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On relations between operators on RY, TV and 7V
by

P. AUSCHER (St. Louis, Mo.) and M. J. CARRO (Barcelona)

Abstract. We study different discrete versions of maximal operators and g-functions
arising from a convolution operator on R. This allows us, in particular, to complete
connections with the results of de Leeuw [L] and Kenig and Tomas [KT] in the setting of
the groups RY, TV and ZV.

§ 1. Introduction. The celebrated theorem of Carleson-Hunt ([C], [H])
asserts that the partial sums of the Fourier series of a periodic function g.in
LP(T), 1 < p £ oo, converge almost everywhere to g. One way for proving
such a convergence result (see [H]) involves the establishment of strong or
weak type (p,p) estimates for an associated maximal operator. In this case,
this operator is

Plgz)= sup | 3 Glk)erm™=
L=0,1,... [kI<L

Instead of periodic functions and Fourier series one might consider the
analogous result on R for Fourier integrals. More precisely, we introduce the
maximal operator

t

Clyta) = sup| [ Feyern=ee]

Then well-known elementary arguments show that strong type (p,p), 1 <
p < o0, for P¥ is equivalent to that for C¥ and, therefore, convergence almost
everywhere of inverse Fourier integrals for functions in LP(R), 1 < p < oo,
follows. We may also wonder whether there is an equivalent formulation, in
the discrete case, for “Fourier integrals of sequences” in I?(Z). Toward this
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end, consider

>, sin 2rmt .

(n - m)|

Dia(n) = sup \/“:'d(f)ez”"“'fd'f\z sup

0<t<1/2 0<t<1/2 mm

m=0
In fact, the equivalence of strong type (p,p) for P! and DY has been estab-
lished recently for all p in (1,00) {see [CP], [AP] and {A])." .
The equivalence of strong type (p,p) estimates for P! and CV is really
a special case of a more general result: Let m be a bounded continuous
function on RV. Let ® denote the Fourier transform in RV, TV or ZV,
according to the setting. For ¢ > 0, define
(1) @he)= [ mE)FE e, = eR,
“N

for a function f defined in RV,

(2) (Pug)(z) = Y m(tk)g(k)e"™, =TV,
keIN

for ¢ a periodic function in TV, and _

(3) (D.a)(n) = [ m@EgPEETdE, ne v,

[-1/2/2%

for a = (a(n)), a sequence in ZV and P(€) = T,, a(m)e?™ ™.

In the Fourier multiplier theory setting, (1) represents the action of m(t-)
as a multiplier on RV, (2) represents the action of the multiplier (m(in))xs
on ZV, while (3) is the action of the periodic extension of the function
m(t-)X[~1/2,1/2y~ (") a5 a multiplier on TV. Observe that we are identifying
TN with the cube Q = [—1/2,1/2]Y of R¥. This identification is not arbi-
trary. As we shall see later (see Remark (iv}), if we choose to identify ™
with [0,1)" then Theorem 9 fails to hold. As before, let us also consider
the maximal operators

C*f(z) = sup|Cof(2)l, P*g(x) = sup|Puf(z)], D a(n)=sup|Dia(n)|.
>0 >0 >0

Our main interest is to show how the LP-boundedness of these three opera-
tors are related. Before doing so, let us consider some “classical” results of
this nature.

A theorem of de Leeuw [L] says that for 1 < p < o,
IC fllzsqury < [1f1|zogrr)
if and omly if

1 Pegllzocrey < llgllzoeray s
uniformly in ¢t > 0.
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Kenig and Tomas (see [KT]) extended this result to the related maximal
operators just described: for p in the same range,

IC*fll» £ “f”p if and only if 1P*glls < ligll» -

Strictly speaking, all of this is true when m is “normalized”, a condition
that is less restrictive than continuity. In particular, if m = X[-1,1 then
C* = C¥ and P* = P! (up to some trivial error term) and the Kenig-Tomas
result applies to C¥ and PV,

This describes a connection between Fourier multipliers (and maximal
operators) on two groups: TV and RY. In view of our example, it is then
natural to try to relate more general Fourier multipliers on Z¥ and RV.
Let G be either RY, TV or ZV¥ and let {M,}. be a collection of bounded
functions on & indexed by a set U. We say, following [KT], that {M,}, is
p-magzimal on G if the operator sup,cy |(My F)V(z)| is of strong type (p, p).
The [KT] result gives us an equivalence of p-maximality for RV and T.
One of our results is the corresponding equivalence between R and ZV. As
a consequence, we obtain an equivalence for p-maximality for ZV and TV,
That is, we have closed the following diagram:

(2) RY
{(m(t)xmn}e p-maximal

/ N\

(b) ZV ‘ (c) T
{m{t)x-1/2,1 98} p-maximal &= {m(t-)xzv}+ p-maximal

Letting i = K, we can write (at least formally) the operators (1) and (3)
as convolutions:

(4) (Cef)(x)=(Ke* f)lw), (Dw)(n)= 3 a(m)(Ki*sinc)(n—m},

where

. N

. Ty sin 7z

smc(m)-:sl EH'—_"’J', 2= (21,...,ZN) -
T o1 T _

The function sinc arises naturally when we express D, as a convolu-
tion operator; however, its role can be assumed by other functions with
compactly supported Fourier transform. Therefore we will consider discrete
operators more general than those in (4), namely,

(Dfa)(n) =Y a(m)(Ki+ @)(n—m), a=(a(m))m.
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When ¢ = sinc we shall drop ¢ in the notation. Also set
(D®)*a = sup|D{a}.
>0

We shall refer to results on (D¥?)* as the “discrete case” since we deal with
sequences, while references to the “continuous case” mean that we are work-
ing with the operators C*. For m a bounded function on RV, let Mp(m)
denote its norm as a Fourier multiplier on ZP(R™). The space of such mul-
tipliers is denoted by M (RV).

One of our main results can be stated as follows:

THEOREM A. Let 1 < p < 00 and 0 < ¢ < 0. Assume that § € L*°(RV)
satisfies:

(a) 3 is @ multiplier on LP(RN},

(b) supp @ C [-R, RV, R< 1,

(c) for some & > 0 and h € C§&((—,e)N), h =1 on [—£/2,e/2)V,
WG € My(RM).

Then, if the family of kernels comes from ihe dilations of a fived kernel
K, that is, Ky(z) =t~V K(t7 '), we get '

MCLHlalle < CANp, T € LPRY),
if and only if
NDE@lalle < Cllallps o € 7(ZY),
where ||||g¢|| ||, denotes the norm of the family of functions (resp. scquences)
(g¢)s in the space LP(RN, LYRT, dt/t)) (resp. IP(ZV, L*(R*, di/1})).

Condition (c) is a local invertibility condition that will be more easily
understood when we discuss the proof of the theorem. Throughout this
paper we shall use the subscripts ¢ and ¢’ for the norm with respect to the
variable t in the spaces L4(dt/t) and L9 (dt/t}, and the subscripts p and s
for the norm in the spaces LP(RV), L*(RV) or I?(ZV), 1*(ZN).

The proof of this theorem is given in two sections. First we prove that the
continuous case implies the discrete one, and then the converse. We do this
since the two proofs are quite different; moreover, for each implication the
hypotheses that we have to impose on ¢ are different, The fourth section is
devoted to some applications and examples. Along similar lines, we will also
get similar results for g-functions and nonisotropic dilations. Applications
are given 1n Sections 5 and 6.

Finally, we would like to express our gratitude to Professors Javier Soria
and Guido Weiss for their reading these notes more than carefully as well
as for their numerous comments on an earlier draft. The second anthor also
wants to thank Professor Fernando Soria for the useful conversations they
had on the topic.
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§2. Boundedness of discrete versions obtained from that of
continuous ones. In this section, we do not need the dilation structure
of RV, Some properties of functions of exponential type will be our main
tools.

Denote by K;(z) a family of kernels not necessarily obtained by dilating
a single kernel. We recall that, by definition, Kf{n) = (K; * ¢)(n) for
a suitable distribution . We shall always assume joint measurability in

(t,£) for the family of multipliers M,(£) = I?t(f) ‘We shall write * for the
convolution of two sequences.

THEOREM 1. Let 1 < p < o0, 1 €8s < wand 0 < ¢ < oco. Let
& L*(RN) be such that

() § € M,(R™) with norm M,(&),

(b) supp & C [~ R, RV

Then

(5) &+ fllolls < [170s, F € L2(RY),
implies

(6) (ILEE % allglls < Allalls, o €1°(2Z7),

where A < CM (@) max(1, RNM/PH1-1/N gnd C = C(p,q,, N).
Remark. In the case ¢ = o0, the fact that the family (K3): is indexed

by R* is irrelevant; any set is convenient. This has already been observed by

Bourgain (see [Bo] where he proves that (5) implies (6) in the casep = 5 = 2,
g=ooand = X[—1/2,1/2])-
In the case where K,(z) =t~V K(i~1z) we also have
ProrosITION 2. Under the same assumption on $
(7) K % fllos <|Ifls  implies || KT *all, < Allalls
with a stmilar estimate for A.

