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1 K
<o 3 Mrouts = fillwrs T lillzoe dy — 0
" Jyls i=1 ket

as |y| — 0 since the last integrand is a continuous function of y which
vanishes at the origin. The last inequality above follows by adding and
subtracting 2K —2 suitable terms and applying Halder’s inequality K times.
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Orthogonal polynomials and middle Hankel operators
on Bergman spaces

by

LIZHONG PENGt (Beljing}, RICHARD ROCHBERGY (St. Louis, Mo.)
and ZHIJIAN WU (Tuscaloosa, Ala.)

. Abstract. We introduce a sequence of Hankel style operators H", E=1,23...,
which act on the Bergmen space of the unit disk. These operators are intermediate
between the classical big and small Hankel operators. We study the boundedness and
Schatten—von Nenmann properties of the ff ® and show, among other things, that H k are
cut-off at 1/k. Recall that the big Hankel operator is cut-off at 1 and the small Hankel
operator at (.

Introduction and background. Let I be the unit disk of the complex
plane € and let dA(z) = (1/7)dzdy be normalized Lebesgue measure. L* =
L2(dA) is the Hilbert space of functions u for which the norm

ful = ([ (P aaG) "
i}

is finite. The Bergman space, A, is the subspace of all analytic functions
in L?,
The big and small Hankel operators on A with symbol b are defined by

H(f) = ~-P)EH, h(f)=0FfH.

P and Q are orthogonal projections from L? onto A and Ay ={feL?:
fe Aand £(0) =0} respectively.

For 0 < p < oo denote the Schatten-von Neumann ideal by Sy (Soe
is the class of bounded operators) and the analytic Besov space in D by
B, (B is the Bloch space). The main 5 results for the big and small
Hankel operators with analytic symbols can be summarized as follows (see
[A], [Pell, 2], [R1, 2], [S], [AFF] and [J1]).
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THEOREM A. Suppose b is analytic.

(1) For 0 < p < oo, hy € 8, if and only if b € By.
(2) For 1 < p £ 00, Hy € Sy if and only if b € By; for @ < p < 1,
Hy € 8y if and only if b is constant.

The change in behavior at p == 1 is sometimes referred to as a “cut-off”
(see [JR]). For convenience we say that the smail Hankel operator has a
cut-off at 0. Here we consider the problem raised in [JR] of finding a “mid-
die” Hankel operator which is between hy and Hy and has a cut-ofl between
0 and 1.

In general, we introduce the partial order < between operators from one
Hilbert space to another by

R~<5 ifandontyif R*R<LS*S

Clearly 5 € 8, and R < S implies R € 5. It is easy to check that
hy < Hy. We are looking for a “Hankel” operator H with hy, < H < H,."

Suppose X and Y are closed subspaces of L? and Py is the orthogonal
projection from L? onto Y. If A € X and A C Y then we can construct
Hankel style operators intermediate between hy and Hy by

HFY : X =Y, g~ Pr(bg).

S. Janson and R. Rochberg, in [JR}, considered the operator H/%® with
J = A and R = span{z"z™ : m > n}. They proved that, for analytic
symbols b, HJ® is between hy, and Hy and has cut-off 0. L. Peng and
G. Zhang later in {PZ}, found a strict middle Hankel operator with cut-off
1/2 (see also [Jl] [M] and [Z]).

In this paper, we give a sequence of middle Hankel operators { Hf'}, k =
0,1,2,..., which links Hy and H/F in the following sense:

Hy=H{ = H » ...~ Hf ~ H*' » <o lim HE = HJE
— 00

and each Hf has cut-off 1/(k +1). This is Theorem 5 in Section 2.
The full story is based on a decomposition of L?. To describe the de-
composition we need the differential operator D = 28/8% acting on L%

o

= f:{ker(ﬁfwl)# ker(DFH1)} = (P(4F + A*).

k=0 k=0

Here A® = A. (Recall a similar decomposition L2(8D) = H? -+ H 2, where
H? is the Hardy space.) The AF are copies of A in a certain sense (related
to Laguerre polynomials) and satisfy

Aoa e, oA oA = ker(DFH) .
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Let P, be the orthogonal pro_jectlon from I? onto ker(D’“‘H) For analytic
symbols b our operators Hf, k=0,1,2,..., are defined by

HE: A— (kex(D¥INE, ¢ Hgg — Py(bg) = (I — P)(Bg).

