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yield
M{n; |f(n) > A} < ANz R (@) > A} £ C|lAllweak-#1
< O\ fliweaie st < €[ fllt,00 - ®
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On the rate of strong mixing
in stationary Gaussian random fields

by

RAYMOND CHENG (Louisville, KY)

_ .Ab_stract. Rosenblatt showed that a stationary Gaussian random field is strongly
mixing if it has a positive, continuous spectral density. In this article, spectral criteria are
given for the rate of strong mixing in such a field.

A stationary random process {X,} is strongly mizing if, in a certain
sense, its past and future are asymptotically independent. This idea was in-
troduced by Rosenblatt [7] in connection with a central limit theorem. Kol-
mogorov and Rozanov [6] found a useful sufficient condition for a Gaussian
process to be strongly mixing, namely, that it have a (strictly) positive, con-
tinuous spectral density. A necessary and sufficient condition was obtained
by Helson and Sarason (3] (see also Sarason [9]). Ibragimov and Rozanov [4],
and Khrushchev and Peller [5] are concerned with the rate at which strong
mixing occurs as revealed by the smoothness of the spectral density.

The notion of strong mixing makes sense in the random field setting as
well. Indeed, Rosenblatt [8] proved that a stationary Gaussian field {X .}
satisfies a strong mixing condition if it has a positive, continuous density;
this is an exact analogue of the result in [6].

In this article, spectral criteria are derived for the rate at which strong
mixing occurs in a stationary Gaussian field. First, the separation-of-vari-
ables technique of [2] is used to adapt the one-parameter methods in [5].
This yields mixing rates in which the roles of past and future are played
by vertical halfplanes of the random field. This result is then extended to
the case of halfplanes at rational slopes. Lastly, these ideas are used to
investigate strong mixing in the full sense of [8].

1. The principal result. Let {X,;,} be a stationary Gaussian random
field on the integral latiice 2%, and p its spectral measure on the torus T2.
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For any subset S of Z2, let M(S) be the (closed) span in LZ(u(e*, ') of
the set {e’™*+int ; (m,n) € S}. Define, for all nonempty subsets .§ and §*
of Z, the correlation coefficient

¢(8,8") = sup{|{f,9)| : f € M(S), g€ M(5), ||/l €1, [igl <1}

(Let us write ¢(S, §; u) if the measure u needs to be specified.) We say that
{Xpn} is strongly mizing if there exists a function ¢ : [0,00) — [0, 1] such
that lima—.e ¢(2) = 0, and

(5, 5"} < p(dist( S, 5)

for all S and $’. (This definition is the spectral equivalent of that in [8].)
Take o to be normalized Lebesgue measure on T, and A, the Hélder
class of order a (see Section 4). The main result is

1.1. THEOREM. Suppose that p is absolutely continuous with respect to
o?, and its density function w satisfies

0<k < w(e"s,e“) <ky <00
on T2 for some constanis ky and k.

(i) Strong mizing occurs with ¢ of the form p(z) = Ce™% if and only
if w has an analytic continuation across T2,

(if) Strong mizing occurs with ¢ of the form ¢{z) = C2~® if and only if
w E A,. .

Remarks. That u must be absolutely continuous for strong mixing
follows from two applications of [2, 3.2]. But the boundedness assumptions
on the density function w are not logically necessary. For instance, if strong
mixing occurs with the measure w da?, then it occurs with the measure
| P{?wdo®, where P is any finite trigonometric sum; in the latter case, the
density may vanish at some points on the torus. Rather, the boundedness
assumptions reflect limitations of the present techniques.

The remaining sections are devoted to proving four lemmas, which to-
gether form a slightly stronger version of 1.1.

2. Vertical halfplanes. The first step is to borrow some of the one-
parameter theory. This is achieved by considering ¢(L, Ry), where L and
Ry are “vertical halfplanes” in Z2:

L={(mmn)eZ’:m<0}, Ry={(mn)eZ?:m> N}.
For then, the underlying shift occurs in the m-direction only, and the anal-
ysis will chiefly involve the variable coupled to m.