We only prove Theorem 1. Proposition 2 can be obtained by a similar
argument. Introduce the set Er of slowly increasing C*® functions f with
supp fC [~ R, R]N. The elements of Er are functions of exponential type R.
We recall a well-known sampling theorem for such functions:

LEMMA 3. Let 0 < p < co. Then there exists.a constant C = C(p, N)
such that

3 lg(r)lr < € max(1, BY) [ la@)IPdz,

nELN Ry

Jor any g € ER.
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Proof. The argument for N = 1, found, for example, in B, Ch. 6],
can be adapted for establishing this lemma in N dimensions by using the
subharmonicity of |g(z + iy)|? in each complex variable z;, where g(z} =
9(z1,...,2x) = g(z + iy) is the analytic extension of g(z) to CN. However,
for later purposes, it is convenient for us to present a sketch of the proofin
the case 1 < p £ .

Assume first that R = 1. We shall prove the inequality for p = 1; we
then have it for all p by interpolation since the case p = oo is obvious. Let
¥ be such that &(¢) = 1 if £ € [-1,1]V, supp¥ C [~2,2V, and ¥ € C™.
Let C =sup, 3, ez |[¥(z — n)| < 0o0. If g € Ey, then g = g+ ¥. Thus,

Y letl= 3| [ s(@)¥n—z)ds]

nedN n

< [ le@IY 1¥(n-e)dz<C [ lg(=)lda.
rY n Ry

For the general case of R > 0, let @ be the first integer greater than R.
Let g € Eg. Then g € E, and therefore ¢(-/a) € 1. Hence

S /el < C [ lg(zjo)Pde =CaN [ lg(a)|Pds .
nexLN RN' RN
From this inequality the result is easily deduced. m

This lemma has the following useful generalization:

LEMMA 4. Let 1 < p € 00,0 < g € . Then there is a constant
C = C(p,q, N) such that

(8) Y g < CPmax(1, RY) [ |lgi(o)|? dz,
neZN RN
Jor any family ¢:(z), t > 0, of jointly measurable functions in Eg.

Proof. First consider the case ¢ > 1. By usual duality arguments, it
suffices to prove

dt :
© [ X lamhmim)] = < Clmax(L, RV {gclloll
Rt neZ¥
for all ﬁnite sequences (I(n))n with [|I||» < 1, all finite sequences (2;(n))y
of functions on R* with |[h¢(n)||; < 1 for all » and all families of functions

g, t > 0,in Eg. Since the above sequences are finitely supported we may
define

(z)= Y Wn)¥(z—n) and hyz)= Y h(n)¥(z—n)

nefV nelnN
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(i > 0 fixed), where ¥ is, this time, a ("™ function whose Fourier trans-
form is supported in [~2,2]V and satisfies ¥(0) = 1 and ¥(k) = 0 for
E e ZN\ {0}. One can easily check that both I(2) and ky(z) belong to E;
and that ||{(:)fly < C and ||hy(z)fjy < C for all z € RN, where C depends
only on p,q, N and ¥. Now notice that for fixed ¢, g:(z)h:i(z)l(2) € Eri4.
Thus by Lemma 3 with p =1, the left hand side of (9) does not exceed

CREY [ [ Il ds
Rt RV
< CCR+ )™l s, Ao ool < OCR + 4 el

For the case ¢ < 1, the previous argument can be adapted in the following
way. Let r = p/q > 1; then (8) is equivalent to

o [ % smorgse( ] (Rf tgf(x)wi—t)mdz)”“’

R+ nelZV RN

where I = (I(n))n, is a finite sequence with ||{fl;~ < 1. As above, extend !
to a function {(z) in E; satisfying |[I( - )||; < C. To prove (10) proceed as
before using Lemma 3 with exponent ¢ and R 4 2 playing the role of E. m

The following result is central to our proof.

LEMMA 5. Let o be as in Theorem 1. Then ¢ € L* and
1) | o atmel-—m)| < OM(F)max(t, RN Njall,
mel¥ *
Jor all sequences a = (a(m))m, where C = C(s, N).

