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Fréchet spaces of continuous vector-valued functions:
Complementability in dual Fréchet spaces and injectivity

by

P. DOMANSKI and L, DREWNOWSKI (Poznad)

Abstract. Fréchet spaces of strongly, weakly and weak*-continuous Fréchet space
valued functions are considered. Complete solutions are given to the problems of their
injectivity or embeddability as complemented subspaces in dual Fréchet spaces.

1. Introduction. There is a famous conjecture that every injective Ba-
nach (or Fréchet) space is isomorphic to the space of scalar-valued continu-
ous functions over an extremally disconnected topological space [19, p. 269].
It might seem that there is a chance to find some essentially new examples
of injective Fréchet spaces by considering the spaces of vector-valued con-
tinuous functions. Unfortunately, as should be clear from the results of the
present paper, this is not so, at least in the case of spaces of strongly or
weakly continuous functions. (The situation i3 not so clear, however, for
the spaces of weak*-continuous functions.) For Banach spaces of strongly
continuous vector functions this was observed eatlier by Cembranos [6].

We now briefly describe the contents of our paper.

Let X be a Hausdorff topological space that is locally compact and
hemicompact (i.e., has a fundamental sequence of compact sets); we will
call such spaces L(H-spaces for short. Let £ be a Fréchet space or, when

[
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E'-valued functions are considered, a locally convex space whose strong dual
E' is Fréchet. In this paper we deal with the Fréchet spaces

C(X,E), C(X,E,w) and C(X,E, u').

They consist of all functions f: X — E (or E) that are continuous with
respect to the strong, or weak, or weak® topology in E (or E'), respectively,
and each of these spaces is equipped with the topology of uniform conver-
gence on compact sets in X, relative to the strong topology in E (or E').
Of course, function spaces of the above types can be considered in a much
greater generality, and we do so from time to time,

Our main purpose is to determine when the spaces listed above are in-
jective or, more generally, complemented in dual Fréchet spaces, and we ac-
complish that in §§5 and 4, respectively., Note that, unlike for the spaces of
scalar functions (see Fact (F) in §2), these two problems are not equivalent.

It is clear that if X is a discrete (hence countable) LCH-gpace, then
C(X) ~ w and, in general,

C{X,E)=C(X,B,w) = E", CX,E v}~ (E)N.

In this case the questions mentioned above have easy and obvious answers.
So, to avoid trivialities, we will assume throughout that X is nondiscrete
(in which case it contains an infinite compact subset).

One way of seeing that a space is not injective (or complemented in a
dual space) is by exhibiting in it a complemented copy of ¢;. In §3 we prove
a general result (Theorem 1) on the existence of complemented copies of
co in C{X, E) (here X need not be an LCH-space). Tt plays an important
role in the proofs of Theorems 5 and 6. We also give a similar result for
C(X,E,w) (Theorem 2).

In §4 we give complete answers to the question of when our spaces can
be embedded as complemented subspaces into dual Fréchet spaces: For
C(X,E',w') the answer is “if and only if C(X) is injective” (Theorem 3);
for C(X, E,w) it is “if and only if C(X) is injective and ¥ is reflexive”
(Theorem 4); lastly, for C(X, E) it is “if and only if C(X) is injective and
E-is a Fréchet~Montel space” (Theorem 5).

Finally, in §5, we consider the problem of injectivity. It turns out that
the first two spaces are injective only in “trivial cases”, i.e., when C(X ) is
injective and F ~ w (Theorem 6). As for the third space, we show that
if Eis barreled and bornological, then C(X, E',w') is injective if and only
if both C(X) and B are injective (Theorem 7). Thus, as far as injectiv-
ity is concerned, it is the spaces C(X, F’, w') that seem to be the proper
vector-valued analogues of the spaces C(X) (comp. [3]-{5]).