In Section 1 we recall some basic results. In Section 2 we introduce the
decomposition of L? and construct our middle Hankel operators. Sections
3 and 4 contain the proof of the main thecrem together with other facts
about the A% Section 5 includes a look at related-operators and some
results for nonanalytic b. Finally, in Section 6 we collect some remarks and
problems. In particular, we indicate that our results extend to weighted
Bergman spaces. ‘

In this paper, the letters 4, k, m, n, s and t will dencte integers. C
means a positive constant which may be different at each occurrence. The
notation “~” means comparable.

1. Preliminaries and some notation. For « > —1, Laguerre polyno-
mials (sec [Sz]) {L%(x)} are defined by the following conditions of orthogo-
nality and normalization:

k4 o

k )5!9,_’,"’ k:j=07172:"'

(1.1) ij 2)L¥(z)e " “dm—r(aﬂ)(
[b]

Here I'(-) is the classical Gamma function and (k+°‘) is the binomial coef-
ficient. We require that the coeficient of z® in L (x) has the sign (—1)*.

The explicit formula is
LMkt e (—z)™
Z k—-m) m

me=0

L§(a) =

The following result can be found in [Sz].

LeMMA B. Fiz o > —1. The system e=%/22%/2z% k& = 0,1,2,..., is

complete in L2(0, 00).
The Besov space By has several equivalent characterizations. We will
use the following one (see [P1).

LemMa C. Let b be an analytic function on D. Then b € By, p > 0, if
and only if

{297 bx ;| o iomy b0 € -
Moreover, if b € By, then

18]l ~ {27 |b D3|l cam Yizollie -
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Here wg(z) = 1+z-|—z and ;(z),j > 1,15 a tm’gonometric polynomial such
that 1;(29) = 1,%; = 0 outside (291 23+l) and th; (k) is linear on (29-1 979)
and (27,27+1). :

Remark InLemma C, the function bx;(z) is a polynomial of degree
not greater than 2%+7,
The next two results can be found in [Pel2].
Lemma D. If b(z) = 51 b2/, then
2N —1

ankﬂk

k=0
Here my = exp(27ki/(2N)), k= 0,1,...,2N - 1.

LemMa E. For the same b as in Lemma D, we have
2N-1

“b”ip(a;n) = f |b( 7ﬁ)lp‘fmm o Z |b(m; )i -

LemMmA F. Let&,m; € C and & = |ny] =1, 5= 0,1,... Then for p >0

(émAm 2T ), n>0Hp = ||(An n)m, n>0“p
Here (4 ,n)m n>0 18 @ matrix and || - ||, is the Sy (quasz) norm.
Proof. Obvious. =
LEMMA G. Suppose 8 = {8;} and v = {v;} are in I*. Then (Brvn)mnxo
is a rank one matriz and

1(Brmvn)m,nzclle = (18Il 72 -

Proof. Obvious. w

2. Decomposition of I? and middle Hankel operators. In this
section we construct the middle Hankel operators and state our main re-
sult.

For r € [0,1) and n,k =0,1,2,..., let

P (r) = v'n + 1L} (log(r~"=1))
50k N+
= 1 A
v+ mzzo(k_m) oo (logr)™
Ek,n(z) = Pk,n(|z|2)z", Ek,,n(z) = E‘k,n(z) .
In particular, for n > 0
Eon(2z) =vn+12"  Bia(2) =vn+1 ((n+1)log |2/ + 1)2"
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Clearly Py (r) is a polynomial in logr of degree k. Changing variables
in (1.1), we get

1
(2‘1) j P’R. T}Pkn. T dr=5jk.
0

Hence we have the following version of Lemma B on L2([0,1)).

LeMMA B'. For any n 2 0, the system Py o(r)r™2, k=0,1,2,..., is an
orthonormal busis of Lz([O 1))
THEOREM 1. The system
Ern(z), k=0,1,2,..

is an orthonormal basis of L2,

3= 0,21,4£2,.

Proof. Every function f in L? can be written as f{z) = f(re¥) =

3 e fu(r)e™ with ||f|* = Eff__w fol |fu(™)|?2rdr. Notice that
Lemma B’ also says the system P i)l B =0,1,2,..., is an or-
thonormal basis for L2([0,1), 2rdr). Thus

ch 0Py, n| (1 Tini .

