—00

(0.1)
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114 S. Hofmann

where pp(2) = 25"p(2%2). We obtain an equivalent norm if we choose a
different ¢ with the same properties. Frazier and Jawerth [FJ] have shown
that the Triebel-Lizorkin spaces have a decomposition into smooth atoms.
For 0 < @ < 1, and 1 < p,¢ < o0, a smooth atom ag associated with a
dyadic cube Q is a C§° function with the following properties:

(0.2) supp aq € 3Q,

(0.3) [ ag(z)da=0,

(0.4) llaglleo < 1QI7172,
(0.5) IVaglleo < 1QI7/21/m,

where 3@ is the cube concentric with ¢ having side length 3 times as large.
Every f € Fjv%, 0 <a <1,1< p,¢< o, can be written as

(0.6) f = ZSQGQ s

where the sum runs over all dyadic cubes, and where the coefficients sq
satisfy

(0. I( guqrﬂ/ﬂqu)q)”qHLP < Cllfllppe

Here Xq = |Q]™'/%xq. Conversely, if f has the decomposition (0.6), then
(0.1) is bounded by a constant times the left side of (0.7).

Frazier and Jawerth [FJ] also found a molecular decomposition of the
Triebel-Lizorkin spaces. The idea is that if

f= Z Sgmgq .,
& dyadic

where mg is a molecule associated to the cube @, then | f|| jo.e is bounded
P

by a constant times the left side of (0.7). An immediate corollary is that if 7"

is, say, a Calderén—Zygmund operator with T'ag = mg, then T' is bounded
on F9, :
r

We now define (this definition will be justified Jater) a weak (8, £) molecule
mq associated to a dyadic cube @) as a function satisfying

(0.8) Imq(2)] < 1QI7 (1 +1(Q) "Iz — zq|) ™,

where n = dimension, /(Q) = side length of @, and zq is the “lower left
corner” of ), and

(0.9)  |mg(z) — ma(y) < 1QI7/2(HQ) | ~ y))°
{1 +UQ) s~ 2q) ™" + (1 +UQ) My — 2) ™}
if |z~ y| SUQ), orif |z — 2| 2 10y/nle - y|.
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The smoothness condition (0.9) is the same as in the Frazier—Jawerth
theory (although it seems to bave first been explicitly formulated in this
way in [FHLJW]), except that previously (0.9) was assumed to hold in gen-
eral, not just for |z — y| sufficiently small. What is new here is the size
condition {0.8). In the Frazier-Jawerth theory, (0.8) was replaced by the
same condition but with the order of decay —n—-y, for some 7 > 0, whereas
the present molecules only decay as |x|~™ at infinity. This may seemn at first
glance like a superficial difference, but of course —n is the “critical index”
for decay at infinity to achieve integrability in R™. Furthermore, as an appli-
cation, the weak molecule condition introduced here will enable us to prove
easily, via the atomic-molecular approach, a result of Han and Sawyer, and
also Han, Jawerth, Taibleson, and Weiss, that Calderén-Zygmund opera-
tors are bounded on F‘;"q, 0<a<l,1<pq< oo, under significantly
weakened regularity assumptions on the kernel. Specifically, suppose that T'
is a continuous linear mapping from D to D' associated to a kernel K (z,y)
in the sense that

rf9y= [ [o(@)K(=z,y)f(y)dydz,
where g, f € C§° with disjoint supports. Suppose also that
(0.10) [K(z, )| < Clz —9™",
(0.11)  |K(z,y)- K(2,9)| € Cle - a'{lz —y|™"™"

whenever |z —y| > 2|z — ='| with 0 < £ < 1.