It is worth while to note that at least for C(X, E, w) all the above results
seem to be new also in the Banach space case. '
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2. Preliminaries. In general, our terminology and notation concern-
ing locally convex spaces agrees with [15] and [21]. In what follows, if
E is a locally convex space (lcs), then E' always denotes the strong dual
(E', B(E', E)) of E, operator means a continuous linear operator, and w is
the space of all scalar sequences with the pointwise convergence topology.
If E and F' are les, then Lg(E, F) denotes the space of all operators from I
into F equipped with the topology of uniform convergence on bounded sets
in E.

If X is a topological space and E is a lcs, then C{X, E) denotes the
space of all continuous functions from X to I, with the compact-open topol-
ogy. We write C'(X) when F is the space of scalars. For the definitions of
C(X,E,w) and C(X,E',v'), see §1. It should be noted that if F is a
barreled lcs, then

C(X,E,vw") = Lg(E,C(X))
via the isomorphism J: C(X, B',w’) - Lg(E,C(X)) given by the formula

() @)](E) = (£ (E),2) -
Moreover, if X is the so-called k-space (see [13]) or, in particular, if X
is locally compact, then C(X,E') {resp., C(X, B',w)) corresponds in this
isomorphism to the subspace of La(F,C(X)) consisting of all operators
mapping bounded sets into relatively compact sets (resp., relatively weakly
compact sets).

We now collect some basic facts concerning injective Fréchet spaces,
Fréchet quojections, and dual Fréchet spaces that will be needed in this
paper.

A Fréchet space E ig called

- injective if it is complemented in every Fréchet space containing it;

— a quojection if each of its quotients with a continuous norm is a Banach
space;

—— & dual Fréchet space if it is isomorphic to the strong dual of a bornolog-
ical space.

More information on injective spaces can be found in [9], and for quo-
jections seo [1], [9] and [18]. We will freely use the well-known fact that
complemented subspaces and countable products of injective Fréchet apaces
are again injective. Given a Fréchet space F, let B 1= (B, bor)’, where bor
means the associated bornological topology on E'. Of course, every Fréchet
space B is canonically embedded in E. .

FacTs. (A} Injective Fréchet spaces, and Fréchet C(X) spaces, are quo-
jections [9, Prop. 1.4(c})].

(B) A Fréchet space E is isomorphic to o campleminted subspace of a
dual Fréchet space if and only if E is complemented in E 19, Prop. 1.3].
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- (C) Every operator § : E — F between Fréchet spaces &' and F' can be
extended to an operator §:5- F.
(D) ¢q is not complemented in any dual Fréchet space containing it.
(E) No injective Fréchet space contains ¢ complemented copy of cg.
(F) If X is an LCH-space, then C(X) is injective if and only if C(X)
is complemented in a dual Fréchet space [9, Cor. 5.8 and 8.8]).

Note. (D) follows from (B) because ¢y = loo, and ¢p is not comple-
mented in l. Since every injective Fréchet space & must be complemented
in the dual Fréchet space E, (E) is a particular case of (D). (In fact, (E) is
obvious: otherwise, ¢g would be injective.) :

It should be noted that (B) and (C) remain true for all les E, F if
we modify the definition of £ by taking as bor the bornological topology
associated with the so-called equicontinuous bornology in B’ and write in
(B) “strong dual of a bornological space” instead of “dual Fréchet space”.

3. Complemented copies of ¢y. The theorem proved below concerns
the existence of complemented copies of ¢y in spaces C(X, E), and is an
extension of the results of Cembranos [6] and Freniche [14, Cor. 2.5], where
FE was assumed to be a Banach space. Qur proof of this result is baged on a
similar idea to that in [6] and [14], and makes essential use of the following

Josefson—Nissenzweig type theorem for Fréchet spaces, recently obtained by
J. Bonet, M. Lindstrém and M. Valdivia [2],

TueoREM (B-L-V). A Fréchet space E is Montel if (and only if) every
o(E', E)-null sequence in E’ is also B(E', E)-null.

