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On the multiplicity fanction of ergodic
group extensions of rotations

Ty
G M GOODSONT (Towson, Md.), J. KWIATKOWSKI] (Toruni),
M. LEMANCZYXK](Tormt) and P. LIARDET§ (Marseille)

Abgtract. For an arbitrary set A C N satisfying 1 € A and lcm(ml,mg_) €A
whenaver #y,mgz € A, au ergodic abelian group extension of a rotation for which the

yange of the multiplicity function equals A is constructed,

Introduction. In this paper we study the set My of all essential spec-
tral multiplicities of an ergodic measure preserving the transformation T' of
a Lebesgue space (X, B, ). My is defined as the essential range of the 'mulm
tiplicity function with respect to the maximal spectral type of the associated
unitary operator _

Up: L2(X,u) - LA(X,p), (Urf)x)=f(Tz), zekX.

Thus Mo is a subset of the set N of all positive integers apd infinity.
Many examples in ergodic theory have Mp = {1} (e.g. irrational rota-
tions), My = {ce} (e.g. Kolmogorov automorphisms), Mp = {1,00} (e.g.
affine transformations). Trangformations with My = {1', k} have been con-
structed ([16]), for each positive integer k, and also with My = {1,2k},
where 2k corresponds to the multiplicity of the Lebesgue component ({1,
(9], [12]). . _ ”

The problem of whether for an arbitrary nonempty set A C N there exists
an ergodic transformation T with My = A seems to be open. Toward t.hfe
full solution. of this ¢uestion, Robingon in [18] has proved that for each finite
et A of positive integers satislying:

i)1eA4,
(ii) lem(my, ma) € A whenever my,mg € A,
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there exists a weakly mixing transformation T such that My = A. The
transformation used by Robinson was a group extension (in fact nonabelian)
of an automorphism Ty which admits a good cyclic approximation. However,
his example is based on generic arguments and it is not constructive. He
showed that a dense Gy set of group extensions T of Tj satisfles My = A,
The main result of the present paper is

THEOREM 1. Let A be a subset of positive integers (finite or not) sat-

isfying (i) and (ii}. Then there exists an ergodic transformation T with
Myp = A.

The transformations employed in the proof of Theorem 1 are ahelian
group extensions of the so-called adding machines. If A is a finite set then
these transformations turn out to be Morse automorphisms over a finite
abelian group (in the sense of [10]). Our transformations are described in
a constructive way and moreover, each of them has a shift representation.
This made it possible to compare the spectral multiplicity and the rank of
special examples of such transformations ([2]). The classical Morse symbolic
dynamical systems over the group Zy = {0, 1}, defined by Keane in [6], have
simple spectra ([7]). Goodson in [3] has constructed examples of Morse
automorphisms over cyclic groups with My = {1,2}. A similar result has
been obtained in [8]. A conjecture arose that the multiplicity function of all
Morse automorphisms over cyclic groups is upper bounded by 2 (formally
the question was raised in [4]). As a consequence of our considerations we
answer that question negatively.

'THEOREM 2. Let A be o finite set of positive integers satisfying (i) and

(ii). There emsts a Morse automorphzsm T over a finite cyclic group such
that MT =

In particular, for every natural number k > 1, there exists a Morse au-
tomorphism T over a cyclic group whose maximal spectral multiplicity is k.
Robinson in [18] has proved the same result using Morse automorphisms,
but over nonabelian groups. It is interesting to know what kind of spectral
measures appear in our construction. Let A = {ny,na,...} satisfy (i) and

(ii) and let T : (X, B,u) — (X, B, 1) be the transformation from. the proof
of Theorem 1. Then ' :

(X, 0) = P2 & .. @ 2(h(),
i>1
where Z (hgi)), 1 <j <mn; i 21, are pairwise orthogonal Up-cyclic sub-
spaces and if 99 ) denotes the maximal spectral type of Up : Z(h;i)) —
zZ (hgz)) then . '

icm
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(iii) o ~ T g%{,’, izl
(iv) &, * g] 1 Ql ) for every z € §* and j # k, in particular, gl 01 g(k)
(v) foreach z€ S', 72 Lland s 5 ¢

by *&g&'ﬂ .. *Q(Ej))J_nggﬂ Bk g(lj)l.
M !

