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Minimal incomplete norms on Banach algebras

by
MICIHAEL J. MEYER (Atlanta, Ga.)

Abstract. We atudy the family of all not necessarily complete algebra norms on a
semisimple Banach algebra ag a partislly ordered set and investigate the existence and
properties of minimal elementa.

Introduction. Let 4 be a semisimple algebra over the field of complex
pumbers. Recall that an algebra norm on A is a norm which alse satisfies
lzyll € ||| || for all z,y € A. From now on all norms will be assumed
to be algebra norms. A famous theorem of B. Johnson states that any two
complete norms on A are equivalent, We will investigate what can be said if
completeness of one or both the norms is dropped or replaced by some other
condition, (The conclusion of equivalence is then weakened considerably.)
A similar investigation is conducted in [12]. Our methods differ from [12]
in that we study the family of norms on A as a.partially ordered set and
investigate minimal elements.

Let | |, |j || be norms on A. Following [12] let us say that [ | majorizes | | if
(0) x| < x| forallze A,
and say that || | dominates | | if
(1) le| € C|z|| for all z € A and some constant € < co.

Majorization defines a partial order on the family of all norms on A. Dom-
ination defines a partial order on the family of classes of equivalent norms,
that is, on the family of norm topologies on A. Even though {1) is more
interesting we have to work with (0) which is more amenable to minimality
arguments. A connection is given as follows:

ProrosiTioN 1. Let | |, || H be norms on A and suppose || || dominates
||. Then there is a norm | |o on A which is equivalent to | | and such that
| || magorizes | |o. :
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This follows if [3, Theorem I.4.1] is applied to the bounded semigroup
Bi(|[ |} = {= € A: [z|| < 1} in the normed algebra (A, | |). See also [11].
From now on we consider the partial order (0). A norm | || is minimal in
this order if it satisfies

(2) |z} <|lz| for all z € A implies |z}=|z|| forallu e A,

for all norms | | on 4. Minimality of norms in the sense of majorization
has been considered by several authors. In [2] it is shown that the complete
.norm on A is minimal whenever 4 is a C*-algebra, a closed subalgebra of
the algebra B(X) of all bounded linear operators on a Banach space X which
contains all finite rank operators, or a modular annihilator B*.algebra, and
in [5] an explicit description of all minimal norms on certain subalgebras of
B(X) is derived. Minimality of the complete norm on a C™*-algebra ig also
used in [11].
Call two norms || [[,| | on A consistent if the identity map (A, ]| ||) —
(A, | 1) has closed graph. Equivalently || ||, | | are consistent if the set

C={a€ A:|z,]| ~0and ja -z, 0
for some sequence (z,) C A} = (0).
Notice that C is a two-sided ideal in .4 which is closed in both norms || |,
| | [10, IL5]. C is called the consistency ideal of || ||, ] |-

‘T'wo noncomplete norms on .4 cannot in general be expected to be equiv-

alent. However, they may satisfy one of the following weakenings of equiv-
alence: '

(A) || Il | | are consistent.
(B) The closed unit ball of || || is closed in | |.

(C) |l II, | | dominate a common norm.
(D) } | dominates || |

It is clear that (D)=-(B)=-(A) and (D)=>(C)=>(A). It is shown in 12,
Lemlpg 3.2] that (A)=(C) if one of the norms is complete. Below we give
conditions on the norms || {, | | as well as the algebra A which imply one of
the conclusions (A)~(D).

Call a norm || || on A a Q-norm [12] if it satisfies ||z > oA{z) for all
z € J‘L where p4 denotes the spectra) radius in 4. This property is often a
sufficient substitute for completeness [8]. Let us call a normed algebra A a
Q-normed algebra if the norm on A is a Q-norm.

Let us first investigate minimal elements for the partial order (0) on the

family of Q-norms only. A Q-norm || || is minimal in this order iff it satisfies
(2) for all Q-norms | | on A.