Hence
w .
flz) = Z Fn(r)et®
n=—0c0
e Z ch’ﬂ_pk’lm(ﬁ)r\nleine — Z ch i n(z .
Nz 00 fws() n=—00 k=0
Let

AF = span{ By n }n>0, AF = span{Ex n}n<o -
By Theorem 1, we have L? = @e,(A¥ + 4%). For k =0,1,2,..., let Ji
be the linear map defined by
Jk:(EU,'n) = Ek;n?
If we extend J; to A by linearity, we get a unitary map from A to AF. This

is why we say that the A* are copies s of 4.
For k=0,1,2,..., let Ay = ker(D*1).

A% A and Ay = AF@ AP e ... 0A% E=1,2,...

n=201,2,...

THROREM 2. Ag =
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Proof, Forn > 0and k > 1, writing log |2]* = log z -+ log Z we find

D((log z[*)*2") = k(log|z|*)* 12" .

These imply 4; D A*@ A" 1@...0 A%

‘We show the other direction by induction. Clearly Ay C A", Suppose
Ay, ¢ AP @ AR @ .. @ A°, If f € Apii, then DFP3f = 0. Heuce
DFtlre A0 = A ie.,

{2.2) D(z") =0,

Dk_Hf Z amFD m(z)

By (2.2) we have D7 E; () = (m + 1)? g m(7), hence

oo
f Z(m+lk+1Ek+3m€Ak
=0

Finally, by induction, we get fe A¥ g A, c A @ Abe ... A% w
Denote by P* and P, the orthogonal projections from L? onto AP and
Ayj respectively. Clearly

(2.3)

. .
-Hr
§=0
‘With this notation the generalized Hankel operaitor with symbol b is
k
HE:A— AL = (@AJ) 9= (I - P)(Bg) =Tg -3 Pi(Tg).
j=0 j=0

LeMmmA 3. Let b(z) = z°. Then

0 if m<s,

PiI(BEym)=3 [m—s+1/ s \ .
" {V m+1 (m+1) Bjm-olz) i mzs

Proof. Since

oo

Pj(_bED,m)( ) - Z(EO m:bEJ: > ¥ ﬂ(z>

n=0

the result for m < s is obvious. Suppose m > s. Then

Pl (_on,m)(z) (EO ms bEJ m— B) J,m-'ﬂ(‘z)
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Direct computation yields

(E('),'N’Hb'laj,’rnmﬂ) = f vm -+ 1z"F8 j,m_sﬂziz)f"”"s dA(z)

»

1

"\/m—iwlx/m—-w-lz:( k)w(m~:+l frm (log r)* dr
;! J

= \/crra,~+'-1\/'rnm~_.9+ljz<, )(_, )k(m“5+ 1)*
oo M= (m + 1)k+1

i
w--\/m+l\/7‘n,——s+l—m~«_( 2 ).-

+1\m+1
LemMa 4. Suppose b is analytic and k =0,1,2, ..
(1) Hf = HFY - HIR,
(2) litmpgosng HY = HJE

. We have

(in the weak operator topology).

Proof (1) follows from the definitions. For (2) we only need to check
the monomials. Let b(z) = 2™ and g(2) = 2™ If m > n we have clearly
Py(bg) = 0. Hence Hf(g) = HJ%(g) =bg. If m < n, since | H/E(g)| = 0
we only need to show '

Jim |HE ()] = 0.

By definition we have

Lk
[ E# (9)|* = IBall* = |1 Pe(Bg)l* = lIbgl® = > 117 (Bg) |2

7=0

f |zm+'ulﬂ dA(Z)

I

u n m+1
Z n+l 29 T2 f | Ej pomrm (2)[* dA(Z)

J=0
1 z’“: (n ~m + 1)m?
= 'nm+“’m+ 1 = (TL‘+‘ 1)23+2 y
hence
1 =\ (n—m+ 1)m%
dm E Q)| = s = ) ey

=0

9 -1
_ 1 n m+1(1_ m 2) —0.m
n+m+1  (n+1)? (n+1)
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Our main theorem is

Then
- lim HY = HJR
h—oc

THEOREM 5. Suppose b is analytic and k =0,1,2,...
Hy=H)» Hl » ...~ Hf = HFT' -

Moreover,

() if 0 <p <L 1/(k+1), then HF € 8, if ond only if b is conslant;
(2) if 1/(k+1) < p < oc, then HE € 8, if and only if b € By.