THEOREM 1. Let X be a completely regular Hausdorff topological space
containing an infinite compact set, and let E be a non-Montel Fréchet space.
Then C{X, E) contains a complemented copy of cg.

Proof. By Theorem (B-L-V), there is an absolutely convex bounded
set B C F and a weak™®-null sequence of functionals (u,) ¢ E' satisfying

sug [(tn,2)) > 1 for every m & N,
z€
Pick a sequence () in B so that {un,z,) = 1 (n € N). Next, let X be an

inﬁniilse compact subset of X. Then we can find a sequence of continuous
functions Pn: X — [0,1] having pairwise disjoint supports and such that

@nltn) =1 for some t, € K (n €N).
Finally, we define linear maps J : g — C(X, E) and P : C(X,EY - ¢ by

T((@nlnen) =3 antnpn(t)  and  P(f)= ({tn, f(tn)))nen -
. n=1 .
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These definitions make sense: Since the sequence (z,,} is bounded, the series
in the first formula converges uniformly and so defines a continuous function;
and P(f) is a null sequence because the weak*-null (hence equicontinuous)
sequence (i) converges uniformly to zero on the compact set f{K) contain-
ing the sequence (f(t,)). It is easily seen that both J and P are continuous
and PoJ = idg,. It follows that J is an isomorphic embedding and that
Jo P ig a projection from C'(X, E) onto its subspace J{eg) = cp. w

With the same proof, but using Lemma 1 given below instead of Theorem
(B-L-V), one oblaing the following analogue of Theorem 1 for C(X, E, w).

TurOREM 2. Let X be o completely regular Housdorff topological space
containing an nfinite compact set, and let E be o locally conver space con-
taining an isomorphic copy of 1. Then C(X,E,w) conteins a comple-
mernted copy of ¢y.

LeMMA L. Let B be a les containing an isomorphic copy Ey of 11, Then
there 45 an equicontinuous sequence (Un)nen of linear functionals on E which
tends uniformly to zero on every weokly compact set in E, but for some
bounded set B in E one has

sup [{un, )l =1 for each n € N,
we B

Proof. The identity map ¢ : Iy ~ l» is & L-absolutely summing operator
[15, 20.4.1], hence it factorizes through the Banach space C(K) for some
compact space K [15, 19.6.4]. Since its range is reflexive, it in fact factorizes
through C(K)". By the injectivity of the latter space, and identifying Iy with
a subspace of 1o, we can prove that ¢ factorizes through lo,. Then, since
loo i8 also injective, identifying Iy with Ep, we can extend i to an operator
i+ B — Iy factorizing through lo,. Composing j with the identity map from
Iy into ¢g, we get an operator T : F — ¢y which factorizes through loo.

It is well known that every operator from Iy, to ¢p is weakly compact and
maps weakly compact sets to strongly compact sets (see [15, 20.7.8] and [11,
Lemuma 2.6]). Hence T hay these properties as well. ¥rom this, using the
well-known description of compact sets in g, it follows that if e}, (n € N)
are the coefliclent functionals on ¢, then the functionals u, = e, o T
and B, the isomorphic image in Eg of the closed unit ball in [, are as
required. m

Remarks. (a)If, in Theorem 1 (resp., Theorem 2), the space X is hemi-
cornpact and each compact det K in X is contained in a compact set L so
that L\ X is infinite, then it can be shown that C(X, E) (resp., C(X, B, w})
contains a complemented copy of .