Accordingly, we will make use of the univariate Hélder classes, A, (these
are more often denoted by A,, but we reserve the latter symbol for the
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bivariate Holder classes in Section 4), defined as follows. Let m be a positive
integer, € > 0, and f € C(T). Put

m

/_’\L"f(e"") - Z (T;’) (_ l)jf(ei(s-i-ih)) ,

J=0
27(e, f) = sup AL f||ze .
Ikl e

For a > 0, we say that f € A, if the quantity
171, = Al +suple = - 27 e, )]

is finite, where m is the integer such that a < m < a+1. This is indeed a
norm, under which A, is a complete Banach space. Properties and applica-
tions of these spaces are explored in [1] and [5]. In particular, let Py be the
projection of L*(T, o) onto the Hardy space H(T), and P_ = [ — P, (o
denotes normalized Lebesgue measure on T). Then

2.1. PROPOSITION. Leta > 0, and f € L=(T). If there erists a constant
C such that '

dist pos (1) (€1 f(e¥%), H(T)) < CN
for all N =1,2,..., then P_f € A,, and ||P_f]|5, <3 -2°C.

Proof. This is the theorem on p. 68 of [5], with care taken to follow
the constant. m

2.2. PROPOSITION. Leta > 0, andu € H*. If f € P_),, then P_(uf) €
P_Aay and || P_(uf)lla, < [lulle - | f]Ia-

Proof. See Example 1 on p. 109 of [5]. =

With that, we have the following criterion for strong mixing with respect
to vertical halfplanes. The second marginal of i is denoted by .

2.3. LEMMA. Let djs be of the form wd(o X i), where 0 < w(e™, e’} < K.
If there exist positive constants C' and a such thai

ofL,R)SCN™®, N=12,...,
then there exists a constant M such that
(s eNan S M, aee.[ua(e®)].
Proof. By [2, 3.1 and 3.2], the density w must satisfy the condition
f log w(e™*, e't) do(e'*) > —c0,  a.e.[ua(et)].
&
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Hence we can define the function h(e®,e™) as in [2, equation (3-2)]. The
hypothesis on (L, Ry) can, according to [2, 3.4], be expressed as

T o33 pit
dist oo (o oiry [ V-1 2707 H®(g(e**) | < CN™°, N=1,2,...
Sti=(o(ei)) h(eu,e:t)’ = ? R ’

for pp-almost every fixed €', By 2.1, we have

P [EE’:':H HA <3-2°C, ae[ua(et)].

Note that
P_w(e,¢) = Poh(-,e*)* = P_{h(-, ") P_[R(-,¢*)/R(-,e*)]} .
Now 2.2 gives
| P-w(-,e™)a, < KIIP-[A(-,e®)/A(-, e¥)]lIn,,  ae.[ua(e™)],
Hence, for p;-almost every €',
Hw(, )5, < 1Pyw(, eI, + | Pw(-, )|,
<K +2|P-w( ey, < K+2-3-2°KC. m

3. Halfplanes at rational slope. The last assertion can be extended
to the case of halfplanes bounded by lines at rational slope. This is done
by applying a change of variables which transforms the sloped case to an
equivalent problem of vertical halfplanes.

Let r be a nonzero ratjonal number, and fix the unique representation
r = pfq, in lowest terms with ¢ positive. Consider the index sets

U= {(m,n) € Z* : mp -~ ng < 0},
V;’Q:{(m,n)ef:mp——anN(p2+q2)}, N=1,2,...
Note that U™ and V; are halfplanes of 72, with boundaries at the rational

slope r. Also, the distance between U™ and Vj is N(p* + ¢2)1/2.
Consider the matrix
o = P —q
u v

where u and v are integers satisfying det © = pv + qu = 1. It determines a
mapping of Z* one-to-one and onto jtself by

o) m| __ | mv+ng
n|  |-mu4npl|’
In particular, the image of U" and V under @ are the vertical halfplanes
L and Rpn(p2442), respectively.