Using Theorem A and Lemma 4 we see that we are reduced to proving
that if b is analytic and k=10,1,2,..., then

(cut-off) if 0 < p < 1/{k + 1), then Hf € S, = b is constant;
(8, estimates) if 1/(k+ 1) <p <1, thenbe B, = Hf € S).

‘We prove these in the next two sections.

3. The cut-off. We now compute the matrix elements of the operator
(HEY*HE on A with respect to the standard basis.

LEMMaA 6. Let b(2) = 3 oo be2®
{H](Bom), HE (Bon))

‘"me by ———————- ntl

. Then

= —!—n—t-i—l
N Z T b \/m—l-lx/n—l-l((Trr,*t)(fn,—wt))FH'1
m—tn—t .
0<t<min(m,n) m+n-—ti+ 1 (m - 1)(” + 1)

Proof. By the definition and (2.3), we get
(Hy (Bom), Hy (Bon))

_ Z bbt<z Eom — ZP? (2°Eom), 2 Bom — EP” 7 FO,,)>

5,t=0 =0

s k
Z wgsbt ((ESEO,m: 2"t-EO,w.> - <EaED,m; Z Pj(ztEO,'n.)>
§=0

s, =0
— <i0Pj(§5Eo,m),§tEo,n> <ZPJ(stom i (EtEgm,)>)
j= s =

(replace s by m —1t and ¢ by n —t)
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min(m,n)

= s (7 BB
f=—00
k
- Z(PJ (Em—tED,m)rPj(zn_tEO,n») = Z+ Z
J=0 <0 0<t<min{m,n)

For t < min(m,n), a direct computation yields

vm+1lyn+1

EmﬂtE], En»— .
< O m+n—t+1

tEO,n) =
If t < 0, by Lemma 3 we have clearly
(Pi(z™ Ry ) Pi(z" B, n)) =0

If min{m,n) =t = 0, again by Lemma 3 we get

k
Z(PJ( m {AE() m) P7(zn f‘11’0 n))

i=0
(R G5

"L
- (5859 )

_ (m—t)(n—t)
- (m+1)(n+1)
Hence
vm+lv/n+1
Z memtbnﬂt man—t+1
10 1<O
and

Z == Z .Em-v-'tbn—t ViIm -+ v 'n +1

oLt S min(rn,n) Dgtgmin(rm,n)

t+1

1
* (m+n~— t+1

- T B t\/am\/‘“'n+1(<m—t><n~t>)’““_.

tman~-t+1 \(m+1)(n+1)

0<tgmin(rm,n)

LEMMA 7. Let b(2) = 2°, 8 2 L.
Y(k+1).

65

)'1.

ECYCESY (1 B (f:ilf%ﬁﬁl?))m)

Then Hf € Sp if and only if p >
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Proof. We can compute the singular values of HF explicitly. In fact, by
Lemma 6 we know the matrix ({HF(Eam), Hf (Eon)))mmzo i a diagonal
matrix with the (m,m)th entry

ﬂ ifm<g
Lo o 1 1]
(HE(Bom), HE (Bom)) = ¢ et g2h42 .

if m > s
(m+s+ Om+ et 00

; 1 ifmm < s,

T lm+1)7%2 ifm > s,

Hence for this choice of b we have
s ]
VHEWE = G B ~ S (o 1)~ (00
m=0

and the lemma follows. m

Proof of the cut-off. Suppose b is an analytic function in D such
that HF € S, for 0 < p < 1/(k+-1). We prove b is a constant by showing its
jth denvatlve 30)(0) is 0 for § = 1,2, ... The use of the maximum principle

for Sp, p < 1, which plays an important role in the following comes from
[PZ] and has its root in [J1].

For (| < 1, let
j-1 b(.q) (0) i
b(j)(z) = e - par S 2" ¢™ A,
b(a)(g) i _
Tz if ¢ =0.

Clearly the map { i~ béj ) is analytic and the map ¢ — H f(cj) is anti-analytic

in . If || = 1, by the rotation invariant property of HF (this is clear),
HH:U) llp == ”HI?H:D <0

The maximum principle yields that H @ € 8, for all (f € . In particular,

this implies HE b € Sp. Hence by Lemma. 7, b(0) =

Assume we have already proved that b(*)(0) = 0 for s = 1,.. ., 7. Re-
peating the above argument yields
“H:EJ'-O-I) > = ”H!?”p <o for [(] = 1.