Proof. Assume A = 1. Let ¥ be as in the proof of Lemma 3. Since
Ve 1* and @ = o+ ¥, we obtain ¢ € L* with norm less than or equal to
MA)#]),. Also

| 5= atmiptc=m,= | 3 atmot-ms,

mexy
<@ T atmp—m)| < M@CDal,
melN :
as is easily seen from the properties of ¥.
For the general case, we write ¢ = ¢ ¥ ¥, ,r and we proceed as above. m

Proof of Theorem 1. Let a= (a(n))n be asequeﬁce in l? a,ng define
f(&) = ¥, czn a(n)p(z — n), which belongs to L* by Lemma 5. Observe
that (K7 :a)(n) = (K, * f)(n) = gi(n), where g, = K. % f € ER, for all t.
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Applying inequalities (8), (5) and (11) we obtain

KE % a(m)lelly < Cmax(1, BN [|ge(@)lloll» < C max(1, R¥Z) | £]],

< C'max(1, BN/PYM,($) max(1, RN~/ )[al|,. w

Remarks. (i) The dependence on R we exhibited suggests that I
cannot be taken equal to co. For example, let $(€) = 1 everywhere and
consider K € L' such that K > 0, K(n) = 1 for all » € Z¥. Then
f — K« fis bounded on L®, whereas, for t = 1, a — K % a is not bounded
on I7 since K{(n) = K(n) = 1.

(ii) In view of embeddings between I? spaces, converses of Theorem 1

and Proposition 2 are not true in general when p # 5. See §3 for converses
in the case p = s.

We also ohtain weak type versions of Theorem 1 and Proposition 2.

THEEOREM 6. Under the hypotheses of Theorem 1,1 < p < oo, and
1 < g < co, the inequality

(12) Nz e RV [[Ke# F(@)lg > A} < (IF]1/ )P,
implies

(13) HneZV; |(Kfxa)(n)lls > A} < AP(Jlalls/A)P,
where A < C(p, q, 8, N)M (@) max(1, RN/P+N(1-1/s)),

ProrosITioN 7. Under the hypotheses of Proposition 2 and 1 < p < 00,
the inequality

(14) K=z eRY; K« f(2) > AH < (I£Il/ 2P,
implies

(18)  f{n € ZV; {(Kf xa)(n)| > A} < A7(||a|ls/ A},
where A is as in Theorem 6.

forall A >0,

forall A >0,

for all A > 0,
forallA >0,

Proofs of these two results are similar to the proof of Theorem 1. They
will be obtained as a direct consequence of the following extension of Lem-
mas 3 and 4, which is interesting on its own.

LeMMA 8. Forl < p < 00, 1 £ g < oo there is a constant C = C(p,q, N)
such that

(16)  supi{n € ZV; |g(n)| > A}A?
A0
< C”max(l,RN)iupHx e RV |g(2)] > A}AP,
>0

and _
(17) sup H{n € ZV; {lgu(n)llq > AJAP

icm
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< O max(1, B sup (= € RV g2l > A},

for any g € Egr and any family (9¢)¢ of jointly measurable Junetions in Eg.

Proof. We restrict our attention to proving (17) when R = 1. Let ¥
be as in the proof of Lemma 3 and introduce the sublinear operator

TS (k) = lICfe » @)(E)], -

In proving Lemma 4, we established that, for every function
J € I"(RN, LY(RY, di/t)),

ICfo + %))l < c\

*

(J W s N

1+1/¢'
< I @l
that is, T maps L'(RY, L9(R*,dt/t)) into I"(Z¥) for 1 < r £ oo, and
therefore we have the result by interpolation together with the assumed
properties of ¥. For arbitrary R replace ¥ by ¥, /g, where ¥ is as above.

We thank L. Colzani for having pointed out to us that (16) also holds
when p =1 and N = 1. The argument of Colzani, which we present in an
appendix, easily implies that, in dimension one, Proposition 7 holds when
p = 1 as well as Theorem 6 when p = 1 and ¢ = oo. This is of particular
interest when considering (maximal} operators of weak type (1,1) (see §4).

§3. Converses. In this section, the dilation structure of RV plays a
crucial role. We shall assume that Ky(z) =t~V K(t7z), t > 0. However,
there is no problem to extend the following results to the case of nonisotropic
dilations. A basic hypothesis in §2 is that $ € M,{(RV). It is not surprising
that, for the converse direction, we need a condition that is “close” to 1/% €
M,(RN),

THREOREM 9. Let 1 < p < 00 end 0 < ¢ < 0o, Assume that § satisfies
the following two conditions: n

(i) supp@ C [~R, RN with R <1 and

(i) for some e > 0 and h € C*((—¢e,e)¥), h = 1 on [—e/2,e/2]V,

RIB € My(RN).