In our considerations, the cenfralizer C(T') of T plays a role. We recall that
C(T') conslaty of all measure preserving transformations commuting with T

1. Description of the method and results. From now on, T :
(X, B,y = (X,B, ) denotes an ergodic rotation on a compact metric
monothetic group X with Haar measure p. Let G be a compact metric
abelian group with Haar measure m. By a cocycle we mean a measurable
function ¢ : X -+ G. A cocycle ¢ defines an antomorphism Ty on (X x G, i)
by Tp(z,g) = (Ta,d(x) +g), z € X, g € G, where & = y-x m. Such an
automorplmm is called a G-extension of T. It need not be ergodic. In fact,
it enjoys the ergodicity property iff for every nontrivial character x € G
there 18 no measurable solution f : X — S of the functional equation

w(p(x)) = f(Tw)/f(x) ([14]). The space L*(X x G, i) can be decomposed
a8
X x G, i) = GB Ly,
xe@
where Ly, = {f ®x : f € L*(X, )} Notice that Ur, : Ly — Ly is unitarily

equwalent to the unitary operator Vo @ LA(X, u) — L2%(X,pu), where
Virx(F)(@) = x{¢(x)) f(Tx), 2 € X. Let g, denote the maximal spectral
type of Vi 7. We will construct gb’s satisfying

(1) Vypy has simple spectrum for each x € G,
(2) gy and gy are cither orthogenal or equivalent for each X, v € G.

Obviously if (1) and (2) hold, then Mg, consists of all cardinalities of the

equivalence classes of the relation ~ on G x G defined as x ~ v if gy ~ 0v-
Now wo present a way of showing that under certain circumstances gx
and g are equivalent.

ProrosritoN L, Let x,v € (. Suppose that there emists a continuous
group automorphism v : G — G and § € O(T) satisfying

i) y=xomv, . \ .
(i) there ewists o measurable solution f : X — G of the functiona
equation

(8) 3(S) - v(g(a)) = f(T=) ~ f(z).
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Then the unitary operator W = V; 5. satisfies WV, 1 = V. W. Con-
sequently, Vy 1 and V4 7 are unitarily equivalent.

Notice that if (3) holds then the transformation 57, acting on X x @
by the formula

(4) Sin(z, ) = (Sz, f(z) +v(g))

preserves i and commutes with Ty. Consequently, Sy, € C(T,). Actually,
when Tj, is ergodic, each element of the centralizer of T is of the form (4)
(see [13]). As an immediate consequence of Proposition 1 we obtain the
following,.

COROLLARY 1. The mazimal spectral multiplicity of T, is bounded from
below by supxeacard{xﬂ v € A}, where A = {v : @ — G : v isa
continvous group eutomorphism such that there ezists Sy, € C(Ty)}.

Notice that if v € A, then certainly v™ € A for each integer n. Un-
der our standing assumption (1), the measures g, and 0+ are equivalent iff
Vo,r.x and Vi 1 are unitarily equivalent. The result below is in a sense the
converse to Proposition 1 in the case of cyclic groups and seems to be of
independent interest.

PROPOSITION 2. Let x,v € G, where G = Zn, n 2 2, and let Ty be
ergodic. Suppose that Vyp, and V7. are unitarily equivalent via W :
L2(X, ) — L*(X, 1), o unitary operator of the form

(WF)(x) = hlz)f(Sz)
for some measurable h: X - C and $: X — X. Then
(i) $ € O(T), |h(z)| =1,
(i) there ewists o continuous group automorphism v : G — G such

that v = x ov, and if x is a generator of G then Stw € C(Ty) for some
measurable f : X —~ G. Moreover, W = cVi 5., for some le| = 1.

Proposition 2 combined with Theorem 4 below shows that a nontrivial
multiplicity function as in the examples of [3] and [8] arises for reasons other
than those appearing in this paper (the set A in those examples consigts of
the identity group automorphism).

Now, we show how to prove the mutual singularity of the measures g,
" and p,.

Let H be a separable Hilbert space and let U : H -» H be a unitary
operator. Assume that a is a complex number, la] <1. We say that U is
o-weekly mizing if there exists a nondecreasing sequence {mt} of positive
integers such that for each A € H, we have

(5) (U™ (h), k) — af|nl?

ast — o0,

icm
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We obtain the following,.

PROPOSITION 3. Let U; : H; — H; be o unitary operator on a separable
Hilbert space, i = 1,2. Let p; denote the mazimal spectral type of U;. If
Ui, ¢ = 1,2, are a;-weakly mizing with respect to the same sequence {m;}
then 6, ¥ o1 L g2 (for each z € S1) provided || # |ay)|.

We will also use the following.

PROPOSITION 4. If U+ H — H is o-weakly mizing, 0 < |a| < 1, then
By % 00 L o™ for each z € 8% and m % n, where p is the mozimal spectral
type of U and g™ = gx...x g (m times).

We will apply the concept of a-weak mixing to T}, more precisely, to the
family of unitary operators {Vyr,, : x € G}. We say that a sequence {m;}
of positive integers is a rigid fime for T if for every f € L*(X, u) we have

[£T™ = fll =0

For each n > 1, ¢{™) denotes the coeycle
¢ (2) = @) + §(Ta) + ...+ $(T"*a),

Here is our criterion for the a-weak mixing of Vy 1.

ast — oo,
zeX.