(b) Only a weaker version of Theorem 1 is needed in the proof of The-
orem 6 in §5, namely, for infinite-dimensional Fréchet quojections F % w.
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For this reason we include here a simple proof of Theorem (B-I-V) for this
special case: We have to find a weak*-null sequence in E' which is not unj-
formly convergent on some bounded subset of E. By agsumption, there is an
infinite-dimensional Banach space ' and a quotient map g : £ — F. By (7],
we may assume that there is a bounded set B such that ¢(B) coincides with
the unit ball in F. Now, apply the original Josefson-Nissenzweig Theorem
for Banach spaces [8, Ch. XII] to find a normalized weal*-null sequence (vn)
in F', and define u, := v, 0 g. The sequence (u,) is obvionsly weak*-null in
FE', and sup,¢p |{un, z)| = L for all n € N,

(c) As we learned from G. Metafune, the celebrated Rosenthal 11-Theo-
rem [8, Ch. XI] extends to Fréchet spaces: Every bounded sequence in any
Fréchet space E has a subsequence that is either weak-Cauchy or equivalent
to the unit vector basis of {;. (This can be easily seen by embedding & in
a countable product of Banach spaces and applying the original Rosenthal
Theorem.) Using this one can readily verify that, for Fréchet spaces, the
existence of a sequence (u,) as specified in Lernma 1 is in fact equivalent to
the containment of an isomorphic copy of {;. Another characterization of a
similar type for Banach spaces is proved in [12, Th. 2].

(d) The factorization of the identity operator i : I — ¢ through 1o,
(shown in the proof of Lemma 1) is certainly well known.

4. Complementability in dual Fréchet spaces. When are the
Fréchet spaces of vector-valued functions considered in this paper isomor-
phic to complemented subspaces of dual Fréchet spaces? In this section we
give a complete answer to this question for each of the spaces C(X, B v,
C(X, E,w), and C(X, E) (in this order).

In the proof of our first result here, concerning C(X, E', w'), we will
need the following lemma. We are grateful to J. Bonet for pointing it out to
us. We recall once again our convention that if £ is a les, then E' denotes
the strong dual of E. If I" is a set, then loo (I, ') denotes the space of

all equicontinucus families (u,),ep in E, equipped with the topology of
uniform convergence on I

LEMMA 2. Let B be a (DF)-space, and let I' be any sef. Then,
loo(IVE") = F',

where F =1, (I") @ E is a (DF)-space which is also bornological whenever
E is bornological, :

Proof. We have
W) ®, E Cl(N&,E,

where L,(I") & E is (DF) [15, 15.6.2], dense and “large” in Iy (I')§, F; that

is, every bounded set in ll(P)@,,E lies in the closure of a bounded set in
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LI &x E (see [20, 8.3.23(a)]). Hence
(D) &= B) = (W& E) = Ly(E,loo(I) = loo (I, B').
If E is aldo bornological, then so is I} (I") ®, E (see [15, 15.6.8]). =

TuorEM 3. Assume that X is an LCH-space, and that o locally con-
vex space Li is barreled, bornological and its strong dual E' is o Préchet
space. Then C(X, B, w') is isomorphic to a complemented subspace of a
dual Fréchet space if and only if O(X) is injective.

Proof. Since C(X) is a complemented subspace of C(X, E/,w'), the
necessity part follows from Fact (F).
Sufficiency. Since I is barreled, we have (see §2)

C(X, B w')~ Lg(E,C(X)).

Let C(X) be injective, Then C(X) is complemented in lw ()" for some set
I'; hence Ly (B, C(X)) is complemented in

7
Ly(B oo (DY o= Ly(B, Lo (PN o Lo (T BN o (FYN (@ F) )
ke
where the last but one isomorphism holds by Lemma 2 with the bornological
(DF)-space F' = [, (I") @ F. In consequence, C(X, E',w') is isomorphic to
a complemented subspace in a dual Fréchet space. m

In the necessity part of the proof of our next theorem, concerning
C(X,E,w), we apply the method developed by the authors in [10]. We
firgt introduce some additional notation, and prove a lemma.

Given a les F, we denote by x(E, w) the space of all E-valued relatively
weakly compact sequences (@, )nen, equipped with the topology of uniform
convergence on N. If (z,) is any sequence in E, then for each n € N we
define

Fpo= (0,0..,0,20,0,...) € k(E,w),

where @, occupies the ntlh slot. The wnit vector sequence in l. is denoted
by (en).