Then the inequality

(18) KT % allyllp < llalle, @ € PEY),
implies
(19) “HKt * fllells £ AHme fe LF(RN) '

where A < M,(h/p).
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Proof. To prove (19), we may assume, by density and rescaling, that
f € S(RY) satisfies supp f C [—6,8]Y where § < ¢/2and § <1~ R, as
long as our estimates do not depend on this assumption. Write f = fh =
(Fr)@)@; forz=n+u,n €IV, ue [0, 1)V,

Floyerm=t = ((Fh/@NE) ™ )RE)e™ ™™
- ﬂelwiu- - 2ming .
- (2 (Fem)ero)por

The last equality holds because of our choice of 6 and its relation with R
(the terms with k # 0 vanish). The above series defines a 1-periodic function
P, (€) whose Fourier coefficients are

at(my=" [ (Fh/@))etermm e dE .

Ry

(Observe that the integrand is in L'(RY) since it is Dounded with compact
support.) Thus, we obtain the formula
(20) (Cif)z) = (Dfa*)(n),
Therefore, by (20) and, then, (18),

forz=n+u.

Medladiz=f SIofa*ymlpdus [ lla®ll3du
o,1)Y n (0,1}
= [ 3| [ (uexpemcenna du
[0,1)N m Ry .

[ | J row@een=d i < /@711 =

RN RN

Remarks. (i) The dilation property for RV is used when we assume
that we can rescale f to be such that supp f C [—6,6]¥. This is due to the
fact that f — ||Ky* f||; commutes with dilations. More precisely, let f be
in Z*(RN) and g(z) = RN f(Rz) for R > 0; then

H(Ee* 9)(@)llg = RVI|(Kex F)(R)lg »

because of the invariance of the measure dt/t. It turns out that we may
take nonisotropic dilations as well. These are given by a family of invert-
ible matrices A(t), t > 0, such that A(ts) = A(t)A(s), A(D) = 0 and
limoe |A(t)z]| = oo for all z € RN, Let @ = (logt)~" log det |A(2)| (@
is called the homogeneous dimension) and define K4(z) =t~ K (A(t) " z)
and Cy(f)(z) = K¢ * f(z). Then, with exactly the same hypotheses on &,
Theorem 9 holds in this context.
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(ii) In case of isulropic or nenisotropic dilations consider, for example,
@(€) = 1. Then K/(n) = Ky(n) and the implication (18)=(19) is still true
when 1 £ ¢ < oc. This is easily seen by approximating Ci(f)(z) by Riemann
:ur;:av §Note that inequality (18) already takes care of the restriction of K
oIV

(21) The first assumption in Theorem 9 is sharp in the following sense.
Let @(£) = x(~1,1(£). Then for K(z) = pv..L, C4y(£)(2) = H(f)(z) is the
Hilbert transform of f while Df(a) = 0 for all sequences a. Thus, (18)=+(19)
is false for this ¢.

(iv) The second assumption in Theorem 9, on the other hand, shows
that the torus TV cannot be identified with [0,1) (as mentioned in the
intraduction). In this case, @ is X[o,1)» and the second assumption is not
fulfilled.

(v) For a single convolution operator f — K % f and Ky(z) =
t=9K(A(t)"'z), Theorem 9 takes the following form:

ProrosiTiON 10. Under the assumptions of Theorem 9, || K¢ x a|p
lall, for allt >0, implies | K * f|l, < Allfllo- '

(v) It is clear from relation (20) in the proof of Theorem 9 that weak
type versions are easily obtained in the same way. The only new ingredient
needed ig the relation

{z € RY; |7(z)| > M} =

IA

[ HreZV;|f(n+u)|> A} du,
oY
for any measurable function f. Let us state the result.

THEOREM 11. Let 1<p<oo, 0<g<oo. Suppose @ is as in Theorem 9.
Then || K f * aljip.co(zny < llafly, for all t > 0, implies |K * fllzse(ryy <
Allfllp, and [[[IKE * allgllwoqany < llally implies [[[Ks * fllgllzsqmyy <
Al fllp, where A < Mp(h/%) and Ki(z) = " K(A(t)z).

(vi) These implications can be considered to be of “transference type”
(see [CW)). This is particularly clear when & is the characteristic function
of [~1/2,1/2]". In this case A in (19) becomes 1.

§4. Applications and examples. As seen in the introduction, con-
ditions (a)~(c) of Theorem A are met by § = X[-1/3,1/2v. These condi-
tions are also fullilled by smooth ¢; for example, v € S(RN), F(£) =1 on
[~1/2,1/2]V, % > 0 and supp & C {~3/4,3/4]™. For these ’s, the constants
C and ¢’ in Theorem ‘A depend only on K and p, and C'/C is bounded
away from 0 and oo by universal constants depending on & but not on p.
Thus, smooth ¢'s can be used in many different situations for 1 £ p < oo.