PROPOSITION 5. Assume that for each v € G, as t — co we have

[ %6 (@) dp — v,
X

where {mu} 15 a rigid time for T. Then the operator Vo, is a-weakly
mizing along {my}.

The main results of this paper are consequences of the following theorem.

TumorkM 3. Let G be a compact metric abelian group. Assume that
vi G- G 15 a continuous group automorphism satisfying

6) for all x & G, card{x o™ :n 2 0} < cc.

Then there exisls an adding machine T : (X, B, u) — (X, B, ), an ergodic
coeyele ¢ 3 X — G, and § € C(T") satisfying

(Ta)  for each x & & there exists o rigid time {ni} for T satisfying
' (n,") ——
lim [ x(9"(2) du(z) = o4,
X
(Tb)  for each pair (x,7) € G x G there exists a rigid time {n}} for T
sotisfying
lm [ W@ (@) dala) = o, w=x7,
Fomt 30 %
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and moreover
(8) for each x € G, x #1, we have 0 < o, | <1,

(9)  for each (x,7) € G x G with yv™ # v for all n, we have |of}{ # |l
(10)  Vur, has simple spectrum for each x € @,

(11)  there exists o measurable solution f : X — G of the funclional equa-
tion
#(Sz) ~ v(g(a)) = f(Tz) - f(z).

Notice that (7a) and (8) directly imply the ergodicity of Ty. Let v ;
G — G satisfy the conditions of Theorem 3 and let M, be the set of the
cardinalities of the sets {x cv™ : n > 0}, x € G. Let ¢ satisfy the conclusion
of Theorem 3. Then, applying (7b) and Proposition 5, (9) and Proposition 3,
(10), (11) and Proposition 1, we obtain Mg, = M,

Finally, we would like to note that in the case of finite abelian groups
our constructions are actually generalized Morse sequences (in the sense of
Martin [10], [11]). The result below combined with [3] and [8] shows that the

icm

centralizer method applied in our paper is not the only one giving rise to a

nontrivial (i.e. different from the constant function 1) multiplicity function.

THEOREM 4. Let T : (X, B, p) — (X, B, 1) be an {n}-adic adding ma-

chine with standerd sequence of towers D' = (D}, ..., D _,). Assume that

G is a finite abelion group and ¢ : X — G is o Morse cocycle and put
og(x,h) = (z,9+h), h € G. Then if (a} and (b) below hold, the centralizer
of Ty i trivial, i.e. ‘

C(Ty) ={(Ty)"0g :n € Z, g€ G},
(a) the sequence {nsy1/ny} is bounded,
(b) (36> 0)(vt)(3g1,92 € G) (g1 # g2)

p(T™H(DEY N~ () = bu(DE),

II. Proofs

Proof of Proposition 1. The equality WV, = Vyr1,,W can
be checked using easy computations. m

Proof of Proposition 2. We prove (i) for an arbitrary group G.
Indeed, W‘T/;{,’T,x(k) = V@T’-YW(-'G) implies
(12) h(@)x($(S2)k(STx) = y(¢(w))h(T2)k(T 5)
for each ¢ € L*(X, ). In particular, on putting k¥ = 1 we get |h(z)| =
|h(T'z)| and by the ergodicity of T, |h| is constant, so [h(z)| = 1 since W
is unit ory. Moreover, § has to preserve the measure. Now h{z) # 0, so
by using the same argument, |k(ST'z)| = |k(T'Sz)| for each k € LA(X, 1)

i=1,2.

H
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and in particular for the characteristic functions of measurable sets. Hence
Sel(T) m

We now prove three lemmas. Lemmas 1 and 2 do not require G = Z,
(i-e. the cyclic group of order n).

LEMMA 1. Suppose |G| = n. Then k™(2) = const and hence hiz) =
cexp(2mif(z)/n) for some measuradble f: X — Z,, and le| = 1.

P roo& x(G) is a subgroup of the nth roots of unity, so (x(g))™* = 1 for
each x € G, g € G. By (12) (with k = 1) we have

(h(T@)/h(2))" = [x(¢(Se))/7(¢(z))]" = 1,

so h*(Tx) = h™(z). Then we use the ergodicity of T to conclude that

h(z) = exp(2miB) exp(2mif(x)/n) for some # € [0,1) and a measurable
function f: X - Z,.. m

LEMMA 2. Let Ty be ergodic. If Vi1 and Vy 1., are unitarily equivalent
vio W othen x* = 1 iff v° = 1. '

Proof. Suppose x* = 1. Then since x(¢(Sz)}/v(6(z)) = h(Tz)/h(x),
we have h*(Tx)/h*(®) = v *(¢(z)). So by the ergodicity of Tg, v = 1.
The converse uses W1 instead of W. m

LEMMA 3. Suppose that Vi r, and Vi p., are unitarily equivalent via W
and let v i Zy, =+ Zy be o group automorphism. Then Ve o xw and V1

e ' v
are unitortly equivalent.