Note that we assume no smoothness in the second (y) variable of K(z,y}.
We also assume that T satisfies that Weak Boundedness Property (WBP):
(0.12) (9, TF < CR(|| Flloa + RIV flleo)(llglleo + RIValioo)

for all f,g € €& with support in a ball of radius R. Y. S. Han and
E. T. Sawyer [HS] and also Han, Jawerth, Taibleson, and Weiss [IIJTW]
have proved the following important result:

TuroREM (0.13). Suppose K (=,y) satisfies (0.10) and (0.11), and sup-.
pose that the corresponding operator T satisfies T1 = 0 and WBP (0.12).
Then, for 0 < a < g, and 1 <p,g < o0, We have

(0.14) (T f e < Cl Sl iges -

Remark. By interpolation, Theorem (0.13) implies an analogous {(and
earlier) result of Lemarié [L) for Besov spaces.

The proof in [HS] is a direct one based on a Littlewood-Paley argument
found in work of David, Journé and Semmes [DJS] and Coifman, David,
Meyer and Semmes [CDMS) concerning L? boundedness of C-Z operators.
This Littlewood—Paley approach had also been used by the present author
and Han [HH] to extend the “T'1” arguments of [DJS] and [CDMS] to Besov
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and Triebel-Lizorkin spaces under weak regularity conditions on the kernel
defined in terms of an L™ or L' modulus of continuity, Of course, there
is an jmplicit connection between the Littlewood—Paley approach and the
atomic approach (see e.g. [FJ]), and this connection provided some of the
motivation for the present work.

Under the stronger assumption that K (=, y) also satisfies the smoothness
condition (0.11) in the y variable, Theorem (0.13) had been obtained by
Frazier, Han, Jawerth and Weiss [FHIW] using the Frazier—Jawerth theory
of atoms and molecules. The stronger Frazier-Jawerth molecular condition
seems to require smoothness in both the z and y variables. We also remark
that Torres [T} had obtained results for & > 1 by this method, without
smoothness in y, but his technique does not seem to extend to 0 < & < 1,
unless one compensates by imposing extra smoothness in . One of the
motivations for introducting the weak condition (0.8) is that we will now
be able to recover the [HS], [HITW] result (Theorem (0.13)) by means of
an atomic-molecular approach. Perhaps this weaker condition may prove
useful in other applications as well,

Our definition of molecules is justified because we are able to prove the
following, which is the main result of this paper:

THEOREM {0.15). Suppose f = Y sg mq, where the sum runs over the
dyadic cubes, and where each mg satisfies (0.8) and (0.9). Then, if 0 <
a<d<e andl < p,q < oo, we have

(0.16) Il gz < C“(Z(|Q|—G/HISQ|’7Q)")W|L'
Q

In the next section, we will deduce Theorem (0.13) as a relatively easy

corollary of Theorem (0.15). Section 2 will contain the proof of Theo-
rem (0.15).

1. Proof of Theorem (0.13) (modulo Theorem (0.15)). We shall
use the following lemma of M. Meyer [MM] which has become by now a
rather standard fact in Calderén—Zygmund theory:

LeMMA (1.1). Suppose n € C§°(Q). Then, under the hypothescs of The-
orem (0.13),

177le0 < C(linlloo + 1Q1™[Vnlleo) »
with C independent of 7,

To prove Theorem (0.13), it is enough to show that for a smooth atom ag
satisfying (0.2)-(0.5) (actually, we will not need (0.3)), mg = Tag satisfies
(0.8) and (0.9), modulo a multiplicative constant not depending upon a or Q.
The proof of (0.9) uses the smoothness in the z variable and is essentially the
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same as the argument in [FHIW]. The reader is referred to that paper for
details, although we sketch the idea briefly for the sake of self-containment.
Suppose I[(Q) = 277, and |z — 72| < 277 or |z1 — 2g} > 10y/n ]z — 22| We
want to show, for a = ag,
(12)  |Ta(or) - Ta(aa)| < ClQIZ(2er — 2al)*
x{(1 + 2|ay — 2q|)~™" + (1 + 2¥|zg — 20|) ™"}

There are two cases: .