We shall try to relate the discrete operator Df to a “natural” discrete
version of the operator ;. This will be achieved by selecting an appropri-
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ate . Most of the next examples are well known. Our point is to show that
our method applies in many different situations.

ExAMPLE 1 (singular integrals). We first consider the Hilbert transform
on R whose multiplier is m(z) = —i sgn(z). By choosing a smooth and even
¢ as above, we can compute explicitly K #(m) and we obtain

Kf(m)= [ — isgn(i)@(E)e’™m d€
R

=2 f B(€) sin(2rmé) df = _7r—1r-r; + O(al—z—) .
0

Thus, DY = Hy+ E, where Hg denotes the discrete Hilbert transform and
E is an operator hounded on all {*, 1 < p < .

Tn N dimensions we obtain a general result of a similar nature:

PROPOSITION 12. Suppose K(z) = |&]™N 2(z') for &' = [z| 'z € In-1,
where 2 € C5(Zy-1), € > 0, and [p  f(z')de’ = 0. Then, letting
Kxf=pv.K=xf, ‘

1K * flto < ClIfln
if and only if
| ¥ Kma—m)| <lals-
meIN\{0} 7

 Sketch of the proof. Take ¢ € S(RV) such that ¢ is even and
Jan ® = 1. Then a direct consequence of standard computations in the
theory of singular integrals (see [S], for example) is that

|K % giy5(2") - K(z")] < C/s°,
uniformly for ' € Sn-1. Now using the homogeneity of K we obtain
Kf(m)= (K «p)(m) = s7"(K * p17,)(m')

for s = |m/|, and, therefore, Kf(m) = K{m)+ O(|m|=N=¢) for m # 0 and
K¥(0) = 0. This finishes the proof. w

ExaMPLE 2 (Hardy-Littlewood maximal operator), Let

T

1 N
—_— a{n — m)
2N +1 m::Z—N

be the (discrete) centered Hardy-Littlewood maximal operator applied to
(a(n))n. Our results apply to the kernel K = Lx(.11). Elementary calcula-

icm

Operators on RN, TV gnd 2V 177

tions show that, for t = N 4 1/2, N ¢ 7+,
1 N
TON+1

me=—

where T is a convolution operator bounded and invertible on all {?, 1 €< p <
oo; its Fourier multiplier is the C'* nonvanishing 1-periodic function

M(§) = Z@(W)M_ﬂﬂ_
{

Df (a)(n)

Ta(n —m)
N

€ + 7l

Then, for 1 < p < oo, strong type (p, p) equivalence between the two versions
follows easily.

In their fundamental paper [HL)}, Hardy and Littlewood prove strong
type (p,p) for the discrete version and, by an argument involving Riemann
sums, they deduce strong type (p,p) for the continuous version. A converse
can also be obtained by applying the continuous version to step functions, At
this point, let ug say that the “step function method” for maximal estimates
works only for those operators having kernels such that

i (K X121 7210 ) (- — u) — Ko()} % al

defines a bounded operator on [#(ZV), uniformly in u € [-1/2,1/2]".
Let us be more explicit with the help of an example. Let

1 4
Z) = = e
Pi(z) Ti? 422
he the Poisson kernel. A “natural” discrete version for the associated max-
imal operator is
) n

(ol = (a0
t>0
Strong type (p, p) for this operator follows from that of the continuous ver-
sion if we can prove

() Sorup | (P #xesnapa(n+ ) = Pindalm =" < € Y la(m)”

ny0
uniformly in v € [~1/2,1/2). Indeed, for f(z) = 32, a(n)X{n-1/2,n+1/2) (%),
one can write

f sup | Py ¢ f(2)|P da
g >0

1t
Z —————a(n — m)
o) Tt 4+m

1/2

- | T

r
! S " a(m —n) Py X[-1/20/2 (n+ “)l du
150
~1/2 m :

1
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and this last quantity is bounded by C}|f|[? = C|fall3.

Inequality (#) is not hard to establish since the properties of P; lead to
the estimate

| Py * x(—1/2,1/2(n + u) — Pe(n)| € Cn™?

where (' is independent of t > 0, u € [~1/2,1/2] and n # 0. (For n < 10
say, use crude estimates on each term and for » > 10 use Taylor’s Formula.}
This shows how the “step function method” applies. Note that our methods
also apply very easily to this situation.