Proof. Since v is an automorphism, there exists r € Z,, (ryn) = 1,
with v(g) = rg, g € Z,. Therefore

xv($(5e))/vv($(z)) = x"(¢(82)) /7 (¢(2)) = h"(Tx)/h" ()
and W, (k)(z) = h"(2)k(Sz), where k € L2(X, ), establishes the desired
equivalence. :

Now we continue the proof of Proposition 2 and proceed to (ii). If x is a
generator of (7, then by Lemma 3, we may assure that x(g) = exp(2rig/n)
and ¥(g) = exp(2mirg/n) for some r € Z,. In view of Lemma 2, since
x® = 1 iff s = n, we have (r,n) = 1. Define an automorphism v : Z, — Z,

by v(g) = rg. It follows that v = xv (a similar argument shows that this is
true generally).

But x{¢(S%))/~v(d(x)) = h(Tz)/h(z) implies, by Lemma 1,
x(6(5a)) ~ v(8(2)} = exp(2mif (Ta)/m)/ exp(2mif (2)/n),
or in other words ¢(Sz) ~ v(d(z)) = f(Tz) — f(z) in Z,. m
Proof of Proposition 3. Let » be a probability measure absolutely

_ continuous with respect to 8,%¢1 and g;. Then there exist h; € H, ||hsf| = 1,
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i = 1,2, such that Z[n] = [5, 2" dv(z) = (U ha, he) and (§,-1 * v)"[n] =
Jg1 2% d(8,-1 #v)(2) = (UThy, hy) since 6,1 v < p1. In view of (5), for Uy
and Uz, we obtain 5[m;| — a1 and (6,1 * )" [my] — ap. Now

|(82-1 % v) ]| = [Plma]],
which implies ja;| = |2, a contradiction. m

Proof of Proposition 4. The conclusion follows directly from the
proof of Lemma 3.9 in [5}. »

Proof of Proposition 5 Denote Vg, by V. If k is a constant
function, then
(13) (V™k, k) — k]2,

Let k € L*(X, ) be an eigenfunction of T, ie. kT = Mk with A # 1,
|||z = 1. We will show that

(14) X6 @)h(a) diu(z) >0 ast— oo,
X

If (14) is not satisfied then there exists a subsequence of {m4} (denote
it by {m.} for simplicity) such that

(15) f x(¢" (2))k(z) du(z) — d  and .0 <ldl <.
X :
We have

(16) [ x(¢"™@)k(z)du(z) = [ x(6™) (T2))k(Tz) du(z)
X

X
=X [ k@)@ (2)x($(T™2))x(6(2)) du(a).
F

Since {m:} is a rigid time for T it follows that
(17) x(@(T™))x(8(-)) — 1
Then (16) and (17) give us [, x(¢1™) (2)) k() du(z) — Ad. This contradicts
(15) and therefore (14) must hold. '

Now let kp = 1, k1, k2, ..., be an orthonormal basis of L?(X, ) consisting
of eigenfunctions of T. Consider the function

i

in measure.

(18) k=>"cik;.
i=0

Then

(19) | &N = D tesl®.

i=0

icm
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It is clear that the conditions [[kiT™* ~ k;llz — 0 and k7™ = Nk, imply

(20) M1, 1=0,1,...

1t follows from (14) that

(21) J x(¢'™) (@))hks (@)F; (@) dpa(z) — 0 for i 5.
e

Furthermore, we have
1

(V'rmk? 'lg) o Z @ th ki, IC.?)

13»“’*"0
= 3 iy [ O e KT ) o)
'i.,jm() X

= Zczc,/\m [ lt™) (@))ki(2)k;(2) dp(a)
X

J:

!
= > leal* N fx () (@) dps(2)
ix=0)
# T amAT [ (o™ @)ERE) dule)
igky
Using the assumption of Proposition 5 and (19)-(21) we obtain (V™ k, k) —
o|[k||? as t — o0.