Lumma 3. Let B be an arbitrary complete lea, If (zy) d8 a bounded
sequence in B for which there is an operator T': I — &(E,w) with

‘ Tlen) =&n forallneN,

then (zy,) € &(E, w).

Proof, We first prove the lemma for F = lo. Although in this case the
argument is quite similar to that used in the proof of {10, Prop. 2|, for the
sake of completeness we give the details, : '
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Let P, be the nth coordinate projection (z;) — Zn in &(lso,w), and let
R, denote the nth coordinate projection in l.,. Since

ToRue;=PyeTe; =%, ifj=n, and= 0 otherwise,

all the operators
Upi=ToRy—PpoT : g = Xn = { () € Klloo, ) :
zr=01for k#n} =l

vanish on co. By {16, Prop. 4], for every operator A : I —+ lo vanishing
on ¢y there is an infinite set M C N with A|loo(M) == 0, where loo(M) =
{(zx} €los iz, = 0if k § M} = loo. Applying this result, we can find an
infinite set M ¢ N such that

Uplloo{M) =0
It follows, in particular, that

T(lM) = (yn)nEN S H(Imsw); }
where y, = 2, for n € M, and = 0 otherwise,

Hence the subsequence (2, Jnear is relatively weakly compact, and modifying
the above reasoning we can see that every subsequence of (zp, }nen contains
a further relatively weakly compact subsequence, By [21, IV.11.2], (#n)nen
belongs to (I, w).

Now, let F be an arbitrary complete lcs and let Ey be the closed linear
span of (Zn)ren . As Ej is separable, there is an isomorphic embedding S of
Ey into the product space (I,,)! for asuitable set I'. By the completeness of
Ejy, if (. )nen is not relatively weakly compact, then there must exist an o,
factor such that the projection of (Szn)nen on that factor is not relatively
weakly compact. It follows that there exists an operator U : Eg — lo such
that (2n)nen & K(loo, w), where z,, := Ug,,. By the injectivity of le, we can
extend U7 onto the whole E. Define an operator W : k(E, w) — #(log,w) by

W ((yn)nen) := (Uyn)nen -

Then for the operator W o T : lys — K(loo, w) we have W o T(ey,) = 7,

for all n € N. Hence, by the first part of the proof, (z)nen € K(loo, W)} &
contradiction. w

for every n € N,

THEOREM 4. Let X be a nondiscrete LOH-space, and let E be a Fréchet

space. Then C(X, E,w) is complemented in a dual Fréchet space if and ondy
if C(X) is ingective and E i3 reflexive.

Proof Necessity. As C(X) is isomorphic to a complemented subspace
of C(X, E,w), it must be injective by Fact (F). Suppose that E is not
reflexive so that there is a bounded closed convex set B ¢ E which is not
weakly compact. Hence, by (21, IV.11.2]; there is a sequence (Zn)nex C B
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without weak cluster points. In particular, (z,) is not relatively weakly
compact.

By assumption, X contains an infinite compact set K, hence there is a
gequence of continuous functions @y, : X — [0,1] with disjoint supports and
satisfying wp, (ta) = 1 for some t, € K (n € N). We define operators

Sreg— COX,Bw) and @Q: QX E,w) — &(E,w)
by

S((an)nq’}:m)(ﬂ = Z avtm‘rr,W1a,(t) and Q(.f) = (f(t'n.))ﬂ-EN .

na=

The assumption that C(X, E, w} is complemented in a dual Fréchet space

and Fact (B) imply that there exists a projection
P C(X,E,w)" — C(X,EB,w).
onto

Now, consicler the operator T' = Qo Po Gl — k(E,w), where §:6 =
loo — C(X, B, w)" is the extension of S provided by Fact (C). Then, as is
easily seen, T'(e,) = &y, for every n € N; a contradiction in view of Lemma 3.