EXAMPLE 3 (convolution operators with compactly supported multi-
pliers). If R has compact support, then K¢ reduces to K, for ¢ large since
@ is 1 in a neighbourhood of 0. Thus, a consequence of our results is the
following;:

COROLLARY 13. Suppose that K = m has compact support. Then for
1<p< oo,

l[sup | K¢ * flll» < Cllfil,
>0
15 equivelent to

“ supzm(m)a(n m)“ < Cllallp,

for some A depending on supp K.

This gives us the following interesting applications. Let us start with
m(z) = Xx[-1/2,/2(z). The continnous maximal operator is the operator
C! we mentioned in the introduction, and the discrete maximal operator is
D', That when p = 2 the “continuous” case implies the “discrete” case was
first proved in [CP]. The converse was then established by K. Petersen (un-
published, personal communication). More recently, he and 1, Assani have
found a simple proof for this equivalence [AP]. They use, for this, elemen-
tary arguments and establish on the way a different equivalent formulation
for D, These arguments were extended in [A] to establish the equivalence
when p € (1,00).

In N dimensions, if we take m(z) = xg(z) in RV, then the continuous
operator is the maximal operator associated with the sphere multiplier. The
discrete version of this operator is the following:

(a(m))m — (sup

1 Inyal|nl/t)
N2 Z ||V 72 alm—nj ) .
neZN ™
As is already known, the continuous operator cannot be bounded if p # 2.

Therefore, the previous discrete operator is not bounded for p # 2. For
p=2, t}us Temains an open question.
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A third example will be a discrete version for the maximal operator
associated with the Bochner—Riesz multiplier of order a, sup;»y [K§ (%) |,

with multiplier K2(£) = (1— |€|2)%; this is the operator
).

{a(m))m — (sup
§ 5. A characterization of the boundedness of Littlewood—Paley
functions. Let ¢ satisfy the conditions of Theorem A. In the case ¢ = 2,
we can construct a positive definite matrix B = (B(n,k)), ez~ depending
on ¢ and such that the following equivalence holds:

di\ 172
o= | ( J ree 2 )
if and only if the operator

(a(m))m (( S B(n,k)a(m ~ nya(m — k)) )

nkeIN

1 Injr+a(|nl/)
INJE—a Z |n| N2t

a{m —n)

< Cliflle
P

is bounded on IP(ZV), with equivalent constants.
To see this we use the fact that the first condition is equivalent to the
boundedness of the discrete operator

(atmm = (( f | K prsatm - | f})m)m.

Therefore, it is clear that the matrix B is given by

Ity ry 1
B(n, k) =Bk, n)= [ (K )(n)(Ki* IOEE
0
Moreover, in the case § = X{1/2,1/9)» the coeflicients B(n, k) are the Fourier
coefficients of the function defined in RV by
_ . -
My = fm(if)m(ty)?xl—l/z,m]w (&, v).
0

A trivial consequence of the previous result is that a sufficient condition for
the operator g to be bounded on LP(RY) is that the following bilinear map
is bounded from (IP(ZN),I?(Z7)) into IP/2(ZN):

((a(m))ms (D) = (3 Bln, K)a(m — n)o(m — k)

n<k
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§ 6. Other dilations. So far all the examples presented involve families .
of multipliers arising from the usual dilation of a fixed kernel K. However,
different dilations generate a wide variety of interesting operators that are
different. One of these is the maximal parabolic operator (see for example
[NRW1])

Mf(w)=0<533m% [ flz-y)at, f2o0,

with v(f) = (¢,#%). In this case, it is very easy to sec that m(z) =
f_ll e~3miz¥(s) g, and then the discrete operator is given by

r

(2 o=yt

n,m -r

(a(p,0))pq ~+ sup
O<r<oo

Finally, one can check (applying Propositions 2 and 10) that the following
result holds.

THEOREM 14. Let 1 < p < oo. If ¢ satisfies the same hypotheses as in
Theorem A, then

< C”““p

dt

¥ —

‘p.v. th (a) 7
R »

if and only if

(21) < flls

P

pv. [ Cuf) %
R

with equivalent constants.