In order to complete the proof it remains to show (13) for every k €
L2(X, p). Let k # 0 and take € > 0, & < ||kfl2. There exists a func;f:on % of
the form (18) such that ||k —&l|2 < mm(e-:||k||2/12 £/4). Then |(V™k, k) —
a|[&|2| < /4 for t large enough and hence

(V™ &, k) ~ al|k||3] < [(V™k, k) — (V™K B) 4+ (V™E, &) - (V™E, &)
+1(V™E,E) — ofE(3] + led | 1%1E — Y11
< ([ — Ella(|lF%llz + 1Ellz) + /4 + (ell*ll2/12)3] R[]z
< E :
for ¢ large enough, m

Before passing to the other proofs, we will need some e%uxiliary f:ons.id-
erations. Let T': (X, B, u) — (X, B, 4) be an {n4}-adic edding machine, i.e.
Tt | Mppely Atpl = n¢+1/nt>2fort>0 )\omng>2and

Xm{mmgqtnt_1:0§thAt—l, n_1=11
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is the group of {n:}-adic numbers, where T'z =2 —I—T, T= (1,0,0,...). The
centralizer C(T) of T can be naturally identified with X as follows. Let
Dt = (D§,..., D%, _;) be the standard sequence of T-towers

=gt = 0}, Dt = D:

(s is taken mod n¢). Then D*! refines D' and obviously the sequence of
partitions {D*} converges to the point partition. Take § € C(T). As S is
determined by an z € X, S(D!) = Di;, (J+ js is taken mod ny) for each
§=0,1,...,my — 1, t >0, where j; = 3 i Gifi-1-

Di={zeX: qo=q1=-..

Let & be a compact metric abelian group. We will define a special class
of cocycles called M-cocycles. We say that ¢ : X — G is an M-coeycle if for
every ¢ > 0 the cocycle ¢ is constant on each level Df for i =0,1,...,n;—2.
Such a ¢ is defined by a sequence of blocks {A:} (As = A[0]A[1]... Ains—
2), where

¢| D = Afi], i=0,1,...,m 2.
Define
i) = A [(i + Vne — 1], i=0,1,..., A1 — 2,
a,t"H = ﬂt+l[0'] . .CLH_I{At.{.]_ - 2} .
‘We obtain
Apyr = AP0l Aga 1) As .. Agat T g — 2)4;

If, in addition, we write a® = Ay, we see that an M-cocycle is completely
defined by the sequence of blocks {a'}. Also notice in passing that if G
is a finite abelian group then the class of group extensions obtained from
M-cocycles coincides with the class of automorphisms arising from gener-
alized Morse sequences over G (see [10] and [11]). Instead of the sequence

{a*}, we will consider another sequence of blocks which will also determine
¢. Namely, write

(22) O =al, bl =a’li] +u_1, t2=1,
where uy = A[0] + A[1] + ... + Ag[ne — 2], £=0,1,...
Let v : G — G be a continuous group automorphism. If C is a block

over GG then v(C) is the block v(C[0]))v(C[1])...v(Cls — 1]}, where s = |C|
is the length of C.

Proof of Theorem 3. Assume that an adding machine T': (X, B, )
— (X, B,p)is given by Ay = gk +1, ¢ > 1, ky 2 2,1 = 0. Let Sz = s+,
where 2o = 3 oo @M1 '

LEMMA 4. Suppose that 3,0 1/k: < oo and let blocks {b'}, t > 0,
|bY| = A — 1, be of the form

(23) bt = d'u(db) ... vR T (dY),

icm
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where |dt| = g If ¢ is the cocycle determined by {b'} then there is a
measurable solution f: X — G of the equation

(24) ¢(Sz) —v((2)) = f(Tx) — f(z).
Proof. Let jy = 3 o¢ini-1, ¢ =0,1,... Then
(25) Jtk1 = Qupame + J -

Consider the cocycle ¥(z) = ¢(82z) ~ v(¢(z)), = € X, on the tower D* (see
Fig. 1).

pt g Aglgy - V) A= Adie-1-

e w(at*i[0]) o(@ 1))

4 'l,l'J = At[j-g — 2]
D}, g ! === mmmees | = u(Any - 2))

. L : o= A0
Dm—jt """""""""" - u{Atlne — 1))
pt . e=atep)-  Je=aem -0 L

RE—TL B ' |

v(Aelns = Jo 1) | v(Aelng — G — 1))

1] b= Aglny — 2]

D“i“jt“z i 1 — vw(Ag[n: — jr —2])
: : | :[

Dk : : e Vah = Ag[ds] — v(A:[0])

E=1
'DD

Fig. 1. The values of ¢ on D'

Define a function f; on Cy = U Dt by fi(a) = 0 for 2 € D and
file) = (T ) 4+ (T )
= Ao + ook Ay i 1 = 0(A0] £ + Ayt~ 1])
for # € D! and § = 1,...,m — Jy — L Notice that f; satisfies (24) for
z € Cy = C\Dj},, .., 1. Moreover,
(26) I (CAESEFYUMERVICE

- We will show that

(27) fo(@) = ferr(z) i © € 0N Crpr.

