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On multilinear fractional integrals
by
LOUKAS GRAFAKOS (New Haven, Conn.)
Abstract. In R", we prove LP! x...x LP¥ boundedness for the multilinear fractional
integrals To(f1,. .., fx)z) = [ file - 61y) ... fx (e ~ Oxy)jy|® ™ dy where the §;’s are

nonzero and distinet. We also prove multilinear versions of two inequalities for fractional
integrals and a multilinear Lebesgne differentiation theorem.

1. Introduction. Although it is not known whether the bi{sub)linear
maximal function

M(f,a)(e) = s —2—}\;}; |F(z+ ol — ) dt
or the bilinear Hilbert transform |
H(f,0)(&) = pv. [ flz+gla—8) 0
map LP(R) x L¥' (R') — L'(R") boundedness into L! for the corresponding

multilinear fractional integrals can be obtained.
Throughout this note, K will denote an integer > 2andé;,j=1,..., K,

. will be fixed, distinct and nonzero real numbers. We are going to be working

in B" and a will be a fixed real number number strictly between 0 and n.
We denote by f the K-tuple (fi,..., k) and by I, the K-linear fractional
integral operator defined as follows:

Iru(f)(m) = f fl(lﬁ-"gly)...fK(m-9Ky)|y|ﬂ—ndy‘

When K = 1 the operators I, are the usual fractional integrals as studied
in [ST]. We also denote by M(f) the K -sublinear maximal function

M(£) (=) ﬁf\;;l?ﬂ(»f?nl\f“)"1 [ 1fue = 0uy)l- . | fxc(z = Oxew)| dy

where (2, is the volume of the unit ball in R™. It is trivial to check that for
any positive p1,...,Px with harmonic mean s > 1, M maps LP* x... X Lrx
into LS. If we denote by f* the Hardy-Littlewood maximal function of f,
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then M(f) is dominated by the product G, ((ff*/*)*)*/# ... (( grilayysies
and hence its boundedness follows from Holder’s inequality and the L*
boundedness of the Hardy-Littlewood maximal function. This argument
breaks down when s = 1 but a slight modification of it gives that M maps
into weak L' in this endpoint case. It is conceivable, however, that M
map into L' since it carries K-tuples of compactly supported functions
into compactly supported functions. This problem remains unsolved. The
I? x L9 — L7 boundedness of the bilinear Hilbert transform H(f, g) is more
subtle and it remains unsolved even in the case 7 > 1.

In this note, we study the easier problem of the multilinear fractional
integrals. Our first result concerns the LF* x ... X LF¥ — L” boundedness
of Iy forvr > 1.

THEOREM 1. Let s be the harmonic mean of p1,...,prx > 1 and let r
be such that 1/r + a/n = 1/s. Then I, maps LP* x ... x LP* into L" for
n/(n+ o) < s < njo (equivalently 1 < 7 < c0).

Note that in the case K = 1, the corresponding range of s is the smaller
interval 1 < s < n/a {(equivalently n/(n — o) <r < o).

When K = 1, the following theorem has been proved by Hirschman [HI]
for periodic functions and by Hedberg [HE] for positive functions.

THROREM 2. Let p; be positive real numbers and let s > 1 be their
harmonic mean. Then for ¢,r > 1 and 0 < 6 < 1,

Moo (E)lor < ONTa ()% [T 151557 -9
k

8

where l = ﬂ =
roq

In the endpoint case s = n/a, Trudinger [T] for & = 1, and Strichartz
[STR] for other o proved exponential integrability of I, when K = 1. Hed-
berg [HE] gave a proof of Theorem 3 below when K = 1.

By wy,—1 we denote the area of the unit sphere 8=l The factor L in
the exponent below is a normalizing factor and should be there by homo-
geneity.

THEOREM 3. Let 5 = nfo be the harmonic mean of p1,...,px > 1. Let
B be a ball of radius R in R™ and let f; € LP/(B) be supporied in B. Then
for any v < 1, there exists a constant Cy(vy) depending only on n, o, the

8;’s and on v such that
n LI(f,-.., n/{n-e)
(1.1) f exp (u_) 17( (fu fK) ) ) de < OO("}’)R”
n-l
where L =07,
k

B [l 5l 2o
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All the comments in this paragraph refer to the case K = 1. Hempel ef
al. [MMT] (for @ = 1) and later Adams [A] (for all o) showed that inequality
(1.1) cannot hold if vy > 1. Moser [M] showed exponential integrability of
nw,ﬁ/ﬂ*“” (|6(2)|/|Ve|in )™ Y suggesting that Theorem 3 be true in the
endpoint case v = 1. (Use formula (18), p. 125 in [ST] to show that Moser’s
result follows from an improved Theorem 3 with v = 1.) In fact, Adams [A]
proved inequality (1.1) in the endpoint case v = 1 and also deduced the sharp
constants for Moser's exponential inequality for higher order derivatives.
Chang and Marshall [CM] proved a similar sharp exponential inequality
concerning the Dirichlet integral.