THEOREM 1. Suppose that A is a semisimple Banach algebra. Then
(A) Any two Q-norms on A are consistent.
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(B) Bvery Q-norm || || on A majorizes o minimal @-norm.

(C) The closed unit boll of a minimal Q-norm is closed in any other
Q-norm on A.

(D)} A minimal Q-norm is continuous with respect to any other @-norm
in which A is o barreled space and in particular therefore with respect to the
complete norm on A,

(E) The completion of A in ¢ minimal Q-norm is semisimple.

(F) Let || || be a minimal Q-norm on A and denote, for each primitive
ideal P in A, by || ||p the quotient norm on A/P. Then ||zj| = supp |lz| 5
for all 2 € A,

Remark. (A)is well known. T. W. Palmer (personal communication)
noticed that an argument of T. J. Ransford [9] can be modified so as to
yield a simple proof of (A). We include the argument for the convenience of
the reader. Notice that (C) represents a considerable strengthening of (A)
for minimal Q-norms. (D) and (E) show that a minimal Q-norm is smooth
in the sense of {12]. Thus Theorem 1 implies [12, Theorem 3.4]. All the
algebras loc. cit. are permanent Q-algebras, that is, all norms are Q-norms.

Call a Banach algebra A with complete norm | | a weak B¥_algebra if
for each ¢ € A with |a| = 1 there exists b € A with [b| = 1 and ga(ab) =
g, where € > 0 is a constant independent of a,b. Notice that A is then
semisimple.

COROLLARY L. If A is o weak B¥-algebra then every Q-norm on A
dominates the complete norm. '

The weak B#-condition is satisfied for all closed subalgebras A C B(X)
which act uniformly trangitively on X in the following sense: for each z,y €
X with ||z]| = ||yl = 1 there exists A € A with |Alsp < ¢ and Az =y,
where € is a constant independent of ,y. This is always true if A contains
thie finite rank operators.

Corollary 1 should now be compared with the foijowing _resui’o by B
Yood [18]: If A is a closed subalgebra of B(X) which contains the finite
rank operators, then every norm on A dominates the operator norm. Our
conclision s weaker but we do not assume that A has a socle.

We now wish to consider the family of all (submultiplicative) norms on
A. The pointwise infimum of a chain of norms is a seminorm but 1.t may
have a nontrivial kernel. Thus in order to ensure the existence of minimal
norms we have to iropose some condition on the underlying algebra.

Define for @ € A the permanent radius gp(a) by op(a) = infy gg(qb(_a,)),
where the infimum is taken over all (not necessarily continuous) embeddings
¢ of A into another Banach algebra B. Thus :

ot v nyl/n
gp(a)mmfilTlglg lle™ 1™ s
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where the infimum is taken over all norms on A. [3, [.4.2, p. 18] shows that
in fact pp(a) = inf||a||, where the infimum is taken over all norms on A.

Now let us say that the Banach algebra A satisfies condition (P) if every
nonzero closed ideal I in A contains an element @ with gp(a) > 0. Examples
of elements of positive permanent radius are furnished by the following

ProrosrTioN 2 ([7]). Let A be o Banach algebra.

(1) If a € A is a quasidivisor of zero {az = = or xa = x for some
nonzero x € A) then gp(a) > 1.

(2) If a,h & A are such that eh = ha is a quasidivisor of zero then
op(a) 2 1/0a(h).

(8) op{a) = dist(C,0), where C is any connected component of Sp 4(a).

Property (P) guarantees the compactness of certain families of norms
and thus the existence of minimal norms. We have the following facts:

THEOREM 2. Suppose that the Banach algebra A has property (P).

(A) Any two norms on A, one of which is a Q-norm, are consisient,

(B) For every (finitely valued) function f: A — [0,+00), the family Ny
of all norms on A which satisfy ||zl < f(z) for all x € A is compact in the
topolegy of pointwise convergence on A.