—je=1 ;41 g
Indeed, observe that fi(z) = fipi(z) for = & Wi Dig,4g PTO
vided fylz) = fri(z) for @ € DY 4 = 0,1,...,Aep1 ~ 1. Therefore,
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in order to prove (27) it suffices to show that f(z)
DH—I Dt+1 Dt-l—l

ng 17 (AH_]_—-I)’R
we obtain

fosa (@) = (T 0)+ ...+ H(T ™)

= (Af0] + ... + A¢ne — 2]) — v(A[0] + ... + Ay[ne — 2]}
+ af gpa] = w(@HO]) + .. A (A]0] + .o+ Ayng — 2))
— o(A[0) + ..+ Agfre — 2]) + @™ ggr 4 i~ 1]~ v(atT i - 1])

= (w — v(ue) + 0" gpia] — v(a"H0]) +
+ (g = v(w) + @ g + 4 — 1] - 0@ i~ 1))

In view of (22},
Jer(2) = up — v(we) + 8 grpa] — wp — w(BHO] - wg) + ...
+ oy — o) + B gurr + 4 — 1) —uy — o(BE — 1] - wy)

= b geqa] — v (BFTHOD) + - A b g 4 — 1) — w (B[~ 1))

and consequently by (23), firu(z) = fi(z).
It follows from {26) that

21*%3&/%1—21/?& = i—il/kz “il/?’bz

since (25) holds. In view of the convergence of ¥ ;° 01/ ki, we see that
p(C: N CiyaN...) / 1 and consequently that fi(z) = fipi(z) = ... if
¢ € UsNCyaN... Therefore {f;} converges in measure to some f: X — G.
Since f(x) = ft(:c) forz € C;NCya1 N..., f satisfies (4) forae zeX. m

The following lemma is well known ([15], 8 ], 13]).

= ft.|~1($) for ¢ €
Take z € D}t Then immediately from Fig. 1

p(CenCeprn.. J

LEMMA 5. If ¢ : X — G is an M- cocycle and x € G then Vo, rx has
simple spectrum. m

Let v : G — G be a continuous 3 group autornorphism satisfying (6) of
Theorem 3. Denote by 7 : G — & the dual automorphism., In view of
(6), each orbit of ¥ is finite, ie. the set {i"(y) : r € Z} is finite for each
ye@ Let G = Uis1 It where I is an orbit of @, ¢ > 1, nnry =g

Choose v; € I, i > 1. Let r(y) = r be the smallest positive integer such
that 97 (y) = identity. We will write r; instead of r(y,), i > 1.

III. The construction of ¢ and T satisfying the conclusions of
Theorem 3. Take positive integers k;, t > 0, satisfying 3.0 1/k; < oo.

Step 1. Choose a countable dense subset ' C @, G’ = {g1, go,. ~h
and set G = {g1,...,9n}, n=1,2,... °
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Step 2. Divide N = {0,1,...} into infinitely many pairwise disjoint
infinite subsets M;;, 1% §, and Ny, i > 0, such that

N={JM;U| N, where MynN =0.

iy i
Step 3. Let i 5 5. There exist n = n(i, j) and ¢’ € G,, such that
m-—l l =1
(28) = Z Pg) = = D Plule) #0.
i 10
This is possible bccause the functions
Al =1 a1 Tjnlﬁl
4 ~l g
e ) and g—— > T(v)9),
g = % (3)(9) - g :

g € G, are orthogonal and nonzero in L*(G, m).

Step 4. Take the same number n = n(s, ) as in Step 3 and consider 1_:he
simplex A, of all probability vectors 3= (s(g)), g € Gn. Define a function
F‘ij = F'ij (3)’ Fe A,, by

(29) Fiy(@) =Y (Ailg) — A3(9))s(9)
9EGn
Step 5. Choose Sy = Fo(t,J) € Ay such that
(30) Fi;(30) = diy # 0 and  so(g) > 0 for every g € Gy

Such an Fp exists because the equa,tion (with complex coefficients)
= 3 (Aig) — Aj(9))z(g) =0
gEG,

determines the intersection of two vector subspaces in RI®»!, at least one of
which has dimension |G|~ 1 (it follows from (28) that at least one coefficient
is different from 0). These planes have Lebesgue measure zero. Define

ex {3 == (8(g)) : Fy3(8) = 0 and (g} > 0 for some g € G}
Then A, \ &/, 18 nonempty and open in Ay.
Step 6. Choose a ball K (5y,&) such that K(5o,€) C An \ 47, and
(31) iy (3) — Fig(d0)] < (1/2)|dig| if 3 € K(So ).

Step 7. Let B be a block over Gy. By the average frequencies of the
elements of G, the block B determmes an element of 3(B) € 4, Le.

