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The modified Cauchy transformation with applications
to generalized Taylor expansions

by

BOGDAN ZIEMIAN (Warszawa)

Abstract. We generalize to the case of several variables the classical theorems on
the holomorphic extension of the Cauchy transforms. The Cauchy transformation is con-
gidered in the setting of tempered distributions and the Cauchy kernel is modified to a
yapidly decressing function. The results are applied to the study of “continuous” Taylor
expansions and to singular partial differential equations.

This paper can be regarded as an extension and complement of the re-
sults of [16]. In [16] the reader will find the motivation for the developments
conducted here as well as the definitions and notation which is used. We
have tried, however, to make the paper self-contained by providing short
explanations of the notions applied here. In particular, the first two sec-
tions on the modified Cauchy transformation in one and several variables
can be read independently of [14]. We think that they present an inde-
pendent interest. The next two sections are devoted to applications of
the modified Cauchy transformation to the study of distributions having
“continuous” Taylor expansions: we prove the local character of the no-
tion of the type of the expansion (A-meromorphy) and study the behaviour
of the “continucus” Taylor expansions under reticular changes of coordi-
nates.

In the final Section 5, devoted to the Mellin analysis on manifolds,
we introduce the notion of an A-spectral support of a distribution u in
a pyramid A, which is an important invariant describing the asymptotic
behaviour of u in A when approaching the vertex of A. It is a gen-
eralization to several dimensions of the invariant introduced in [13] and
15].

[ ]Application of the techniques developed here and in [16] to singular el-
liptic partial differential equations is given in [17]-[19) and [11], [12] (see
also [8]-[10]). ' ' :

1891 Mathematics Subject Classification: Primary 46F12.




2 ' B. Ziemian

1. Moedified Cauchy and Hilbert transformations in dimen-
sion 1. We start by recalling certain well-known facts (cf. [4]) about the
classical Cauchy and Hilbert transformations in L?(R) in a slightly changed
setting; namely, the Cauchy transformation is not considered relative to the

real axis R but relative to a fixed purely imaginary line & + IR for some
[~}
a el

Let T € L*(R) and fix & € R. The right and the left Cauchy transforms
of T (relative to the line & + iR) are defined as

C’+T(z)~_——-2—17; fw%dry for Rez > &,
n o —o—iy

O’_T(z)z———l— Jédev for Rez < .
27 j
R By

The following is a classical fact in the theory of the Hilbert transforma-
tion:

- THROREM (see [4]). If T € L*(R) then the L2(IR) limits
HyT(8) = lim CuT(a+if)

) QYo
exist and H. T — H,. T = 7.

_ The functions H,.T, H_T € L2(R) are called the right and the left
Hilbert transforms of T.

We want to establish analogues of these facts in S’ instead of L2. To
this end we introduce modified Canchy kernels which replace the classical
Ca.uchy kernel —1/z. To justify the definition below observe that

~1/z = (Mxpu)(s) forz#0,

where X(b,l] is the characteristic function of the interval (0,1], and the Mellin
transform of a (bounded) function f on R.., of bounded support at --oo,
was defined in [15] as a holomorphic extension of the function

L Mf@E) = Tf(éc)m-*fldm for Réz < 0.
i]

LEMMA 1. Let x € C° (R), X =1 in a neighbourhood of zero. Then
() Mx € O(C\ (o)), 3
() Mx(2) = -1/2+ G(z) with a' G € O(T), - § ‘
(ili) for every fized o € R the function R 3 B (a+ i) Myx(a + 8} is
in S(R). : ‘

Proof. Define «(y) =ix(e™¥) for y € R, and G(z) = Mx(z). Then G
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may be written in the following explicit form:

L for R 0,
(L) G(e) = {cr(ﬂfgzﬂ)u 1)) for Res N 0,

where Lx(z) = [ps(y)e*” dy is the Laplace transform of x. To see this
observe that

z(LK)(2) = —ﬁ(j—;) (z) for Rez<0,
2HL(s—=1))(z)=—L (%) (z) for Rez >0,

and since dr/dy is a compactly supi)orted smooth function it follows that
2G(2) s an entire function and (iii) holds. To compute the residue of &7 at
zero note that .

dy 7 _ _
zG(z)|z=DzM(m%>(O)— J deﬁ x(0) 1.

DEFINITION 1. Let ¥ be a fixed function as in Lemma 1. The function
G(z) = Mx(z), z€C\{0},
is called a modified Cauchy kernel (determined by X).

DEFINITION 2. Fix & € R and let T € §'(R). The functions
CaT(2) = ;}T[G(z —&—iy)] for £Rez> ey
s

are called the right and the left modified Cauchy tm@forms of T. In t.he
sequel we often omit the word modified since the function G and the point
& will remain fixed.

THEOREM 1. Let T € §'(R) and fiz & € R. Then the S'(R) lz'mv::is
Hel = lm CeTla+i)
et Ok o
exist and .
(2) H_T—-HT=T.
We call the distributions 4T € §'(R) the right and the left (medﬁiﬁed)
Hilbert transforms of T.€ §'(R). L o -
Proof. By translation in z we may assume that &=0. By (1] we have

. ) i "‘1"3/.!6"- } ﬁ for@(ﬁ), L
Gla+ip) ﬂ{Zigmlgzaﬂ(,ggg(v—)l))(ﬁ) s for o> 6,
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where the Fourier transformation F and the inverse Fourier transformation
F~1 are defined by

Folyy= [ e *a(s)dp, f‘l«p(ﬁ):% [ e¥Pe)dy, o,v € SER).
R R

Now, by the exchange formula for the Fourier transformation
C-T(a-+i)=F *e¥n(y)FT) fora <0,
CiT{a+i) =F He®(r(y) - VFT) fora>0.

Since F and F! are topological isomorphisms of S onto S, in order to

prove the first part of the theorem it is enough to show that for every
o € S(R)

e k(y)o(y) — (y)o(y) in S(R) as & — 0.,
e (s(y) — Vo(y) — (a(y) - Vo(y) in S(R) as o — 0.