When ~ > 1, Theorem 3 does not hold either, while the case v = 1
remains open when K > 2.

2. Proof of Theorem 1. We denote by |B} the measure of the set B
and by x4 the characteristic function of the set A. We also use the notation
s =45/(s—1}for s> 1.

We congider first the case s > 1. We will show that I, maps L x
... % LPr — [ The required result when s > 1 is going to follow from
an application of the Marcinkiewicz interpolation theorem. Without loss of
generality we can assume that f; 2 0 and that fillges = 1. Fixa A >0

and define p > 0 by

1,~1 Wy -1 He 'u~an/r — }_
(a—n)s'+n 2

where w,_; and L are as in Theorem 3. Halder’s inequality and our choice
of p give

@1) 120 = [ fle—0w).. fr(z - Oxp)lyi® " dy
|wr|= e

[T ute — 0], 1"yl 2

S

?

Bo| >

1/s
nla/n-1+1/s") _
= H || (2 ~ ka)HLT’k(y)((a “n)e + n) urie! .

Let IV(f)(z) = fi'ul<.u« fulz—01y). .. fxc(z — Oxy)ly|* " dy. We compute its
L*® norm:

22) 120l < | f (TL6) W xmsuts)

| X ( f 18r]yta_n7'<|yi$u dy)lﬁ

Le
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<op( [ [ (ka)slyl"“”xmsuf{wdy)lfs
<ot (TD el J i du)"

lyl<n
- Oua/s"u‘a/s — G'u'oz .

By (2.1) the set {z : IP(f)(z) > A/2} is empty. This fact together with
Chebyshev’s inequality and (2.2) gives

e : L(B)(@) > )] < {o: I(E)(=) > M2}
< 2A I, € OAT " = o\
which is the required weak type estimate for [,.
We now do the case n/(n +a) < s < 1. The corresponding range of r’s
is1 <r < n/(n-—-a) Assume that K = 2 and that py 2 p2 > L Also

assume that r = 1 first. Since s < n/c we must have pp < n/fa. Forr =1
we get

23) Ll f)llee = [ [ fle - 6)fale — bay)ly|* " dz dy

= [ A [ fale— (62— 0r)p)ly|* " dyda=
=182 — 6117 [ Al@)a(f2)()do
< 091.92“]011113?1 “Iﬂf(-h)HLPS_ '

Note that r = 1 implies 1/p} + a/n = 1/ps. Since 1 < py < n/c, we
can apply Theorem 1, Ch. V on fractional integrals in [ST] to bound (2.3)
by Co, 0,11 f1lire1 [l f2|| 272 The case of general r > 1 follows by interpolating
between the endpoint case r = 1 and the case of r close to co. Suppose now
that the theorem is true for K — 1, K > 3. We will show that it is true
for K. Again we first do the case r = 1. We may assume without loss of
generality that p; > ... > px >'L. Now,

(2.4) |La(B)llpr = fffl(«”ﬂi‘"91?;)---ff{(ﬁﬂ“91<y)|yla%dmdy
f fu(z) f fa(z — (02 ~ O1)y) .. Fr(zx — (O ~ O)y)y|" " dy de

[T 16 ~ 6= [ A@)alfar -, fr)(@) do
k1

< Gyl filzns el s i oy -

Define g1 by 1/s1 = 1/s — 1/p1. Since r = 1, we have 1/p] + a/n = 1/s1.
We can apply the induction hypothesis only provided n/(n+a) < 81 < n/a.
This inequality follows from the identity 1+ a/n = 1/s, which relates s and
r = 1. From our induction hypothesis we deduce that (2.4) is bounded by
Co; [Tl fellcee - The case r > 1 follows by interpolation,

I

i
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3. Proof of Theorem 2. Asin the proof of Theorem 1, fix f; > 0 such
that ||fyllz»s = 1. As in [HE], split

Lo@®@ = ( [ + [) 1A~ o)l dy
[vl<6  lu]z8
<> TlhG-es*d
=l fy|~gz
+ [ TLfsla— o)yl ® D dy
lyl=8
< M ™ [ [ fele— o)yl dy
mal lyl~e2
+66-0e [T fule - )yl dy
ly|26

< 5= M (F) () + 6%V I, (F) () .
Now choose § = (I,(£)(a)/M(£)(z))/* to get
Lo(£)(z) < CL(£)(@))’ (M(E)(2))"° .