(32) 3(B)(g) = (1/|B)card {0 < i < |B| —1: Bli] = g}
Choose a block over Gy, such that 3(B) € K (%o, ¢). Let ¢ = qiy = |B).
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For every t € M;; define A, = kyq -+ 1 and let the block bt, {b] = X, be
the following concatenation:

(33) b = Bu(B)...v®"}(B).
We iterate Steps 3-7 for every pair (4,7), i # 5.

Step 8 Let ¢ > 0. There exists n' = n; and two different elements
91,92 € Gy such that A;(g1) # Ai(ge). Choose a number 8, 0 < 8 < 1,
satisfying d = 84;(g1)+(1—5)Ai(g2) # 0. Then define 55 € A, 35 = s5(g),
g € Gy, as follows: _

(34)  spln) =8; splga)=1-P; sp(9) =01 g# g1,90.

Step 9. Define a function F; = F;(3), §€ A, by
(35) Fi(s)= Y Ailg)s(g).

geEG

It follows from Step 8 that Fi(33) = d # 0 and |Fy( 35)| < 1, because
|Fi(8)] < 1 for every 5 € Ap.. There exists a ball K (55,61) in A,y and §>0
such that

(36) §< |Fu(3)| <1-6
for every 3 € K(3p,61). We can assume that 35 is an interior point of Ay,

Step 10. Choose a block B; over (,+ such that 3(By) € K(Sg,ﬁl)
Then we put ¢; = ¢ = |B|. For every t € N; define )\, = gk: +1 and a block

bt as
(37) . bt = Bl’U(Bl) PN
We iterate Steps 8-10 for every i > 0.
By Steps 7 and 10, for each ¢ € N, We have defined blocks bt over G,
[b*] = A — 1, and then by (22) the blocks af, t > 0. These blocks determine
an M—cocycle b
Now we will prove (7a,b), (8) and (9) of Theorem 3. We will evaluate
Sy (@ ( )) () for each v € G. We have

’Ukt—l(Bl) .

00 (@) = A0+ ...+ Aylng - 2] + 0t 0] i e DEF U UDEL
$") (@) = ue + a1 ]
1f$ED::¢1UDt++1U Dfrtl_}_m_l,'b.=l,...,xt+1-—2.
Thus
J 16" (@) duu(z)
X
= S =1 Z v(g)eard {0 <4 < Xpyy — 21 ug + at i) = g} + g,
geG

icm
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where ¢y < 1/A41 and only countably many summands are different from 0.
Using (22) we can rewrite the above equality as

J 16 @) dufz) = w(E*h) + g,

X
where w(b¢t!) = X;;EG’Y(Q)S(EJ'L“)(Q) and s(b**1}(¢) is the distribution of
g in b1, Therefore

(39) | [ A @) dn - ()] < 1700,
X

Each block b* has the form (23). Now we will calculate w(bt+1).
Put A s= Ay, k= kg, ¢ = q. Then A — 1 = kq. The following holds:
k-1
card{0 €i <A —-2: 0 =g} = anrd{lq§i< lg+gq—1:58'i] = g}
=0
k1
=Y card{0<i<g-1:dfi] =v7'(g)}
=0
Hence
s(b'){g) = (l/( ~ 1)) card{0 <4 < X —2:b'i] = g}
b=t
1
=z Z card{0<i < g—1:d'] =v""(g)}

1 lr 1
= = 3@ (a)).
[=()

As a consequence we obtam

= =
w(b) = 5 Z > wlg)a(@) (W (g)) = Z ST # (1)g)s(d) ()
by el gGO =0 gEC
Let ky = wr + ', where = r{y)and 0 € v/ < r. Then
by
M P @~ 15 T oo < e,
L yEG les) g€

. Using (38) and (39), we have

71
[ 160 dute) - 3 T F@)s( )

X L= gEG

since 97 (Y} =

(40)

<1/ Mg+ 7/ kg
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Fix i and take £ € N; (see Steps 8-10). Then b* = By, 5(d‘) = $(B,) and
rl——l

(41) *ZZ (v:)(g)s(d")(g) = Fi(3(B1)).

i =0 geqd
It follows from (35), (40) and (41} that

(42) 6/2 < ' f 'yi(qﬁ(”*)(m))du(w)\ <1 —46/2 for tlarge enough, £ € N;.
X

By taking subsequences if necessary, we may assume that

f7 (ne)(2)) du(z) = o and 6/2< ol <1—§/2,

The above properties imply (7a) and (8).