But this is straightforward since supp & is contained in the half line y > —a,
and supp(k — 1) in y < a for some a € Ry, & is bounded together with all
its derivatives, and eV -~ 1 as @ — 0 uniformly on bounded sets.

From the above we get

H.T=F s FT), HT=F(-1) FT),
which gives (2).

Remark 1. In his book [1] Bremermann extends the Theorem to certain
spaces of distributions which admit evaluations on functions behaving like
1/[6\ at. infinity. In Theorem 1 we avoid such spaces by modifying the
Cauchy kernel so that it becomes a Schwartz class function, without affecting
the essential properties of the corresponding Cauchy transformation.

qu_,gu_arl;_- 2. In the case of compactly supported distributions (more
~generally, of compactly supported hyperfunctions) Theorem 1 (or its hy-
perfunction version) is immediate in view of Lemma 1(ii) and amounts to
the statement that the modified Cauchy transform of T is a nonstandard
%eﬁning function of T' regarded as a distribution {hyperfunction) on the line
&+ iR, : '

~We end this-section. by an application of Theorem 1 to the study of
holomorphic extensions-of the left Cauchy transform, which is the leading
kt}}e_me‘ ,.Qf : the_.’:paper. .

" Let F be holomerphic'in an dpen set U ¢ C. Let & € R and suppose
that the function .- F(& +-if3),.defined for 8 € R such that o - idel,
extends to a distribution i S'(R) which we denote by Fs.

Modified Cauchy transformation 5

CorOLLARY 1. Under the asswmplions on F given above the function

C_Fs(z) for Rez'< &,
vz =1 & :
1 Fe(2)+ Fz) forze{Rez>o}nU,

extends to a holomorphic function on {Rez < &} U,

Proof. This follows immediately from (2) in view of the distributional
Painlevé theorem [3] (= one-dimensional edge of the wedge theorem [6]).

2. Modified Cauchy transformation in several dimensions. This
section is devoted to a generalization of Corollary 1 to several dimensions.
For that purpose we must define not only an n-dimensional Cauchy trans-
formation but also partial Cauchy transformations with regpect to a part of
variables. Below we introduce the necessary notation and definitions.

Let I = {i1,...,i} © {1,...,n}, i1 < ... < iy, and let J = {jj,...
ooy dnekh J1 < <i. € Jp-k, be the complement of I in {1,...,n}. For
z € C" wewrite 2 = (27,27), where 21 = (2, , ..., 25, )2 27 = (Zjrs oo oy B4 )-
Corresponding to this notation we write U7 x U7 = {z = (21,2s) : 2r € U',
zye U’ } for any sets U7 and UY of points 27 and zz, respectively.

Obviously C7 = {#; : 2, € Cforl=1,...,k} and analogously for R’,
R7. '

DEFINITION 3. Let F be a function holomorphic in an open set U ¢ C™.
Let & € R™ and let I # § be a proper subset of {1,...,n}. By a holomor-
phic family of partial regularizations of F' at & we mean any S'(RY)-valued
holomorphic function

UI 3 zy — FZZ,DJ I SF(RJ) 4

[>3

defined on an open subset U7 C C! such that on the set {(z1,8;) € Ul x
R’ - (ZI,&J +i8s) € U}, Féz,&a is a function (of 8;) and F, ¢ (8s) =
F(z;, 5’.,} +107).

Tf I = B then U = ) and we have a single distribution Fg € §'(R™). If
I={1,...,n} then there is no regularization, Y = Uand F, = F(z).

DremvyTioN 4. Let {F, o € O(U',5'(R7)) for I C {1,...,n}} be a
get of families of partial regularizations of F at & We say that the set is
compatible if for any pair I' C I the following is true: e

For every € UL UT &l () N U where #' -is the natural
projection of RY onto R " the function B sers

SR

Trg' 7 e Syt as
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admits a regularization F such that

o
2yl g, &g

e (Ul nUY, "N, §'(RY)))

ZI!,GEI\If OAJ

and

o <] = o
ZII,HI\II NeNg Zyt gyt

(ander a natural identification &' (RN, S'(R7)) ~ §/(R7"), since (I \ I')
U J = J'; this is an 5’ version of the Schwartz kernel theorem {see [12])).

. DEFINITION 5. Let F, o € O(UT, §(R7)) be a holomorphic family of

LJ T

partlal regularizations of F. By a modifted partial Cauchy transform of F
(with respect to the variables z7) we mean the function C'(z) = C'F, o (2y)
defined by

CI(z) (2 1)|J|FZI & G (z’j - Ctj —tv7]]

for z = (21, 25) where z; € UT, Rez;, # aj, for I =1,...,n—k, |J| = card J

and

G (z5) = G(z3)...G
In the case I = @ we shall write

(zjn—-k) .

C(z)z(.?m(z) for Rezj#&j,jzl,...,n
We also put by definition _
clbronb(z) = P(z)  for 2z U = yitent,

Before stating the main result we introduce a final piece of notation: _
For € == (e1,...,85) with g = £ for j = 1,...,n we define I, = {k :
ek = +}, CE = {Z e Cn c; Rezy > Ej&j, j= l,...,n} and

U c.

ee{+,~}"

Ch#(a +iR™) =

THEOREM 2. Let F, & be as above and suppose F admits o compatzble
set of partial regulamzatwns at&. For & € {+,—}" let the function

Pe(2) = Z C*(z)
Icl,
be defined Jorz e U C Cq. Let Uy = | U. C C*#{(a + iR™) and

denote by Uext the set of those points z in the closure U# of Uy im C™ such
that there is an open neighbourhood W C C* of ¢ with the property that
W N (C #(a+iR™) C U Then there exists o function 1) € O(Up) such
that ¥(z) = we(z) for zeUe. .

icm
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Thus v i3 a holomorphic extension of the function
Wy (2) = C(2)

Proof. Let Z;, j =0,. — 1, be the stratification of the analytic set
C™ C”#(a + iR") into pzecemse linear submanifolds Z; of real dimension
dim Z; = j+n. For points 2 € Uge N Zy,—1 extendability follows easily from
a parameter version of Corollary 1. For the remaining j = n — 2,...,0 the
proof goes by induction in view of the following theorem which is an easy
consequence of the edge of the wedge theorem [5].

for Rez < a.