Hoélder's inequality with exponents
- _5_ AN
1/r”1/(1m9>+1/(9)

[Tap ()| e < ClTalE)? | ora | M) orir-o
= O[T I MENE < O L (D)2

by the boundedness of the maximal function M on L4. This concludes the
proof of Theorem 2.

will give

4. Proof of Theorem 3. A simple dilation argument shows that if we
Know Theorewm 3 for a specific value of R = Ro with a constant Chl~) on
the right hand side of (1.1), then we also know it for all other values of R
with constant C4(y)(R/Ro)". We select Ro = 1/P where P = 2min |8;|™*
and we will asswme that the radius of B is Ro. Furthermore, we can assume
that the f;'s satisfy f; > 0 and || fillzes = 1. Now fix # € B. The same
argument ag in Theorem 2 with § =1 gives

L)) < CeME) @)+ [ ] fule ~ Okp)ly* ™" dy-

fulz6

(4.1)
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Since all f; are supported in the ball B and z € B the integral in (4.1) is
over the set {y : § < |y| < PRo = 1}. Holder's inequality with exponents
p1,...,px and n/(n — o) gives

@2) [ Ia-om)lyl*"dy
<yl

{(n—a)/n
< [T 14s(e = Bu)llzoe (y)( o @'?J)

d5lyl sl

1 (n—a)/n
wL—l (wn_l In "5:) f

Combining (4.1) and (4.2) we get

(4.3) I(f)(z) < C6“M(£)(x) + L™ (%ﬂ:i In (%)n) e .

n
The choice § = 1 gives Ia(f)( ) < C*M(f)('z:) for all ¢ € B and therefore the

selection § = 6(z) = (I, (f)(= (F)(x))~ 1)/ will satisfy & < 1 for all
£ < 1. (4.3) now implies

Wi n/e {n—a)/n
ot s enin v (22 (GEEEE)

Algebraic manipulation of the above gives
y - CM (£)(z))™/«
LI (f nfn—a) < (g———————
7( Cd( )("B)) - }.11 EnIQ (f) (u""))ﬂ'/a

where we set v = (1 — %)/ ("~ We exponentiate (4.4) and we integrate
over the set By = {z € B : I,(f)(z) > 1} to obtain

n /e 1 (CM(f)(w))”/“

f Mg

The last inequality follows from the boundedness of the maximal funchon of
f on I®/®. The integral of the same exponential over the set By == B — B,
is estimated trivially by

[ e (Sl ®@) e ) do <o

By

(4.4)

T —

1?/adm < 9

Lﬂ/(n—m) \Bal

n-1

<C3Q RO '"_'Cd_

Adding the mtegrals above over By and By we obtain the required inequality
with a constant Gj(v) = max(Ch, C)(L+ (1 ~y—@)/n)~n/e} The constant
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Coy(7) in the statement of Theorem 3 is then C)(y)R

= (! ~ P*. We
obtain the following o)

COROLLARY. Let B, fy, px, and s be as in Theorem 3. Then I(fs,...
o Ji) s in LY B) for every q > 0. In fact,

Wo(fi o felllnsm < CH H il z e
k

7
for some constant ¢ depending only on q, n, & and the #; .

The corollary follows since exponential integrability of I, implies inte-
grability to any power g. (Here v is fixed < 1.}

5. A multilinear differentiation theorem. We end this note by
proving the following multilinear Lebesgue differentiation theorem.