Now we will show (7b) and {9). Let i # j and let t € M;; (see Steps
3-7). Then d* = B and 3(3*) = 3(B). Using (30) and (31) we obtain
|Fi;(3(B))| = (1/2)|d:;|. Then (40) gives us

| [ w6 @) dpe) = [ (8 a)) du(a)
X X

z (1/2)|dij| = 2/ Aer = ri/keyr — 75/ keg
In this way

) | [ o) aute) - [ 56™@) duo)] 2 62> 0

for infinitely many ¢. Taking a subsequence of {n;} we may assume that
Ty (6™ (2)) du(x) — ax (k = i,7). Thus (9) now follows, and so also
does Theorem 3 since Lemmas 4 and 5 imply (10) and (11). =

We will need the following result proved in [17)].

LeMMA 6. Suppose M is o finite set of natural numbers such thot
(¢) leM, _
(d) whenever my,my € M then lem(my, ma) € M.

Then there exists a cyclic group Z,, and a group automorphism of Zy, such
that Mz =M. n

Proof of Theorem 1. Let A = {1,m;,mg,...} be a subset of the
natural numbers satisfying (i) and (ii). Let A; be the smallest set containing
{1,my,...,m;} and satisfying (c) and (d). Then A; is finite and Ay C As
C. Applylng Lemma 6 we choose cyclic groups Zn and automorphisms
vy of Zn, such that M, = A;, j > 1. Let G be the product of Z,; and 7
the correspondmg product automorphism. It is clear that Mz = A and that
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7 satisfies (6) (we recall that G = D, Z,,?J) Now we apply Theorem 3 to ©
and find T cmd ¢ such that A = MT "

Proof of Theorem 2. If A is a finite set satisfying (1) and (i) then

applying Lemma 6 we choose a cyclic group Zy, and an automorphism % of
Zg such that My == A, Then we take G = Z.}n = Zn, ¥ =T and construct a
Morse cocyele ¢ over ¢ as in Steps - 10. We then have

M"T‘w == Mg{f = Mu = A. n

Proof of Theorem 4. Assume that Sy, € C(Ty) and § & {T™ :
me ?} This fmplies that there exists an infinity of #'s such that if S(DEH)
__D” then 7, < Ji < fyp1 =g (by (a)). Assume that

$(5z) - v(d(e)) = f(Tx) - f(@).
Then
(44) 60 (Sz) — (™) (2)) = F(T™z) - F(a).
Take € > 0. Since f: X — @ s measurable and @ is finite, f is constant on
most of the levels D} (except for an e-fraction of such a good level). There
exist ry, s such that

(48) 71 2 gl ey STHDEMY) = DEFLand f is constant on DEF! except
for an e-fraction of the level,

From (44) and (45) we obtain

¢l (Sz) = v(¢!™) ()
for x € DEF except for a set of measure 2sAu(DEf), where X is an upper
bound for {m +1/ma}. But ¢ is a Morse coc.yclc, so v(¢\™ (x)) is constant

for all & € DI (rg < Mgy — nu), while (™) (Sz), by (b}, varies, Taking ¢
small enough we obtain a contradiction., w
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Approximation of continuous
convex-cone-valued functions
by monotone operators

by

JOAO B. PROLLA (Campinas)

Abstract. In this paper we study the approximation of continuous functions F,
defined on a compact Hausdorff space S, whose values F'(t), for each ¢ in 5, are convex
aubsets of a normed space K. Both quantitative esbimates (in the Hausdorff semiretric)
and Bohman Korovkin type approximation theorems for sequences of monotone operators
are ohtained,

0. Introduction. If is the purpose of this paper to discuss convergence
results and quantitative estimates for the approximation by monotone op-
erators of contipuons functions F defined on a compact Hausdorff space S,
such that the value F(t), for each ¢ € 9, ¢ an element of some convex cone
C endowed with a semimetric dg. In many applications C is a convex sub-
cone of the convex cone C(E) of all convex nonempty bounded subsets of
a normed space E over the reals, the semimetric dy being the Hausdorff
semimetric

dy(K, L) = inf{A > 0; K ¢ L+ B, L C K +AB},

where B is the closed unit ball of E. ‘ -
After giving the necossary definitions in §1 and §2, we congider in §3
the problem of quantitative estimates for the approximation by sequences
{Th}n>1 of monotone R -lincar operators on €(9;C), and show how to
extend to thix contaxt some of the local estimates of Shisha and Mond [5].
In §4 and §5 we give examples of monotone R-linear 'opera,tors on
C(5;C). In §4 we Lreat the case of operators of interpqlatlon type and
in §5 we consider two such operators, namely the Bernstein operato-rs By,
defined in C(0,1];C) or in C(SmiC), where S, is the standard simplex
in R™, and the Hermite-Fejér operators Hy, defined in O([_.l’ 1};¢). Our
Theorem 3 gives the estimates for the degree of approximation. by B, on
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