THEOREM. Let 7 € C™ and & € O(W) where W =V +4G, V is a
connected local cone with vertex at Rez and G is an open nezghbourhood of
Im 2 in R™. Then there exists an open neighbourhood 2 of z in C™ such
that @ extends to a function & holomorphic on (conv(V) +iG)N 2 U W,
where conv denotes conver hull.

In particular, if conv(V') is an open neighbourhood of Rez in R, then
@ is holomorphic in a neighbourhood of z in C™.

EXAMPLE 1. We shall write down the functions 2. of Theorem 2 expli-
citly in the case of n = 2. We assume that all integrals below are absclutely
convergent; then the compatibility condition of Definition 4 follows from the
Fubini theorem.

— —(zla 22 f f

(6a +im1, 0 +i72)

x Gz — & —im)G(z2 — &y — iy2) dys da
for Rez; < oz1, R622 < O_fz,
ff F(al+%’71,a2+272) '

X G(Z1 — C)é1 - i’)/1)G(Zz — &2 - i"}'g) d')/l d’)(g

Yo, (21, 22) =

+ f F(&l + 71, ZZ)G(Zi - &1 —.i")’l‘) dnr s
for Rez; < 1, Rezs > s,

[f _F(gu + i, &2 +i72)

X G(zl e &1,”‘” ’i’.}'__l)G(Z2 ;—-38:_2 — i")fg)_. d’)’;_ d'yz‘ ’

Yo (21, 22) =

+ f F zl,..&z + i’Yz)G(z-z -‘—'&z —iyp) dya

+ f F(al —+—wl, #2)G (7 — ay — @’Yl)d’}’l + F(z1, z2)

for Rez1 > a1, Rezg > C!g,



icm

8 B. Ziemian

)= ffF(&1+??’Y1,&2+'i72)

x G(z1 - 811 - i’Yl)G(Zg - 0042 - 1;’}’2) d’)fl d")/z

Wy, (21, 22

+ f F(z1, 82 +i72)G (22 — 02 — im2) da
for Rez; > 8!1, Rezy < 852.
The quadrants given above indicate the sets on which the respective func-
tions should be considered. Their domains of definition may, however, be
much smaller and depend on the behaviour of F.

EXAMPLE 2. We shall find the set Uy for Fz1,20) = 1/(22 + 23)
and & € R2, Observe that in the case & # 0, since the function R? >
v — F(a + #) is integrable, we have no problem with regularizations and
compatibility.

In the case & = 0 the function v — —1/(7# + ~2) is no longer integrable

on R? so we have to regularize it so that the condition of compatibility hold.
In our cage this amounts to checking that for any ¢ € S(R?)

Since integrals of the form

f M P(1,v2) 4 f Yo @ (71, 72) d

Htvd 1+

vy for § € S(R?)
Rﬂ ]RZ .

are absolutely convergent, it is enough to prove that for some x € C{°(R)
with x¥ = 1 in a neighbourhood of zero we have

Pi,—0 [ x(m) ( ;%(11-1— d'n) dya
N x(v2)
=Pfy—0 [ x(’n)( 2B d'rz) dy.
But fhis is obvious since the expressions are symmetric Wlth regpect to Y1, Y2-
We have to find sets U{l} and U2} such that the functions

U0} 3 2y 5 Flzy, 6 +4) € S'(R),
pizt D zn b= F(L{')t]_ A &, 32) € S'(R) .
are holomorphic. For instance, Wé;'ma‘y take

gt 30 {zy : (251,012 4y9) € U},

‘mER

U{Z} ‘“ﬂ {2’2 : (011 + 1'}'1,22) € U}
meR ;
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where 7 = {(z1,22) € C? : 2 # %iz} is the domain of holomorphy of F.
In our case
Uit = C\ {R+ic,),
Thus we have
U~ ={Reaz < a1} % {Rezz < ta},
U~y ={Rez < a} x {Rez > &} \ {Rien}),
Us = ({Rezy > a1} \ {Retico})
x ({Reza > Gg} \ {Rekicy }) N {z1 # +ize},
Up.~ = ({Rez > a1} \ {Rtias}) x {Rez < ao},
and consequently Uy = C2 \ Using where
Using m{alzl:iaz Do > &1} x C
JC x {agiigq D og > &z} U{Rez > G, 21 # iz},

U =\ {Ri:} .

ExaMPLE 3. We consider the function
1

F(zy, 2, 23.) = P
and & = 0. Now there are more functions in play. Namely,
U2} 3 (20, 29) + F(z1,z2, i) € S'(R),
(3) U8 5 (21, 28) — F(2,i0, 23) € §'(R),
U3 5 (29,25) = Flir, 2, 23) € §'(R),
and :
U 5 2 s Flay, i) € 8 (RY),
(4) U2 3 20 o F(i, 22,4) € §'(R?),
U3} 3 25 F(i, 4, 23) € §'(R?).
We want to find the sets U7 as 1arge ag poss1ble so that the functlons ahove
are holomorphic. '
Consider the first function in (3). Write 2; = o +zﬁ,, § =1,2. Then if

23 + 22 — v3 = 0 for some 73 € R, we must have agfy = —o1 51, 50 we may
take : ' :

UL = [(z, ) €C? : aufy +oafe #0}.
By symmetry, S o
U0 = { (1, 7) €€ RN X ) SO
U-{z,.s} mf‘-{_’-f@“ﬂsze‘)f Gﬂ-.:@'sz‘f.az@? -!-Ocaﬁa#ﬂ} TS 04
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Now, consider the first function in (4). We see that if 28 —~2 —42 = 0 for
some ¥z, vs € R and 2 = oy +i01, then we must have §; = 0 and the zeros
lie on the circle v§ ++2 = af. Consequently, Ui} = {z; e C : 3 # 0} and
by symmetry,

U ={5eC:8#0}, UP={meC:g+0}.
We proceed to study the case of ¥ € ({U) such that some of the sets
ﬂ {z_[ ECI : (z;,gu-i—’i'y,;) & U}
yreRI

may be empty {unlike the examples above) but the sets of “partial singu-

larities”
{v7 €R" : (21,05 +ivs) g U)

are independent of z;.