Case 1: Jo; — zg] > 104/n277 (in which case |z — g 2 9,/n277).
Here either |1 — 2| < 279 or oy — zg| 2 10y/n a1 — z2|. Write

Ta(zy) — Ta(z1) = [ [K(w2,y) = K (21, 9)]a(y) dy-

Tu this case (1.2) now follows by straightforward computation from the
smoothness condition (0.11) and the atomic conditions (0.2) and (0.4). B

Case 2: |zy — zg| < 10y/M277 (in which case |25 — zg| € 11y/n2 )_
Note that in this case |zq — 2g] < 2779, Let r = |21 — 75| and let T,'.,-('t:? =
n(u/r), where n € C§°(Ju| < 20) and n(w) = 1 for |u] < 10. We now write

(13) Ta(a:l) - TG(Eg)
= [1K(z1,9) = K(w3,9)]lay) - a(e)]ll - nly = 21)] dy

+ [ Kz, y)lay) - alz)inly — 1) dy

= [ K(z2,v)a(y) — a{z2)lns(y — 1) dy
+ (a(ml) - {L(:L‘g))T'qr(' - 31)($2) = I4+ 1T+ 4+ IV,

The representation (1.3) is due to Y. Meyer [M], and may be easily verified

formal level by using the fact that T'1 = 0. . N
. ?'I‘oorobta,in (1.2) for IV, we just use the atomic condition (0.5) plus

Lemma (1.1). To handle ITand III, we use (0.5) and the size condition (0.10).
Next, define ,
SE{y:lO|z1—-zglg|y-—m1]511\/ﬁz Y,
Te={y:ly—z|>11v/n27"}. | o
i i 0.4)in [, and (0.11
lit Tinto I = [g+ [y Here we use (0.5) in Js: (0 7
;:i)zl‘zh. Now (1.2) {gﬂow{g by direct computation. (This argument must be
modified slightly if & = 1; see [FEIW].) .
Next wegveri‘fy that Ij‘a, satisfies (0.8). In [FHJW], smoothness in the y

variable of K(w,y) was used, along with thfa fact that e =10 (a. faf}a\:ziilﬁ
we do not require in this paper), to obtain the stronger Frazier

molecular condition. Tn the present case K (a:zy) need not bf.% }-egula,r n;‘ :,Il:;
y variable, so we shall have to be content with (0.8). This is easy.
, .
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suppose |z — zg| < 10y/n277, where again 277 = {(Q). In this case, to
verify (0.8) it is enough that

|Ta(z)| < ClQI?,
which is immediate from Lemma (1.1) and the atomic conditions (0.4) and

(0.5). On the other hand, suppose [z—zg| > 10,/m 274, Then for y € supp a,
we have |z - y| & |z ~ zg], so by (0.10), (0.2) and (0.4),

[Ta(@)| = | [ K(z,9)a(y)dy| < Clz - sql @110,
which is comparable to the right hand side of (0.8} in the present case.

2. Proof of Theorem (0.15). The proof is motivated in part by the
approach in [FJ], and in part by some ideas in [DJS], [CDMS], [HH] and
[HS]. We shall want to use a discrete version of the “Calderén reproducing
formula” due to Frazier and Jawerth [FJ]. They have shown that one can
select a ¢ as in the definition (0.1) and a ¢ € C§°(jz| < 1) with [ = 0,
such that

2. hOBE =1, £#£0,

k=~ 00
where again ¢g(z) = 2¥"(2*z) and the same for 4, so
. o0
(2.1) > trroexf=f.
k=—o00

Now, let f = 375 8gmq with mq as in (0.8) and (0.9) and sg as in
(0.7). We dualize; for ¢ € C§° N Fr;a,q', it is enough to show that

- » 1/q
22) WA Cllgllymen | (R sal%a)?) || -
. L Q
Using the reproducing formula (2.1) we write {f, g) as

(23) D Y soltbexma, Brx ),

k=—o0 @

where (=) = pp(—2). (To make things rigorous, one could take finite
sums and use a limiting argument; the details are left to the reader.) Next
write (2.3) as

20 Y T ¥ sathrmadics
k=00 j=—co [(Q)=2- : |

i<kl Q)=2~i  k ixki(Q)=2~7
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We shall need the following modification of a lemma from [E'J], which the
reader may e:asily verify by using the smoothness condition (0.9), and the
fact that v, is supported on a ball of radius 2% and has mean value zero.