Thus H:g,.+1) € Sp and this implies 501 (0) = 0. w
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4. S, norm estimates. Notice that the second part of Lemma 4 says

Bg =Y PI(Bg) + H{®(g).

J=0

Define T,'f by Tj(q) = PI(bg). Another way to think of HF is to write

i (g) =g ~ ZI-” by) = ZT"(Q + HI®{g).

Jusl) Fomhi-1

Hence to finish the proof it is enough to show E?f’__k 1 T} € 8, if b € By for
k+1) <pst

For convenience, let Tj = 3077 ? ep1 1. By Lemma C and the remark
that follows it we only need to qhow the following theorem.

THEOREM 8. Suppose b is an N-th degree polynomial and 1/(k +1) <
p < 1. Then

(4.1) [ Telt} < CNIbIL(sm)

The idea of the proof is the following. Consider the partition for.A:
A= @, U, with Uy = span{lipn : n € L}, where Iy = {j : tN £ j <
(t+ I)N} Clearly Ty = 3 iey Thlv,. Because p < 1, we have

o0

< Tl

t=0

(4.2) I1T%l15

Different; technigues will be used to estimate ||T%|p, |5 for small ¢ and for
large £. When # is small we have
LeMMA 9. Suppose b(z) = E;\Lo bz andt=0,1,2,.

[ Tklw, Hﬁ <O+ 1)p/2N“bH§,p(am)-

.. Then forp <1

= E.;',:*k-i;l T¢ |y, and p < 1 we get

Z 173 Lo 1B -

J==k +1
The following lemma gives the desired estimate for the individual terms.

LeEMMA 10, Suppose b(z) = Ei\r:"()l boz®, j 2 k+1,t>1andp <1
Then .

When ¢ is large, using Tslu,

(4.3) 1 Tlo |p

. 23/
131 < 0 (5 ) N1MMEcam-

Using these lemmas, here is how to finish.,



icm

68 L. Peng et al

Proof of Theorem 8. Choose an integer M such that MP > 4,
Then (4.2), (4.3), Lemmas 9 and 10 yield

o0
T Z“Tk:le 2= Z >
t=0 t=M
< 3 e PN Bl oy + ZH > Tl
=0 =M ket
< C’MHP/EN“b“LP op) T Z Z O(t?’) NHb”LP (o)
t=M j=k1

=M

Proof of Lemma 9. Because Ti(constant) = 0, we can assume
b(0) = bg = 0. It is clear that T} < Mj. We cnly need to show

1Mslu 12 < Ot + 1P 2 N{BIIE, o)

By Lemma D, for , = exp(2rsi/(2N)), we have
2N-1

Mb EszJ—ZZ ansns zj:

hence

p 2N-1
Il < (g7 ) 3 na)!”HZnJMzslm

By Lemma E, we only need to show

N
(4.4) H S niMuly, | < o+ 12N
j=1 i
Since
N . N )
(Rt St Bol))

N

= (<Z;77§Mzs‘ (Eo,m%i”gMEj (EO'“)>)
j= §=1
(& e LT
(Zm )’mneh

m,nEls

j+n+1

J=1

Orthogonal polynomials and middle Hankel operators 69

( m—n Z \/—m\/ﬁﬁ)mn%

i dtntd

and the matrix

(BT 0 ()

pori G jt+n+l

is a rank one matrix, we have

4

‘p/'l

=1
<§N:"7 d My lu, (Bo,m Z%Mza I, (o, n)>) prz

1 2
j=1 j=1 i

N
B (nm "ml Z +1) I
mynels

N /2
_\/"'—_ »
== ( ™ 2—; n+1)mn6h

(Ze)"(T(z

(\/H—lN\/H—l (ZI( N+”+1)2)1/2)p/2;

To complete the proof of (4.4), and hence of the lemma, we need only
estimate the sum

9 (BHLN 2
No#ntd13)? 01 N—+—m+1)
PASURLAUSS PV AN

Z(log 7] ) f log x4 1 ¥

nél, LN
[
.,,,,NJ (bg

Josn (e

Proof of Lemma 10. By Lemma 3 we have

n+1 m-—n)j
m+1\m+1/ "

pf2

p/2

(by Lemma F)

/2

=)