Let W be an open set in C* and W#R" d=6f{z =z+iy €W : ¥y Imz
# 0}. Recall (see [16]) that a function F is called Id-meromorphic on W if
F e O(W#R"™).

‘DEFINITION 6. Let F be an Id-meromorphic function on a set W =
V + iR™. DV\/’e say that F is of polynomial growth along waginary planes if
for every & € V' there exists a neighbourhood Vs of & in R", a number p > 0
and a positive function K(z) on Wg = Vg -+ iR™ such that

[F(2)| < K(z)/dist(z, Z)P  for z € WHR" N Ws,
where Z = W\ W#R", and K(z)||z|~? is bounded on We.
PROPOSITION 1. Suppose F is Id-meromorphic on an open set W =

V+ iRé” C €™, and of polynomial growth along imaginory planes. Then for
every o € V' there erists a compatible set of partial requlerizations of F

Fz;,&_] € O(UI’S’(RJ))? I C {1, e ,'n} s

where :
(5) Ul = {zr : (z;,gq +iyr) € WHR™ for some ~; € R"}.

Proof. Consider the function 2z, s F(z1,20,. ., 2n) for 29, .. ., 2, fixed,
withImz; % 0for j = 2,...,n. It has singularities on the real line Im 2z; = 0,

Fix 2, with Im 2y # 050 that (21,22, .. 1 Zn) € W#R™. Suppose for instance
that Im z; > 0. For every z; with Tm z; > 0 define
TiF(zy - nm) = [ F(Co,.. 20 dg
T .

1
where L., is a curve joining z; to 7 consisting of the line segment from zi
to Re z; +igq for 'sor::le fixed eg > 0 (f Im 2y < £0) and another line segment
from Re 21 +igg to 2. W.Im 71 2 &g, Ly, is the line segment from 27 to %1.

Modified Cauchy transformation 11

In a similar way we define J* corresponding to Im ;1 < 0, and JF for
k =2,...,n corresponding to the variables zs,..., z,.

If Fis of polynomial growth then by standard reasoning we infer that
there exists & muitiindex g € N} such that the function

Glz)=JfF () forzeW,={2eW:egRez >0,j=1,...,n}
and £ € {+, —}" satisfies the estimate

|G(z)| < C(1+{|2])? for z € WHR"

for some positive constants C and ¢ (independent of z) and the same is true
for the derivatives D,, G, j =1,...,n.

Fix & € V, and for every subset I C {1,...,n} let U7 be the set defined
by (5). For z; € U! we define the tempered distribution

F, s lo]=(=D®1De [ Glzr,as +%)DYo(vs)dvy, o< SRY).

2,0
RJ

It is clear that for & € S(R’) the Function
= (—1)led! f Glzr, &y +ivs) D2 o (yr) dos
]RJ
is holomorphic on U7 and the set {G, 5 € OUT,S'(R"))} for I  {1,...

...,n} is a compatible family of regularizations of G at ¢&. Hence the same
is true for F, which was to be proven.

Remark 3. Observe that in the definition of a modified parjcial Cau'chy
transformation Cf we evaluate F, g, onlyona family of analytic functions

UIBZ[I«"}G

f=3
.0y

RY 3 45 = G (27 — oy — 875).
Thus the assumption that F,, s is a distribution in. 5'(R”) may be dropped.
Instead one can introduce a special class of hyperfunctions on RY, analogous
to Fourier hyperfunctions (see [2]), for which such evaluations make sense.
However, a suitable compatibility condition should be retained.
In particular, in the hyperfunction formulation we could drop the as-
sumption on the growth order of F' in Proposition L.

3. Mellin distributions with A-meromorphic'Me!lin. tra-nsf'orms.
The spaces M{,,((0,t]), w € (R U {oo})™, of Mellin distributions on a
poly~interval (0,t], t € R} were defined in [7,. 12, 14] We do ::th_.arecieﬂl
here the definition but only note that a Mellin distribution u € M,y admits
evaluation on functions z — z7*~* for Re <w. The holomorphic function

Ma(z)=ufz™Y, Rez<w,
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is called the Meliin transform of u. That Mu is A-meromorphic on £2 ¢ C*

(where A € GL{n,R) with nonnegative entries) means that (Mu)o A~ is

Id-meromorphic on A(£2) (see [16] for other equivalent definitions)
We have the following variant of Th. 3 of [16] (see also {7]):

12 B. Ziemian

THEOREM 3. A function F' is holomorphic on a set {Re Az < Aw} (for
somew € (RU{co})™) and for every b € R™ with b < w salisfies the estimate

|[F(z)] < p(lz)t~Re4s  ReAdz < Ab,
for some polynomial p and t & R% if and only if there exists o Mellin
distribution u € M’w) such that
suppu C Z7* = exp(A¥(In({0 < y < tH)
and F(z) = Mu(z) for Re Az < Aw.
Proof. Let F satisfy the assumptions of the theorem. Define & (z) =

FoA™'(z). Then H € O({Rez < Aw}). Let Q be a polynomial in C* such
that H(z) = Q(2)G(z) where G € O({Rez < Aw}) and for every b < Aw

e
Gl < t~Rez
R T N (PNEE Y
Now, from Lemma 2 in [7] we know that the function

1 z n
g(z) = i f G(z)z"dz  for z € RY

biR™

for Rez <b.

is continuous, supp g C (0,t] and 4~ *g(z) is bounded. Further, gE M(wa)
and ' S
9(z) = Mg(z) for Rez < Aw.