(Q) Every norm on A majorizes e minimal norm,

(D). The closed unit ball of a minimal norm is closed in any other norm
with which the minimal norm is consistent.

(E) Bvery minimal norm is continuous with respect io the complele
norm.

(F) If B s the completion of A in o minimal norm, then every nonzero
closed ideal in B has nonzero intersection with A.

(G) The completion of A in a minimal nerm also has property (P).

CoOROLLARY 2. Suppose that A i3 minimally normed, that is, the com-
plete norm on A is itself minimal. Then the following are equivaleni:

(A) All norms on A are consistent with the complete norm.
(B) All norms on A are consistent.

(C) All norms on A are Q-norms.

(D} All norms on A dominate the complete norm.

(E} A has property (P).

If A is a C*-algebra or a closed subalgebra A C B(X) which contains
the finite rank operators, it is not hard to show that .4 is minimally normed
i2] and has property (P) [6]. Thus Corollary 2 yields a new proof that all
norms on A dominate the complete norm. This was shown previously in [4]

for C*-algebras and in [13] for closed subalgebras .A C B(X) which contain
the finite rank operators.
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2, Proofs. We need the following lemma by T. J. Ransford [9]. Com-
pleteness of the norm can he relaxed to the Q-property without change in
the proof.

LuMMa L. Suppose that (A, ] ) 45 o @-normed algebra and that p(A) =
S ag M iy« polynomial with eoefficients ay € A. Then for every B> 0 we
have

pA@(1))* < wup palp(A)) sup ea(p(A).
[Ajsit Al=1/R

LEMMA 2, Let || || be @ norm on A, B the || ||-completion of A and I € B
an ideal in B, Note that 2|, = infie; 2 + D], © € A, defines a seminorm
on A with | 1z < |0 470 17 == || then T == (0).

Proof. Assume that 2], = || for all 2 € A and let b € I. Since
AC Bis dense we can choose a sequence (zn) € A such that z, — bin B.
Then for all n 2 1 we have

fnfl = Noally € fea bl =0,
L6 @ = 0 1 A It follows that b= 0. w

Lemma 3 (Aupetit [1]). Let A, B be Q-normed algebm._s, p: A4~ B
a homomaorphism with dense range and o € A. If there erists o sequence
{en) © A such that wy - 0 in A and ¢(z,) — @la) in B, then o(éla)) = 0.

This is contained in [4]. T, J, Ransford gave a striking simplification of
the proof in [9], The argument is very gimilar to the proof of Theorem 1(A)
below.

Proof of Thoorem 1. (A) Let C be the consistency ideal of the
Q-norms | || and || [|1. We wish to show that C = (0). Let a € C and choose
o, € A such that ||, - 0 and [jz, - ally ~ 0. Sgt p(A) = Azp + @ — Tn.
Then p(1) == a and hy Ransford’s lemima for every R > 0

QA([L)?’ < wup palAan +a-- M) SUP PN + 0 Tn)
[A] =t [Al=1/R

< wup || At e - o] sup {|Azy 4o Znj1
1|t |Al=1/R

1

< (e Dl + Lol

Let n T oo to obtain

ol + lla - a:nul] -

2al0)? < JolC/R, |
where ¢ 1= sup,, ||@nl]s. Now let R T 0o to obtain QA(a)Q = 0. Thus C is an
idenl in A on which the spectral radius vanishes. Now semisimplicity of A
implies C == (0).
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(B) The (pointwise) infimnm of a chain C = {|| ||, } of Q-norms is easily
seen to be a Q-norm, Thus (B) follows from Zorn’s lemma.