IA

P——") « (by Lemma G)
n

2
)d’l":ON.l

(4-5) (Tif (Eo,m)s Ejm) =bm—n
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Notice that if m € I, then the right hand side of (4.5) is 0 unless n € T; =
It_ﬁ]_ J I-g U It-}-l-

Let by = 0 for s € [-2N, ~1]U [N + 1,2N], and

2N
b(z) = b{z)2* = z boz* T
s=—2N

Then b is a 4Nth degree polynomial. By Lemmas D and E, for & =

exp(2nki/(8N)), k=10,1,...,8N — 1, we have
1 8N—1~ wj+2N 8N -1
b=y ;) b(€x)Ex N Z b(£r)EL,
j=—2N,<2N +1,...,2N,

and

27 2 8N— 8N —1

[ uera= [ Henr s o S el = o O bEr.

0 0 k=0 k=0

Now for m € I and n € f; we have

8N -1
1

=S 1 —n\’
a) = i Z b€k )¢ \/;Iﬂ(z'i":)

Bifw( ().

(T (Eo,m), E;,

Hence
1T |, 1
= ”((Tg (EU m), E'm))meh,neﬂ “g

p BN=-1 i ,
n+l fm-—n)’ e
< (%) > per | (e 222 (232) ) -
m m+ malynel,llp
By Lemma F we have
H( y m n+1(m_n)j) p
m+1 mEIu"-Eft P

|0/ ”

m+1\m-+1 ) )méh neh llp
(g () )

mely,ncldlp

r
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and using the p-iriangle inequality and Lemma G we can continue with

NN (O NP )
: Z: (:)I ( 2. %ﬁ%) /2( Yo (n+ 1)(tN~n)2a'~2s) /2

mel nel,

() <)
Hence

1 p BN -1 P J
il < () 3 e () < o(2) Wbl o

154N

bz}

5. Other operators. In this section we look at two other operators
related to the decomposition we have been using. '

Recall that P¥ is the orthogonal projection from L? onto A¥. Similarly,
let P he the orthogonal projection from L? onto A*. Consider the operators

e A A%, g - PR (B),
TI:U\ A A A* g PP(Bg).

h{ and 7" can be viewed a8 generalized small Hankel operators and
Toeplits operators. In fact,
RO =k, and TV =T;.
Let b(z) = Yoo bsFli s (2) € A'. Then

WD (B ), Brm) = (P*(8Bi ), Brn) = {0Bjm, Ban)

) .
= Z-b-a (Ej,mEle,na Et,s) = bm+n<EJ"=mEk,mEt,m+N> -
g0
LumMA L1 If k- § = t, then
| 8 (m o 12 (n 4 LRI
(L’;,m Ek,«mEt,rra-‘}-n) SNy} t+1/2
Wil mtntl)

Proof Using the cle:[initionq we find

f Pjm

Because Pjp{r)Pualr) is a-polynomial in logr of degree j -+ k = t, by
Lemma B', we have

(Ej,vrr,Ek,m Eﬁ;,'mul 50 Pk 'ﬂ T)Pf m--n (T)Tm+n dr.

an 8, m+‘n

=)

Pa,m(T)Pk n
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with appropriate constants cs. The tth order coefficients of P 1. and
P mPrn are
(m+n+ 1)t+1/2 (Tr&"i* 1)j+1/2(n + 1)k+1/2
4 glk!
respectively. We have

£ (m 4+ 1)IT/23(n 4 1)et1/2
TR (mn 1)

Hence using Lemma B’ we get

Ct

.

(Ej:mEk,mEt.m+n> = f chPa,m-}-n(T)Pt,m—l—n (T')""m-l-n dr=1c;. m
0 a=0

LEMMA 12

mAy/m+ v+ 1

<EO,mEk,n7E0,m+ﬂ> = (m+n+1)k+1/2 '

Proof. Strajghtforward. m

Recall that J; is the unitary map of A” = A4 to A®.

THEOREM 13. Suppose 0 < p < oo. Then

(1) forb € A* and k+5 =, B € 8, if and only if J(8) & By;
(2) forb e A, B € S, if and only if b B,

Proof. These are consequences of Lemmas 11; 12 and the results in
[Pell] and [S! about operators which have matrix entries, ay, of the form
which shows up in Lemmas 11 and 12. =

THEOREM 14. If b is analytic and k > 1 then

(1) for 1/k < p < oo, Tb(k’o) & S, if and only if b € By;
(2) for 0 < p < 1/k, T,_.Ek’o) € 8p if and only if b = constant.