As in the proof of Lemma 1 in [16] we have

Mg(dz) =" [ glz)a~4*1dg

0<agt

= f g(a:')(.e‘?q.)(A”lnz))"zm_l dz

Ot

1
= fasiy J o4 myy= ay.
| S |

Note that the set Z{ is bounded since A has nonnegative entries. Denote
by x the characteristic function of Z{." We shall prove thiat the function

h(y) = mxé‘ ()o(exp((4™) Iny)) s in My,

Modified Couchy transformation 13

Indeed, it follows from the properties of g that for every b < Aw the function

(exp((4%) ™! Iny))"*h(y) = y=* " *h(y)
is bounded, which is just what we want since {b < w} C {4b < Aw}.

Finally, we put
U= Q 0.4 (y%) h.

Then « € M, suppu C Z{ and
Mu(z) = Q(Az)Mh(z) = Q(A2)Mg(Az) = H(4z2) = F(z)
as desired. The converse implication follows from Theorem 4 in [11].
Before stating the main result of this section we need the following gen-
eralization of Lemma 1.
LemMMA 2. Let » € C§P(R™), Choose x € CE&°(R) with x = 1 in a

neighbourhood of zero and such that x(z1)...x(zn) =1 on suppyp. Define
G = My. Then for everyr > 0,

Mip(z) = Z E Hio(21)G (27 —v3)

ieP, I/ENOJ, 24

where Py, is the set of all subsets I C {1,...,n}, J is the complementary
subset to I and
Hr, €Oz eC : Rezr <r1}),
Hr(or +1) € S(RY)  for every fized oy < xp
(we assume that Hp , = ¢, are constants).
Proof. For simplicity of notation we assume n = 2, r = (r,r), r > 0.
From the Taylor formula we have (see Lemma 1 in [16])

r—1
x(@)x(@a)elon ) = Y, ax(z)alx(e)zs?
=0 )
el '
+a] Y x(@1)si(e1)x(wa)d
j=0 ‘
S ) . .
+ 2} Z x(@1)zix(xa)n; (z2)
s j:=0 : E
+x(z)x(z)oizop(@, 2g),
where ¢, = (1/v)D"(0) for 0 < v <, and n;, s;:for J mD, T *-5_1“&(:1
p are gmooth functions. o UL T s s E e
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Computing the Mellin transform of the above we find

Hyp,=¢c,, 0Zwv<r,
Hpyyi(z) = Mz7 si{z)xu(z1))(z1), 7=0,...,r—1,
H{z}rj(zz) = { ’rnJ (172)}(2 332))(22), j=0,...,r—1,

MUx (1) x(w2)eiagp(er, 22)) (21, 22) -

To see that the functions above are rapidly decreasing along the imaginary
axis we note that if ¢ € CF° then for Rez < 0 and any positive indices
and 4,

Dj((ex + 8’ M) (@ + i8) = (=) M{(lnz)7(2D)’
and for every e > 0, z°(Inz)” (zD)%(z) is bounded.

Hiyg o2, 22) =

Yo +if),

Now we can prove the following important result which shows that the
notion of A-meromorphy of the Mellin transform of a Mellin distribution is
“local”.

THEOREM 4. Let A be an n X 1 real nonsingulor matriz with nonnegative
rational entries. Let u € M{,,, suppu C Z# = exp(A¥(In({0 < y < t})))
for some t € R} and suppose Mu is A-meromorphic on 24 = {z € C" :
Redz < &} for some & € (RU {oo})™
imaginary planes. Let » € C5P(R™).
A-meromorphic on 24.

Moreover, for every r € R} with r < L?),

(6) M) = >

0<vLr, veNY

and of polynomial growth olong
Then wu € M, and M(pu) is

D¥p(0
m%le(Mu)(a —v)

as a distribution on {o € R™ : Aa < r}, where b4(F) denotes the oriented
boundary value of F, i.e. the hyperfunction defined by F' {see [16] Section 3,
for details).

Proof. It follows from the proof of Theorem 3 that
%i=|det A|-woexpsA¥olng M{ 4,0, 8])

and M7u(z)

= MuocA~Y(z), i.e. Mii is Id-meromorphic on {2 = {Rez < ©}.
Set . .

Hz) = plexp(A” Inz)), =z€ R% .

Multiplying A by a suftable constant (which does not affect A-metomorphy)
We may assume that 1A has nonnegative integer entries. We shall now check
that ¢ extends to a smooth function on R™. Writing A" = (@j)j1=1,..n

icm
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with a; € No we have

(7) P(w) =

(Il 1)

and since all a5 € Np, @ has the claimed property. To make it compactly
supported we take a v € C§°(R™) with % = 1 on (0,t] and put

p=1-0.
Now, it is enough to prove the theorem in the case of a distribution % €
M{,y{0,t]) whose Mellin transform is Id-meromorphic on 2 and of a
smooth function @ € C5e(R™),
Fix & < Aw. Then (see [10] Proposition 2)

(8) M(PT)(z) = o )n == Ta[M@(z — & —iy)] for Rez < &

where T3 (8) = Mu(a + i) is of polynomial growth at mﬁmty and the
function ¥ - MB(z—a —1iv) is ra,pldly decreasing if Rez < &. Letr € R .
Then from Lemma 2,

9) =3 Y H(w)G(z-w)

1ePn veNS, vary
and we need only prove that for every I € P, and v € Ng with ¥ < 1y, the
functions

(10) @y () = —

defined for Rez < & are Id-meromorphic on 2N {Rez < r}. For z; < r;
define

T&[HI,U(z; - 5:1 - i"/j)G'I{ZJ e 3{; - Z.’Yj)]

1 ' .
S&J+w (ZI) = WT&[HI’U(ZI —Qy -—Z’)’I)] € S’(RJ) .