(C) Let || || be a minimal Q-norm on A and B = {z € A : ||z| < 1}
its closed unit ball. Suppose that || ||1 is another Q-norm, let D be the

| l1-closure of B and ||| ||| the Minkowski functional of D,
liall] = inf{t > 0:¢t"'4 € D}.
Since D is an absolutely convex semigroup in A it follows that |[| ||} is a

submultiplicative seminorm on A. Suppose that a € A and |||al|| = 0.
Then sa € D for all s > 0. For every integer n > 0 choose 2, € B with
(=% _*'n.aﬂl < 1. Then ln/nl| = 0 and ||z, /n — all; — 0 and 50 @ is in the
consistency ideal of || |, || {[1. It follows from (A) that ¢ = 0. Thus ||| ||| is
anorm on 4. We wigh to show that it is a Q-norm. Since I ig its unit hall
it will suffice to show that a € D implies p4(a) < 1. 7

Let a € D and choose z, € B (llznf| < 1) such that [la -z, — 0.
Multiplying the z, with suitable scalars o, < 1, o, — 1, we mag'r z;ssumo
that [z, < {ell, for all n > 1. Using Ransford’s lemuna and arguing as in
the proof of (A) we obtain for every R > 0 the inequality

eaie)® <1+ Dleal + ol Fhenls + Jo - el

Fix R and let n 7 co to obtain

04(@)? < [(R+1) + all5 o]

Now let B T co to obtain g4(a)® < |la]|,. Since D is a semigroup we may
replace a by any power a” to obtain g4(a)? < ||a™||¥/™. Let n T co. If B

denotes the Completion Of ./4. in H i 2
1 We obtain a)e < a a} and

Thus ||| || is 2 Q-norm on 4 and clearl inirnali
y IHl € || ||, By minimality of
| Il we have ||| {|| =1 || and hence D = B. Thus B is || [|;~closed. ’
" (Dl) L;t I || be a minimal Q-norm and || ||, any Q-norm on A. By (C)
e closed unit ball B = {a € A : fja|]| < 1} of || || is closed and henge

a barrel in the algebra (A, ]| |l1). If this latter space is barreled, B is a
|| |1-neighborhood of zero. It follows that || | is continuous with respect to

I lla-

(E) Let || || be a minimal Q-norm on A4, B th i

! | _ , e || |[-completion of .4 and
J ; iladb(B) }he Jacobson radical of 8. Since || || is a Q-norm, we have for all
T , e , — — }. .
P QA(:c.) o5{x) = gg(z + b) < ||z - b||. Thus, in the notation

lell; = izt o 45, ae A
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ig a Quorm on A Clearly || [ < | [ By minimality it follows that
I 1l == | . Lewma 3 now implies that J = (0).

(F) Let || || be a minimal Q-norm on A Every primitive ideal P in A is
| [-closed and the quotient norm | Ip on A/P is again a Q-norm [8]. By
semisimplicity of A, | | == supp|| [|» is & norm on A. For each € A we
have

gAlw) = Hup paspie -+ P) & sup o+ Plip = |a|.
Thus | | is & Qenorm on A. Since | | € || ||, we have | | = || ||, by minimality
of || |- w

Prool of Theorem 2. (A) Let || [,, [ | be norms on A, assume that
|| || is'a Q-norm and let B be the | |-completion of A. By Theorem 1 there
exiats & continnons Q-norm (for example a minimal Q-norm) | ¢ such that
[ o £l Il The respective consistency ideals satisty C(|| |I,1 1) € C(| o, 1 D-
Thus consistency of || [lo, | | implies consistency of || ||, | |- We may therefore
assume that | || 18 condinuons,

Let C be the consistency ideal of || |, | | Then C is closed in both
porms and thus in the complete norm on A. Let a € C. Then there exists
a sequence (my) in A such that @y ~ 0 in the Q-normed algebra (A, | 1)
and @, ~— « i the Banach algebra 8. Lemma 3 applied to the inclusion
homomorphism A = B yields gn(a) S gn(a) = 0. Thus C does not contain
elements « with gy(a) > 0. By assumption on the Banach algebra A we
must have ¢ = (0).