Let f; € LPi(R") and suppose that the harmonic mean of py,...,Px i8

s> 1. Then

li 72 (£)(2) = lim ﬂ [ hle=6w).. fxle - 8xy) dy
| |<e :
= fi(2).. fx(z) ae
The case ¢ = 1 18 a consequence of the weak type inequality

o € R : M(0)(&) > M1 <€ S filloos | aloos

which is easily cbtained from

K
e e R™ : M(f)(z) > AH <Y {z e R™: (£)" (=) >

j=1

K
<O (esale) Syl
J=l

(g5-1/25)7 ]

after minimizing over all &y, ...,8x > 0. (Takegg. = A.) The standard argu-
ment presented in [SWE], p. 61, will prove that the sequence {Te(£)(z)}e>0
is Cauchy for almost all z and therefore it converges. Since for continuous
Fiy+ ooy fir it converges to the value of their product at the point « € R™, to
deduce the general case it will suffice to show that {7%( (f)}es0 converges to
the product of the f,’s in the L° norm as £ — 0. (Then some subsequence
will converge to the product a. e) Setting (1 f)(x) = flz —y), we get

| Te(£) - To;0 5 = HfJ

1o Trelloe S

|y\<£ b
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1 K
<o 3 Mrouts = fillwrs T lillzoe dy — 0
" Jyls i=1 ket

as |y| — 0 since the last integrand is a continuous function of y which
vanishes at the origin. The last inequality above follows by adding and
subtracting 2K —2 suitable terms and applying Halder’s inequality K times.

References

[A] D.Adams, A sharp ineguality of J. Moser for higher order derivatives, Ann. of
Math. 128 (1988), 385-398.
[CM] S§-Y., A. Chang and D. E. Marshall, On a sharp inequality concerning the
Dirichlet integral, Amer. J. Math. 107 (1985), 1015-1033.
[CG] R.R. Coifman and L. Grafakos, Hardy space estimates for multilinear oper-
ators I, Rev. Mat. Iberoamericana, to appear.
(@] L. Grafakos, Hardy space estimales for multilinear operators II, Rev. Mat.
Iheroamericana, to appear.
[HE] L.I. Hedberg, On certain convolution inequalities, Proc. Amer, Matl. Soc. 6
{1972), 505-510.
J. A. Hempel, G. R. Morris and N. 8. Trudinger, On the sharpness of
o limiting case of the Sobolev embedding theorem, Bull. Ausiral Math. Soc. 3
(1970), 369-373. _
[HI] 1.1 HirschmanJr., A convezity theorem for certain groups of transformations,
J. Analyse Math. 2 (1953), 209-218,
[M] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math,
J. 20 (1971), 1077-1092.
[BT] E. M. Stein, Singular Inlegrals and Differentiobility Properties of Punetions,
Princeton Univ. Press, Princeton, N.J., 1970,

[HMT]

[SWE] E.M. Stein and G. Weiss, An Introduction to Fourier Analysis on Buclidean
Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
[STR] R. S. Strichartz, A note on Trudinger’s estension of Sobolev’s incqualitis,

Indiana Univ. Math. J. 21 (1972), 841-842.

[T) N. 8. Trudinger, On imbeddings into Orlicz spaces and some applications, .
Math. Mech. 17 (1987), 473-483.

DEPARTMENT OF MATHEMATICS
YALE UNIVERSITY

BOX 2155, YALE STATION

NEW HAVEN, CONNECTICUT 06520
TU.B.A.

Received May 24, 1991 (2804)

icm

STUDIA MATHEMATICA 102 (1) (1992)

Orthogonal polynomials and middle Hankel operators
on Bergman spaces

by

LIZHONG PENGt (Beljing}, RICHARD ROCHBERGY (St. Louis, Mo.)
and ZHIJIAN WU (Tuscaloosa, Ala.)

. Abstract. We introduce a sequence of Hankel style operators H", E=1,23...,
which act on the Bergmen space of the unit disk. These operators are intermediate
between the classical big and small Hankel operators. We study the boundedness and
Schatten—von Nenmann properties of the ff ® and show, among other things, that H k are
cut-off at 1/k. Recall that the big Hankel operator is cut-off at 1 and the small Hankel
operator at (.

Introduction and background. Let I be the unit disk of the complex
plane € and let dA(z) = (1/7)dzdy be normalized Lebesgue measure. L* =
L2(dA) is the Hilbert space of functions u for which the norm

ful = ([ (P aaG) "
i}

is finite. The Bergman space, A, is the subspace of all analytic functions
in L?,
The big and small Hankel operators on A with symbol b are defined by

H(f) = ~-P)EH, h(f)=0FfH.

P and Q are orthogonal projections from L? onto A and Ay ={feL?:
fe Aand £(0) =0} respectively.

For 0 < p < oo denote the Schatten-von Neumann ideal by Sy (Soe
is the class of bounded operators) and the analytic Besov space in D by
B, (B is the Bloch space). The main 5 results for the big and small
Hankel operators with analytic symbols can be summarized as follows (see
[A], [Pell, 2], [R1, 2], [S], [AFF] and [J1]).
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