Then with &y = &y + vy, formula (10) can be written as
010 (21, 25) = CT(Sg, (21))(27)

where C? is the Cauchy transformation in the variables z;. We want to
apply Theorem 2 with {1,...,n} replaced by J. First, for every fixed 2y
with Re zr < r; we want to holomorphically extend'Sg (#r)(3s) regarded
as a distribution in the variable 8 to the plane oy + iR’ :

Applying Proposition 1 to the Id-meromorphic function 7'(z) = Mi(z)
we get the existence of a compatible set T € O(UI S’(]RJ )) Whare

ES M CMJ
Ul = {z; ¢ (21,00 +ivg) € Q#R“ for some v} Clearly Ty'is the same as
before since no.regularization is: requlred for it. . : :

for Rez < &
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Now fix J and z; with Rez; < r7. Then as I’ runs throﬁgh the subsets

of J we get a compatible set of holomorphic distribution-valued functions
7 s zp— 8 (z1) € S’(RJ )

2:.'011

where
Sopr 8y (2D)E] = o )mTzI, &, iy (zr = a1 = iyr)o ()]
for o € S(RJ) Clearly for every I' C J and every fixed 2;r ¢ UY and
o e SR,
{Rezz<ri} 221 S, o (21)o]

is a holomorphic function.

Thus we can apply a “parameter version” of Theorem 2, with a holo-
morphic parameter z; € {Rezr < rr}, and with the set {1,...,n} replaced
by J. We conclude that

(11) !pjy S O({REZI < I‘[} X ( oxt T T/J)) .

Since U’ = {z; < ws} is a product we observe that UJ, = UJ#RY
Summing the functions ¥y, over I € P, and Ng B v < ry we see by
(8)—(11) that

MGy = M(GT) € O(#R* N {Rez < 1}).

Since r was arbitrary this proves that M(Z4) € O(R4#R"), which means
that M(§7) is Id-meromorphic on 2.

It now remains to compute the boundary values. Suppose first that ¢ is
flat at zero of order r &RY, Le.

= Z 27 R;(¢), R; smooth at zero.

Then from (7) we see that 3, and consequently &, is flat at zero of order at
least r. Thus (9) becomes

ME@H= 3 S Hr(enG (e - ).
. ‘ (b:ﬁIE‘Pn vé‘Ng,v<rJ
In view of 1L the functlons 7 + defined by (10) are holomorphic on
{z = (z1,25) Rez;r<‘-r;f, Raez; < WJ"+" vy, z; #0 Vj € J}.
Thus o
(12) !P'IVOAEO {Z—(ZI,ZJ) RSAZJ<I’I, _
" Redap< e, (A)y# 0 Vi ed)).

Modified Cauchy trensformation 17

Since
Z Z UroA
0£IEP vEN], vy
it follows from (12) that

WA M(pu) =0 on{aeR": Ao < r}.
Now for every ¢ &€ C§°(R"™) we have

o)=Y ZE@e )

VENg,u<r

where x = 1 on suppu and ¢, is flat of order r. Since M(xz"u)(z) =
M(xu)(z — v} the desired result follows.

Remark 4. The assumption in Theorem 4 that A has rational entries
was pecessary only to apply Lemma 2. It may be dropped by extending
Lemroa 2 to certain singular functions, Also the assumption that Mw is of
polynomial growth is not essential (see Remark 3).

4, Change of coordinates in the Mellin transformation

DEFINITION 7, Let A be a real n x n nonsingular matrix with positive
entries. By an A-set af zero we mean any set Z C R7 such that there exists
an open set U 3 0 and t € RY, satisfying

ZNU CZf = exp(A™(In({0 < = < t})).

DEFINITION 8, We say that a distribution u on an open set Uy C R%
with support in an A-set is locally in M/ , and its local Mellin transform is
A-meromorphic on a set {2 C €™ if there exists an open set U C R" with
0 € U such that for every ¢ € C§°(U) with p = 1 in a ne1ghbourhood of

zero, pu € M{, ) and M(ipu) is A-meromorphic on {2. :

»

Remark 5. It follows from the modified version of Theorem 4 (sug-

- gested by Remark 4) that it is enough to take in Definition 8 only one ¢ hav-

ing the required properties. Actually, one may only requlre that :p(O) = (.

DEFINITION 9. By a reticular coordinate system at zero we mean a local
diffeomorphism f : U — V, U,V open inR" with 0 € U, V, which preserves
the coordinate surfaces, le, for j=1,...,m,

fi{zy =0}nN U) c{y; =0}.-
For | € Np and a distribution u & D'(R™) with support in Y, u"“ denotes.
the convolution power u* = u* ... %u (! times) ¥ L > 1, and u*° = 8o,

THEOREM 5. Let A beann xn real ngnamgular rhatriz with nonnegative

rational éntries. Let u € My, withguppu C Z# for some w.g R 4.€. R:
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and suppose Mu is A-meromorphic on 24 = {Az < ©} for some w € (RU
{co})™ and is of polynomial growth along imaginary planes. Let f: UV
be a reticular coordinate system at zero such that F(UNRY) C V' n R7}.
Then uo f is supported by an A-set, is locally in M(w) and its local Meltm
transform is A-meromorphic on 24.