Next we produce a measure g, on T? so that @ induces a Hilbert space
isomorphism of L*(u) onto L%(i,). This is done by setting fr(m,n) =
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B(mv + ng,np — mu) for all (m, n) € Z°. These coefficients form a positive
array, and indeed arise as the Fourier coefficients of a measure .. In the
case du = wdo?, we have

ﬁr(m,n) = f ei(mv—i—nq}s-i—i(np—mu)tw(eisi eit) da’z(e’.", eit)
T2
= f eims—i—t’ntw(ei(pa-l-ut)’ ei(ut—qs)) daﬂ(eia, eit)
'-|-2
(using the fact that 8T? = T%). It follows from the action of @ and the
construction of u, that

3.1. PROPOSITION. (U™, Vi 1) = ¢(L, Ry(prsq2); fir)-

4. The proof of the principal result. The rational-slope criterion is
extended in 4.1 to allow for arbitrary index sets § and S'; this demonstrates
part of 1.1. The rest is established by using facts from approximation theory.
As indicated earlier, we now bring in the bivariate Hélder classes, A,. Let
m be a positive integer, £ > 0, and f € C(T?). Put

ity 3 = m . oy i i
Bl e = 3 () (Cps e m, eterany,
j=0
0™, f)= sup  [|ATfllpeeo3) -
h34k3 <e?

For a > 0, we say that f € A, if the quantity
10, = 110z + 3ple= - 27, ]

is finite, where m is the integer satisfying a < m < ¢+ 1. And now

4.1. LEMMA. Suppose that u is absolutely continuous with respect to o?,
and its density function w satisfies 0 < w(e*®,e™) < K on T? for some
constant K. If strong mizing occurs with ¢ of the form o(z) = Cz~*, where
a and ' are positive constants, then w € A,.

Proof, First, assume that 0 < a < 1. By hypothesis, strong mixing oc-
curs with respect to vertical halfplanes; that is, ¢(L, Ry) < CN~¢. Thus 2.3
provides a constant M7 such that

l|u:(e‘(’+°’, eu) -—_'w(e’l",eit)HLm(,z(e;.‘en)) < Milel®.
A similar argument for horizontal halfplanes shows that
[lw(e’™, e4)) — w(e®, )| Lon o3(ein eity) < Ma|6]"
for some M;. Hence _
”w(ei(a-{-s))’ ei(t-{-&)) _ 'm(e"’, eit)lle(cﬂ(eiﬂ,e“)) < M(Ez + 52):1/2
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where M = Mq + M,. This shows that = € A,.

Next, assume that ¢ > 1. Fix a nonzero rational r. Let the integers
P, q,u,v, and the halfplanes U™ and V} be defined as in Section 3. By
hypothesis,

(U7, Vi p) < CIN(2* + ¢V
Now 3.1 yields
e(L, Ryipagqn; ) < CIN (2 + 41272 = C(p* + )P [N (P* + )] 7"

Apply 2.3 to the density function for g,. This provides a constant M (in-
dependent of r) such that

™
) (m) (= 1) w(elootuttpitl_gilu-go-itl)

=0 M

sup
A<y

Loo(a2(eiseit))
< M(p2 + q2)a/2ya,

where m is the integer such that a < m < a +1. By taking ¥ = — Arccoir,
and ¥ = (p® + ¢*)/2y, this can be written

m
E (m) (ml)jw(ei(ﬁjhcos 19)’ gii+ihsin ,9))

j=o \J

< MY*©.

Leo(g2(eis git))

sup
[n|<Y

That is, w satisfies a stnoothness condition in the rational-slope directions.