(B) It will suffice to show that Ny is closed in the compact product space
Z = [Tpeall ()] (in which it is contained). Suppose that || || is in the
closure of Ay in Z and choose a net (| (1) € Z such that |||, — [lzfj for
allz ¢ A Then | || is & seminorm on A which satisfies ||z]| < f(z) for all
s € A Tt remains to be shown only that J = ker(|| {|) = (0).

Assume I 5 (0) and let J = T be the closure of I in the complete norm
of A. By assumption on A, J contains an clement a with gp(a) > 0. We
wish. to derive a contradiction.

Let B he the completion of A in the seminorm | | and ¢ : A — B
the natural homomorphism. B is constructed as usual as the algebra of
equivalence classes of | ||-Cauchy sequences in A and this identifies elements
in the kernel of || ||, Thus B is & Banach algebra and the homomorphism ¢
satisfles ||@(2)|| = ||z|| snd thus ker(¢) = ker{|| II)-

For ench A let A denote the || ||x-completion of A. Fix n = 1. For
each ) we bave [lo"[}/™ 2 o4,(a) 2 en(a), and hence also [a™|IY™ =

limy o] Y™ 2 gp(a). Tt follows that
N T nj|L/n o 13 n|i/n S 0.
es($(e)) = lim [lg(a)"|["™ = lim lla”]| 2 o) >
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On the other hand, choose a sequence (ay,) C I = ker(¢) such that a, ~ a
in A and set z,, := a—ay. Then ¢(z,) = ¢(a) for all n > 1. We have x,, — ()
in A and ¢(z,) — ¢(a) in B. Now Lemma 3 implies that gg(é{a)) = 0.
This is the desired contradiction.

(C) It will suffice to show that every chain {{| [} of norms on A is
bounded below by a norm on A. Assume {| |» < | ||, whenever A < p and
fix an index Ap. For each A < Xy let Ay denote the family of all norms ou
A which satisfy [[¢|] £ {lz], for all 2 € A. Then {Ny: A € Ay} in a family
of closed subsets of the compact set N, which has the finite intersection
property. Thus (<, M # @ Every norm in this intersection is a lower
bound for the chain {|| ||x}.

(D), (E) As in Theorem 1.

(F) Suppose that B is the completion of A in a minimal norm || || and
I a closed ideal in B. Then ||a||; = infgzer ||o — z|| defines a seminorm on A
with || 7 < || ||. 1N A = (0) then || |7 is a norm and thus || ||z = |} ||. Tt

follows from Lemma 2 that T = (0).
(G) This follows from (F). m

Proof of Corollary 1. Every Q-norm on .4 dominates a continuous
Q-norm on A. It will therefore suffice to show that every continuous Q-norm
on A dominates the complete norm | | on A. Assume now that || || is a
Q-norm on A and that |[a|| < D|a| for all a € A.

Let a € A, |a| = 1. Choose b € A such that {b| = 1 and elab) > ¢ where
the constant £ > 0 does not depend on a. Then

e < [lad]| < [lafl lo]l < JallDle] = Djlaj} .

Thus ||a]| = 1 implies jlaff > ¢/D. It follows that || || dominates the complete
norm | |. : '

Proof of Corollary 2. We show (A)=(D)=(C)=>(B)=>(A) and
(C)<>(E). In the first circle of implications only the following is nontrivial:

(A)=>(D): Let | | be a norm on A and || || the complete norm. By [12,
Lemm.a 3.2] both norms dominate a common norn | |1 By Proposition 1, || ||
majorizes a norm | | which is equivalent to | |y, By minimality, || {| = | |a.
Hence the complete norm is equivalent to | |; and go | | dominatey the
complete norm.

(C)=>(E): If all norms on A are Q-norms, then on(a) = gafa) for all
elements o € A. By semisimplicity of .4 every nonzere ideal in A contains
an element a with p4(a) > 0.

(E}=(C): From Theorem 2(C),(E) and Proposition 1 it follows as above

that every norm on A4 dominates the coraplete norm and is therefore a
Q-norm. =
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