Proof. Suppose b(z) =37 bn2z™. Then
n+ 1 (m - n) k‘)
m+1im-1 m,n?_()'

For (1), Section 4 gives the proof of “if*, we now prove “only if”.

Denote the matrix of (5.1} by My. Let {en}n>0 be an orthogonal basis
of 2. For j > 0 and fixed ¢ € I, consider

(51)  (THO (Bom), Brn)mmzo = ('Em_n

60 = W= 1PV S+ 17/, 0.

n=0
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It is easy to check [¢;({)lliz = 1. Let {{;} be a &-lattice in D. By a result
in [R2]} we know that, for & small enough, {¢;((:)}iz0 is WO in 1% (see [R2)]
for the definition of WO and related properties).

Computation shows that for ¢ > 0

Midu()) = (1~ |62 DFHENpolcs),
and thus
(M (dn($e)) o(Ce)) ~ (1 - |GIR*DFB(C) .

Hence for p > 1/k, by a result in [R2] if p > 1 and by Semmes’ method in
[S]if p < 1, we have

STIBHE)IM (A - 16" < Cl|Millp = Clads.
pa==(}
This is equivalent to
[ 19O (1~ ¢ 2dA) < OlITy ™2
V]

i

pe. [l < CZE -
For part (2), as in Section 3, it is enough to prove it for monomial gymbols
(see Lemma 7).
Let b(z) = z*. Then nonzero entries in the matrix (5.1), which are entries
on the subdiagonal (n - s,n)}, are

\/ n 1 8 ), n=0,1,2,...
ntgtl\n+s+1

: k,
These numbers are also all the singular values of Tb( %), Hence

() . n -kl 8 ) ) ~ E n4 1),
i+ ”Z( nts+ti\n+s+1) ) ﬂ,zo( )-

re=l)

This implies fl"b(""'”) € Syifandonly if kp> 1. w
THROREM 15, If b s in A* and t+ k= j, then
(1) for 1/ < p < oo, T{fk""‘) € Sy if and only if JTYHb) € By;
(2) for 0 < p < 1/4 19 & 8, if and only if b= constant.
Proof. Suppose b(z) = 3wy by n(2). By Lemma 12 we have
((Tb(k’j) (Ejmh)a Ek,n))m.nzo

Hkl ( (m— )2 (n o 1R
s (bmmn, (m + 1)d-+1/2 man>0 .

=7
The proof is now similar to that of Theorem 14. m
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Remarks. (1) Similar results can be obtained for the weighted space
L2(dAY) with dAl(2) = I(a + 1)71(=log|2|*)*dA(z) or dAP(z) =
(@ + 1){1 ~ |2*)*dA(z), o > ~1. For dA® the results follow by straight-
forward extension of what we have done, using the Laguerre polynomials
L%, On the other hand, dAZ is the measure generally considered when
studying “weighted Bergman spaces”™. Although the Laguerte formalism
does not work well in that case, the results involving dA((f) can be derived
from those with dAS’ by showing that the two assoclated operators differ
by an operator which can be estimated well. This general theme, that some
of Hankel and Toeplitz operator theory is rather stable under mild change
of measure, is developed in [J2]. In particular, se¢ Theorem 2 and Example
4 of [J2]. Alternatively, dAY) can be studied by using Jacobi polynomials
(see [PXI).

(2) We conjecture that if b is nice then H} is in the weal Schatten—
Lorentz space Sy /(k1),60- Lhe case k= 01is in [N].

(8) Similar spaces can be studied on the half plane. Some results are
in [JP].

(4) Ay is a closed subspace of L% characterized as a solution to a simple
PDE. It would be interesting to know about its function theory, in particular
how the theory varies as a function of k. As a simple example, how does
SUP,ea,,(g=1 | V9(0)] vary with k7 '

kg . .

(5) Tb( ) with b in A* can be viewed as generalized Toeplitz operators.
For t + k < j, it is easy to check that Tb(]” ) is a zero operator. Qur
results are for t +%k = j. Fort+k > j > 0, the situation seems more

complicated. . One can also study the family of generalized Hankel type
operators H¥ : A7 — Al defined by

ki . —
H{"(g) = (I - B)(Bg).
HFO i just our HE.
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