As for the other directions, fix 0 < b < 1. Strong mixing occurs, a
Jortiori, with ¢(z) = Cz~?, so by the first part of this proof there exists a
constant M’ with

sup  [|w(efe+e), ii+o)y w(e*, €] poo(o2(is eivy) < MY,
€2452<Y2

Hence for any real ¢ and §,
bl m . .
Z (J ) (_1)]w(e!(3+3£) ,ei(t+j6))

=0

Loe (aﬂ(eia ,eii))

Z (T’) (-1 )J’w(ei(-ﬂ-jca)’ ei(t+.?'5o))
i=0

m
D () ot 0430 _ o, 40y

<

L”(UE(B“ 'eii))

< M(ed + &) + 2mmb M [(e — £0)* + (6 — 60)4)/2

whenever £9 /6 is rational. Let gy — ¢ and 8 — § along such values. This
shows that w € A,. m
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The proof of a converse statement uses the following result about poly-
nomial approximation in A,. Let s be the collection of finite trigonometric
sums of the form )

Z ﬁ,"mﬂei'rl.9+i'mt .

m2 2 <62

4.2. PROPOSITION. Let a > 0, and f € L(a?), There exists a constant
A such that

diStLao(,,n)(f,Q,s) <A, §>0,
fand only if f e A,.

Proof. See [1,p. 188]. w

A crude estimate, made possible by a boundedness assumption, now
yields the rest of 1.1(i).

4.3. LEMMA. Suppose that p is absolutely continuous with respect to o?,
and its density function w satisfies 0 < K < w(e*,eit) on T2 for some
constant K. If w € A, for some a > 0, then sirong mizing occurs with @ of
the form p(z) = Cz~9,

Proof. Fix § > 0. Let § and S’ be nonempty subsets of Z2 such that
dist(§,§") 2 6. For any finite trigonometric sums f € M(S), g € M(S")
and ¥ € Qs,

| [ rgwda?|=| [ ot - p)do*+ [ sgpdo]

l [ 13(w — ) do? +o[

S 1531d0* - [l — ] ooy

< (S o) ( [ 1oP a0?)" o = $lmon

< K7 flzsallollzsonllw = ¥l omcon
"This shows that if dist(5, §') > §, then
(8,8 & K7 dist oo o2y (w, Q) -
By 4.2, there exists a constant A such that
8,8V <K A§"

whenever dist(5, §') 2 6. This proves the claim. =

I

IA

Part (i) of 1.1 is elementary, as shown below.

4.4. LEMMA. Suppose that u is absolutely continuous with respect to a?,
and its density function w satisfies 0 < K < w(e*,e') on T for some
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constant K. If w has an analytic continuation across T2, then strong miz-
ing occurs with @ of the form p(z) = Ce™*" for some posilive constants a
and C.

Proof. By hypothesis, there exists r, 0 < 7 < 1, such that w has a
Laurent expansion

17 .1
w(z,22) = E Q2] 75
{mn)EX?

which converges absolutely and uniformly in the annulus A = {(2:1,;;2) €
C? :r < |z] € 1fr, j = 1,2}, Then |amn| < Mrlmitnl (m n) e 22, for
some M.

As in the proof of 4.3,

(S, 8" < K71 dist poo (42)(w, @5)
whenever dist(S,S") > 6. But then

diSth(,z) (w, QE) < H Z amneim.-:»i-int

Lmter“)S Z o]

m2+n? > 42 m24n2 > 52
< Z Mrimllsl < 4pr(1 - ,,)~ze~.s\/i‘105(1/r)_ i
m24n2»62

4.5. LEMMA. Suppose that ji is absolutely continuous with respect to o?,
and its density function is w. If strong mizing occurs with ¢ of the Jorm
p(z) = Ce %%, where @ and C' are positive constants, then w has an analytic
continuation across T2,

Proof. By hypothesis,

| @ | = | f gmetinty (i i) dg (e, ¢ft)

—— L O N\1/2
< (f letms-{-inflzw(e‘ls?wlt) dﬂ'2(ew,e't))
.y N1/ ‘
% ([ Pu(e, e dat(e,e) " - Cema/ T

= C’fwd02 cemIVmIERt L m ) e 22,

It follows that w(z, ) = E(m_n) cz2 Wmn 2] 2 15 a Laurent series converg-
ing in the annulus A = {(z1,m) € C¥ : r < |5] < 1/r, § = 1,2} where
ee*Vicr<l. m

The author is indehted to Professor Loren D. Pitt for illuminating dis-
cussions. :
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