LEMMA (2.5). Let 1 be as above, and let mg satisfy (0.9), where
(@) = 277. Suppose also that either j < k or |z — 29| > 10/n2-%. Then
[ 4 mg(a)] < ClQI7V/226-R¥(1 + 27|z — zg|)—"—e

We will also use another lemma from [FJ], whose proof we include for
the sake of self-containment.

LEMMA (2.6) (Frazier-Jawerth).
(271 3 lsell+Pl-soh <M Y lsolxe)(®)-

Q=2 Q)=2-i
By translation invariance, we may assume z € Q;(0), i.e. the cube with
(@) = 277 and “lower left” corner at 0. Set A4; = {Q dyadic : I(Q) =
27,2771 <zl € 2079} for ¢ = 1,2,... and A = {Q : Q) = 277,
lzq| < 277}, Then the left hand side of (2.7) is bounded by a constant
times '

oo 00
S 5 20t lgl = a0t [ 5 fngleg
i=0

i=0 QeA; QEA;
m .
SCZZ““M( 3 lsalxe) (),
i=0 Q=2

where in the last inequality, we have used the fact that

I ¥ Iselxe < I > lsqlxe(y)dy

QEA [e—y|g€CP~F  WQ)=2—F
if z € Q4(0). This concludes the proof of Lemma (2.6).

Now we consider I from the splitting of (2.4). By Lemmas (2.5) and
(2.6), I is bounded in absolute value by

(29) S 200(u( T lsqla). (@ ral),
k i<k (Q)=2-i

where Yo = [Q|"1/*xg. Next, multiply and divide in (2.8) by 2%, and
apply Holder’s inequality twice to deduce that (2.8) is bounded by

(2.9) H(Zk:z(z("“”)”'ﬁ)Z’mM( Z ISQWQ))?)“"”?
jsk

Q=27

| CR TSN LA
(S o))

|p".
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where f is a small positive number to be chosen (in fact, take § — 5 > a).

If we sum in j first, the second factor is just ”g”F‘,“ . Now observe that
¥

for § — 8 > oy 2o pun; qU-k{E-Bigka = 94> = C|Q|~/". Thus, by the

vector-valued inequality for the maximal function, the first factor is bounded

by (0.7}, sivee (3o, qy=a-i sg|Xg)t = EI(Q)ﬂ_,-(Mq[fq)q for the digjoint
cubes with fixed suie length.

Now, we turn to Il in the splitting of (2.4). We shall use the following:
LEMMA {2.10). For j > k, {@Q) =277, and for ally, 0 <y < §, we have
|t * ma(z)| < Col@IH220™ (1 + Pz — zgl)™

+C(j = B)QIT 22 x{|z — 5q| < 10y 27F}.
We shall also use the following analogue of Lemma (2.6):
LEMMA (2.11). For j > k,
3 Jsqi2tmx{ls - zgl < 10vm2 Y <M Y Iselxa)(@)-

{@)=2-7 {@)=2-1

Let us assume these lemmas for the moment, and deal with IT in (2.4).
We apply Lemma (2.10), and then either Lemma (2.6) with v in place of ¢,
or Lemma, (2.11), as appropriate, so that

M <o, 32 (m( Y lselfa) B ral),
ko 3>k (Q)=2-i

where we have used the fact that j — k < C,200=%7, Now,let 0 < § < a,
multiply and divide by 2/22-(i=88 and apply Hélder’s inequality twice to
shaw that the last expression is no larger than a constant times

e (SR X i),
(ST Gmarmbies)’)

The first factor can be handled by taking v < £, and summing first in k.
The bound (0.7) then follows exactly as it did for the zmalogous term in

{2.9). To handle the second factor in (2 12), we sum first in 7, with 7 < a,
to obtain the bound HQHF‘“ .

To conclude the proof of Theorem (0.15), it therefore remains to prove
Lemmas (2.10) and (2.11). We prove (2.10) first. There are two cases.