Moreover, for every r € R? with r < @,

*( 3 %D”(Jf’l)(G)SV)*bA(Mu)

veNg, v<r

(1) bA(M(uo f) =

on {o € R" : Aa <1}, where b*(M(uo f)) E o4 (M- (wo £))) for any
o € OF°(R™) with sufficiently small support and with v = 1 about zero, and
8, =8} %...%8" € D= (R™)
+
with ‘
) —a; — 1\ [y]!, _ ;=1 n
% = Z ("0 stroy s e D e,
§irs]
yeNy 7 ysr
. J=1,...,n,
and forj=1,...,n end vy = {v,... s Virs] s
* *Yrs]
LIV =L« % Ly ]
where for j = 1,...,n, k = 1,...,[7"3-], g = (0,...,1,...,0) (1 in the j-th
place),
: 1 .
L1 = Ktej 71
= D, DU L0
- wENP, |kl=k

Proof. Take a function ¢ € C§°(V) with ¢ = 1 close to zero. Later on
‘we require that supp ¢ is sufficiently small. By Theorem 4, pu € M( w) and

M(pu) is A-meromorphic on f24. Since pu € M, y.and f is a diffeomor-
phism, cle&rly (pu)ofe M (w)- Further, (pu) o f i 1s supported by an A-set

because f—! preserves the order of tangency to the coordinate planes. By
deﬁmtlon we have ) .
(‘Pu) fi(z) = 'Sf’u[‘ff_l(y) ‘ (f_l(?l))ﬁz"l] for Re Az < w,

where Jf ™! denotes the Jacobian of £~!. Define

F7w) = Hy) = (Hi(y),...; Ha(y)).
Since H is reticular it follows that H;{y;,.
j=1,.

oy Yi-1, anyj-l-l: . :yﬂ) = 0 for
+-»7 and |y| small. By the Taylor formula then H; i(y) = yJH (v)
for some smooth H;.:Next; since FF is-a local dlffeomorphlsm D; Hi{0) # 0,
and since it preserves the positive octant we must have D H; (0) > § =

icm
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1,...,n. Fixr € RY and for j = 1,...,n expand ﬁj in a Taylor series at
gero up to order [r;]. For y € V we have
]
Hiy) = u; (Y Loaly) + i1+ By, (1)
k=0
where R; ., is bounded on V' and

Ligw) = Y.
KENT, [k=k

We shall need the Taylor formula for the function 3°, a € C, at a point
¢ = 0 with remainder in the integral form:

(e+d)* = Z (";) cAtdt 4 gt (S j: 1) fl (1~ 8)*(c+6d)>"1dd,

1=0 0
and the binomial expansion

s te) = Z

YENS |y|=i

#Dmﬁj(ow forj=1,...,m k=1,...,[r;].
HKea

i
(w1 + —u + e Pw)
where w = (wy,...,w,) and P is a polynomial in w.
Weputfor j=1,...,n
(341

d= Z%,

k=1

c = Lj'o(O) = DjHj(G)

where
Wi = Ljp(y)
Then for L;(y) = (L;1(¥),---»

(H) =y ] (

i=1

for k=1,...,[r5], Ljpger=e= "R ().
L; ) (y)) we have

E (_—Zj - 1) ‘
: Il -
v eNy?!, b <lrs]
il y N
x L:Y;"“!;(Djﬂj(o))”z“"l"’ '(L.f(y))"J) +y ?F(%é)

].—.[Jal
it

1) Byl =)+ ('[;jf ;11) (X z

k=1

where F(y,z) = (Y51 24) and

[rs] '
) sz
with |

w]

FJ(U / Z(F@
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with P(y), I =1,...,[r;], a polynomial in y,

L =yl R, (1)

L 1
winz=(5101) fo-or

(D5H;(0) + [rjilﬂj,k(y)))—zﬂmmz d.
k=1

It follows from Theorem 4 that the Mellin transform of

T=p-JG 1ty
is A-meromorphic on 24 and for every 0 < r < @
M) (@) = > 2D (I @b (Mu)(a - )
ogu<e

as a distribution on {Aa < r}. Again it follows from the same theorem that
the Mellin transform of F - T, where F(y) = H?:l Fi(y), is A-meromorphic
on {Aa < r} and

HM(F-T)} =0 on{da<r}

because D”F(O) =0forveNg, v<r.

- Next observe that the function ¥;(y, ;) is an entire function of 2jifyis
small enough that

. - [ra]+1
D;H;(0) +e( D Lix) >0 fore(0,1), j=1,..,n.
k=1 -
To ensure this we assume that the support of ¢ is sufficiently small.

To study the second summand in (14) we need the following generaliza-
tion of Theorem 4. '

THEOREM 4. Let v be'a Mellin distribution supported by an A-set such
that Mv is A-meromorphic on {Az < t} and is of polynomial growth along
imaginary planes. Let o(y, z) be o smooth funciion of y and an entire
function of z. Then M(p(y, 2)v) 4s A-meromorphic on {Az < r},

Proof. Tt follows from Theorém 4 that for every fixed { e Cm,
Moy, Ou)(z) is A-meromorphic on {4z < r}, and from the version of
the theorem with a complex parameter. { we see that for every fixed 2 €
{ Az < r}#R™ the function M(p(y, ¢)v)(z) is an entire function of ¢. On
putting ¢ = z the assertion follows in view of the Hartogs theorem.
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Returning to the proof of the theorem we define
[ril41

Sty = ( 5 lek(y))[ml’ g1 _ ﬁs,j[rj]+1,

LES J=1
Wy, 2) = [ ] s %)
d=l

From Theorem 4’ we conclude that M(SIH2 () (y, 2)T)(z) is A-meromor-
phic on {Az £ v} with zero boundary value since D*S¥"I+1(0) = 0 for v < r.
More generally, for I € {1,...,n}, J={1,...,n} \ T set

Friy) =TI R,  Boly,z) =[] SV )50, 25) -
K= jed

Then it follows from Theorem 4' that M(Fr(y)E;(y, 27)T){z) is A-mero-
morphic on {Az £ r} and in view of the flatness of Fy and E;(-,z;) its
boundary value is zero there. This ends the proof of the theorem.

Remark 6. Theorem 4 will remain valid even if f is allowed to have
certain singularities at zero starting with a discrete term y®® with og > 0.