A consequence of this result is the following. Let us consider the Para-
bolic Hilbert Transform in R? (see [NRW2])

Hf(z)=pv. [ f(z_y(t))iif, Y1) = (1, 8.
R

This operator is of the form (21) with m(z) = 2= +%3}, There-
fore, the already known boundedness of this operator on LP(R?) is equiv-
alent to the boundedness on IP(Z*) of the convolution operator with the
sequence

k(n,m) = p.v. f e(n — )p(m — 1) _ai_t_ .
R

Similar results can be obtained for other dilations, say,
7(t)= (ltlalv'-'ilﬂaw)a 0£j20.
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Finally, we have to mention that in this case of the parabolic Hilbert
transform, the behaviour of the sequence k(n,n?) is like 1/n% when n goes

to co. Thus, this convolution kernel is radically different from the discrete
Hilbert transform along the parabola, defined by

Hy(@)(t,m) = 3 ~alt— nm — n?).
n#0

) §7. Appendix. Proof of (16) when p = 1. We have to show
that '

(+) ir;r; HneZ;lgn) > 2} < Cllgll1,00

forall g € Eq N L' (the case R # 1 can be dealt with similarly to the
proof of Lemma 3). To do so, we shall use the function space Weak-H! for
which we recall the basic facts.

Let Weak-II" be the space of tempered distributions for which the max-
imal function f*(x) = sup,yqlipe * f(2)] exists ae. and belongs to
Weak-L' = L1, Here ¢ is assumed to be, say, a Schwartz function with
Jep(z)dz = 1. The “norm” ||f||weac-r is defined by 1f*]l1,00- We also
need two more norms on Weak-H1, each equivalent to || f[lweak-m -

First, let fi(z) = Py * f(z) denote the harmonic extension of f to the
upper half-plane and f¥(z) = sup|y1<t | fe(¥)|- Then || f|lweak-z1 is equivalent
t0 || f41,00. Second, the Hilbert transform maps boundedly Weak-H! into
LY. The second norm is then || f]l1 o0 + |5 fli1,00 ~ || fllWeak-F1- We refer
to [FS] for details.

We then argue as follows: let g € By n L' and let f{z) = e'™i7g(z).
Then f({) = (£ — 2) (in the sense of distributions) so that supp f C [1,3]-
Therefore, Hf f = —~if. This implies that f € E3 N Weak-H'. Moreover, it
is enough to prove (+} with f instead of g since | f(z)| = [g(z)|.

Let e~?7l€l be the Fourier transform of the Poisson kernel Py and let
m(£) be a C'* function with support in {1/2,4] and wit}l m(€) = e”i for
£ € [1,3). Let next h be the distribution defined by h(£) = m(€)f(£);
since supp h C [1, 3] and since m defines a multiplier on Weak-H? ((rn* f)*
is pointwise controlled by the maximal function f*), & € E3 N Weak-H!
and

1hll1,00 € Cllillweak-1r+ < C|lfliweak-#1 -

Now we observe that f = Py xh = hy. Let n € Z and |z — n] < 1/2; it
follows that | f(n)] = |hy(n)| < h*(=).
This and the characterization of Weak-H! by the maximal function h*
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yield
M{n; |f(n) > A} < ANz R (@) > A} £ C|lAllweak-#1
< O\ fliweaie st < €[ fllt,00 - ®
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On the rate of strong mixing
in stationary Gaussian random fields

by

RAYMOND CHENG (Louisville, KY)

_ .Ab_stract. Rosenblatt showed that a stationary Gaussian random field is strongly
mixing if it has a positive, continuous spectral density. In this article, spectral criteria are
given for the rate of strong mixing in such a field.

A stationary random process {X,} is strongly mizing if, in a certain
sense, its past and future are asymptotically independent. This idea was in-
troduced by Rosenblatt [7] in connection with a central limit theorem. Kol-
mogorov and Rozanov [6] found a useful sufficient condition for a Gaussian
process to be strongly mixing, namely, that it have a (strictly) positive, con-
tinuous spectral density. A necessary and sufficient condition was obtained
by Helson and Sarason (3] (see also Sarason [9]). Ibragimov and Rozanov [4],
and Khrushchev and Peller [5] are concerned with the rate at which strong
mixing occurs as revealed by the smoothness of the spectral density.

The notion of strong mixing makes sense in the random field setting as
well. Indeed, Rosenblatt [8] proved that a stationary Gaussian field {X .}
satisfies a strong mixing condition if it has a positive, continuous density;
this is an exact analogue of the result in [6].

In this article, spectral criteria are derived for the rate at which strong
mixing occurs in a stationary Gaussian field. First, the separation-of-vari-
ables technique of [2] is used to adapt the one-parameter methods in [5].
This yields mixing rates in which the roles of past and future are played
by vertical halfplanes of the random field. This result is then extended to
the case of halfplanes at rational slopes. Lastly, these ideas are used to
investigate strong mixing in the full sense of [8].

1. The principal result. Let {X,;,} be a stationary Gaussian random
field on the integral latiice 2%, and p its spectral measure on the torus T2.
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