Case 1: |z — zg| > 104/n2~*%. By the molecular size condition (0.8),
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we have the crude estimate
(213) |k x ma(2) < Q1™ [ [¥a(z — )I(1 + 2]y ~ zql) " dy -

< ClQITVA(L + 2 - 2Dl
where in the last inequality we have used the fact that by the support of
P, [z — 9] € 27F < |z — 2g)|, 50 that |z — 2g| & |y — zg].
On the other hand, by the smoothness condition {0.9), and the fact thast
1 has mean value zero, we have
(214) I xme() < [ lu(e — )lmaly) ~ male)| dy
<1QITAC| gl 2R (1 + 2|z ~ zg|) ™"
<1QITV2CYp 2 M1 + 2]a — zg) ™,

for § < €. But Lemina (2.10) follows in the present case by interpolating
between (2.13) and (2.14).

Case 2: |z — zg| < 10y/n2~%. By (0.8), |[¢x * mg(z)| is less than or
equal to |Q|1/% times

(215) [ 1wz = 9|1+ 2|y — zq[) ™" dy

= f o+

=A+ B,

ly-zqig2™ igly—wg|<Or™*
where in B we have used the fact that Jy—zg| < |2 —zg|+ |z —y| £ C27F.
Now
A< anll"p“m f ldy,
ly-zqig2™!
c2~* 1
B < 24||¢f|027" [ E)—d,g.
9—i

Lemma (2.10) follows easily.

Finally, we turn to the proof of Lemma (2.11).

As in the proof of Lemma (2.6), we may take =z € @;(0). We recall
that j > k. For all # € @;(0), the only cubes appearing in the sum on the
left hand side of (2.11) are those for which Q € Ex = {Q dyadic: I{Q) =
24, |zg| € Cn27%}. Thus, it is enough to consider

Y Jsgl2thmiin = ok I 3 lsalxa
QEE QEE,

g - f > lsalxe(®)dy,
le—ylgCa2™t UQ@)=277

and (2.11) follows.
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A noncommutative version of
8 Theorem of Marczewski for submeasures

by

PAOLO DE LUCTA (Napoli) and PEDRO MORALES (Sherbrooke, Qué.)

Abstract. Tt is shown that every monocompact submeasure on an orthomodular
poset is order continnous. From this generalization of the classical Marczewski Theorem,
several resulis of commutative Measure Theory are derived and unified.

1. Introduction. According to the well known theorems of Aleksan-
drov [2], von Neumann [22] and Marczewski [19], a mild regularity condition
is sufficient for the c-additivity of a real-valued set function defined on a
family of sets. One of the purposes of this paper is to unify these apparently
unrelated results via an extension of the Marczewski Theorem to submea-
sures on an orthomodular poset. Incidentally, we indicate that one of the
particular interests of the noncommutative Measure Theory is its relevance
to the Hilbert space formulation of Quantum Mechanics (see [16], [23], [28]
and {31]).

The paper is organized as follows: In Section 2 we give some elemen-
tary notions of orthoposets and uniform semigroups, and we define some
pertinent classes of functions from an orthoposet into a uniform semigroup.
Section 8 introduces the notion of an approximating paving for the aforesaid
kind of functions, and this notion is illustrated with appropriate examples.
In the next section we extend properly the notion of compact measure of
Marczewski to the noncommutative setting, and we establish the first of
the main results of this paper. We also deduce, as by-products, several
results bearing the names of Aleksandrov [2], K. P. S, Bhaskara Rao and
M. Bhaskara Rao [5], Glicksberg [13], Huneycutt [14], Kluvanek [17], Mar-
czewski [19], Millington [20], von Neumann [22] and Topsge [30]. In the last

1991 Mathematics Subject Classification: 28B10, 28G15, 46C10, 81C20.

The research of the first-named author was partially supported by the Comsiglio
Nazionale delle Ricerche (Ttaly).

The research of the second-named anthor was partially supported by a grant from the
Natural Sciences and Engineering Research Council of Canada. -