CoroLLARY 2 (Generalized Taylor formula for composite functions).
Under the assumptions of Theoremo4 for every r < w there exists a Mellin
distribution R € M (’L\GJ-HI‘) which is (w,)-flat at zero and

uo f =T e x* (@) + R
where x* 4s the characteristic function of ihe set
Z{t = exp(A"(lnf0 < = < 1}))
and T2 is o distribution (in the variable o) equalto -
1 -1 A fympT
rp=se( Y Louroa)sxtere)
VQNRH"<:' . . .
with
L__pA .
i | T M) on g, 0 | |
¥ 0 OHRR\{QERR:iaj—wj|_<rj7:".7:11"‘\?”}3
where B . : o SRR

Zr={aeR" : a<O}U{weR": oy —wyf <rj j=1n},
(Recall (see Def. 7 in [1;11) that a Mellin distribution R is {,'r)-flat if MR
is A-meromorphic and P (MR) =000 Z) .. - . .

Proof. Thisis immediate from Theorem 4 and Theorem 5 in[16]. - -
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5. Mellin analysis on manifolds. To perform the Mellin analysis on
a smooth n-dimensional manifold N we replace the pos1t1ve octant R} by

its image under a local dﬁeomorphlsm H:U— N,0¢€ U an open set in
k™. The image A = H (U NR?) is called a (local) pyramid at m = H(D).
We shall identify pyramids at m € N identical in a neighbourhood of m.
The space of germs of pyramids at m is denoted by P (N). Below we do
not distinguish between pyramids and their germs.

DermvITION 10. We say that K : U — R™ is a chart for A € Py (N) if
m €U C M, K is a chart for N and K(A) = U NRY where U/ is an open
neighbourhood of zero in R™.

A chart K defines an ordering of the walls of the pyramid A (= the set
KY{{z; = 0}) for i = 1,...,n). We call such a pyramid ordered. In the
sequel all pyramids are assumed to be ordered and we consider only order
preserving charts. Observe that if K, Ky are two such charts then the
transition mapping K o Ky 1 is reticular and preserves R%.

Let A € Pu(N). We define the space M{, (/) of (germs) of Mellin
distributions on A as the space of distributions v € D’(A) such that for
some chart K for A and ¢ € C§°(N) with p(m) # 0, (pu) o K extends
to an element of M/ ,. Observe that by Theorem 5, w i3 independent of

the choice of K. It is also independent of ¢ since ¢ is a Mellin multiplier
(see [7]). :

DEFINITION 11. Let A € P (N) and w € D'(U), m € U C N. By
the Mellin restriction of u to A we understand a Mellin distribution ua €

M! )(A), for some w € R™, which coincides with u on A.

(e

Since D is dense in M, (see Section 1 in [16]) it follows that up is
unique for every w for which it makes sense.
~ Let A be a real n X n nonsingular matrix with positive entries. Let
0 € Py (N). By an A-subset of A we mean any subset Z C A such that
K(Z) is an A-set in R", where K is a chart for A. As noted in the proof of
Theorem 5 the image of an A-set under a reticular diffeomorphism is again
an A-set, which means that the above definition is independent of the choice
of K.

DerFINITION 12. Let w € D'(U), U C N, m € U. Let A € P,(N).
Suppose ua € M (A) is supported by an A-subset We say that the local
Mellin transform of up i8 A-meromorphicon C™ if there exists a function ¢ €
C§(U) with ¢(m) # 0 such that for some chart K for A, M((gou/_\,) oK~ D
is A-meromorphic on C™.

Independence of all the choices made follows from Th@orems 4 a.nd )
supplemented by Remarks 4 and 5.

icm
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Now we introduce an invariant which describes the asymptotic behaviour
of v € D'(U) at the point m in a pyramid A € P,,(N).

DEFINITION 13. Let w € D'(U), m e U C N, A € P,(N) and suppose
up supported by an A-set has A-meromorphic local Mellin transform. We
define the A-spectral support of © in £\ as the set

s8A u = U {supp b (M(pup) o K} + v
veN] -

where K is a chart for 4, ¢ is a cut-off function at m (the sum 0+ v denotes
the translation of the set § by the vector v) and supp denotes the support
of the hyperfunctlon on R" with defining function M((pua) e K1)(2).
That the set ss2 u is independent of the choice of ¢ and K follows from
formulas (6} and (13) which show that the change of  and K results in the
translation of the support of b4(M(pua) o K1) in the directions v € NF.

Acknowledgments. The author thanks G. Lysik for a careful reading
of the manuscript and pointing out several inaccuracies.
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Characterization of Mellin distributions
supported by certain noncompact sets

by

ZOFIA SZMYDT and BOGDAN ZIEMIAN [Warszawa)

Abstract. A class of distributions supported by certain noncompact regular sets
K are identified with continuous linear functionals on C§°(#). The proof is based on a
parameter version of the Seeley extension theorem.

The paper is devoted to establishing theorems characterizing Mellin dis-
tributions supported by sets Z# (see Section 4). They can be regarded as
the extension to certain noncompact sets of the following theorem charac-
terizing compactly supported distributions (cf. [1]):

THEOREM 1. Let u € D3 (R"}, where K is a connected compact set in
R™ such that any two points T,y € K can be joined by a rectifiable curve in
K of length < Clz — y|. Then there exists a constant C' < o0 and k € Ny
such that

i <C D sup

lo| <k Y€

(2) v, proeci@)

1. Notation and necessary facts of the theory of Mellin distri-
butions. Any set in R™ of the form

{(ml 1t mn)
, @y D1, - by are given real numbers or oo with a; < b; for
,m, is called an open polyinterval in R™. Any set of the form

{(z1,--+1%n)
is called a right- closed polyinterval. N denotes the set of positive integers
and Np is the set of nonnegative integers. For a = (a1,-..,05) € N§ we
write ol = a1+ .-+ an, al=oql.. . an!.

ca;<mi<bfori=1,...,n},

where a1, .
1==1,..

o<z <b<+oofori=1,...,n}
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