Sufficiency. Let C(X) be injective and E reflexive. Then C(X, E, w) ==
C(X,E",w') and Theorem 3 applies, since E' is barreled and bornological
21, Cor. 1 to IV.5.6 and Cor. 1 to IV.6.6]. »

Remark. From the above proof it is clear that the necessity part of
Theorem 4 is true for all complete les E (see the note at the end of §2). In
that case, if C(X, £, w) is complemented in a strong dual of some bornolog-
ical space, then C'(X) is injective and F is semireflexive.

Finally, we can treat the case of C(X, E).

THEOREM 5. Let X be a nondiscrete L CH-space, and let E' be o Fréchet
space. Then C(X, E) is isomorphic to o complemented subspace of a dual
Fréchet space if and only if C(X) is injective ond E is a Fréchet-Montel
space.

Proof. In view of Theorem 1 and Facts (D) and (F), the necessity is
obvious.

Sufficiency. Assume that Z is a Fréchet-Montel space. Then, since X ig
s k-space (see [13]) and since weakly compact sets in £ are strongly compact,
we have O(X, B) = (X, E,w). Finally, as £ is reflexive, we conclude by
applying Theorem 4. w :

5. Injectivity of C(X,E), C(X,E,w) and C(X, E' w'). We show
here that the injective spaces of the first two types coincide and are, in
a sense, trivial, while the injective spaces of the third type exist in much
greater variety.
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THEOREM 6. Let X be a nondiscrete LCH-space, and let E be an infinite-
dimensional Fréchet space. Then the statemenis (1), (2) and (3) below are
mutually equivelent.

(1) C(X, E) is injective.
(2) C(X, E,w) s injective.
(3) E is isomorphic to w and C(X) s injective.

Proof. It is easy to see that (3) implies both (1) and (2): Indeed, it is
obvious that if (3) holds, then (X, E) = C(X, B, w) = C(X)¥, with C(X)
injective. Hence C(X, E) itself is injective.

(1)=(3). Assume that C(X, F) is injective. Then, since C'(X) and E
are isomorphic to complemented subspaces in C(X, E), both those spacey
are injective, too. On the other hand, by Fact (E), C(X, E) contains no
complemented copy of ¢;. Hence, by Theorem 1, E must be a Montel
space. Now, it is known that w is the only injective infinite-dimensional
Fréchet—Montel space (see [17] or [11]), hence F ~ w. (Alternatively, by Fact
(A), F is a quojection and, by the weaker version of Theorem 1 mentioned
in Remark (b) in §3, F ~ w.) Thus condition (3) is satisfied.

(2)=-(3). As above, assuming that C(X, E,w) is injective, we deduce
that both C(X) and E are injective. Moreover, since C(X, E, w) is Injective,
it is complemented in a dual Fréchet space so that, by Theorem 4, £ must be
reflexive. Bug the infinite-dimensional Fréchet space F can be both injective
and reflexive only if B ~ w (see [17] or [11]}, and so (8) is satisfied. w

‘THEOREM 7. Assume that X is an LCH-space, and that a locally con-
vex space L is barreled and ifs strong duel E' is o Fréchet space. Then
C{X,E',w') is injective if and only if both C(X) and E' are injective.

Proof. Since C(X) and E' are complemented subspaces of C'(X, B/, w'),
the necessity part is obvious.

Sufficiency. As in §2 we see that C(X,E',w') ~ Lg(E,C(X)). Now,

by (17, Prop. 8.18], if C'(X) and E' are injective, so is Lg(B,C(X)) ~
C(X, E' w').

References

(1] 8. F. Bellenot and E. Dubinsky, Fréchet spaces with nuclear Kéthe guotients,
Trans. Amer, Math. Soc. 273 (1982), 579-591.

2] J. Bonet, M. Lindstrém and M. Valdivia, Two theorems of Josefson~Niszen-
2weig type for Fréchet spces, preprint, 1091.

[3] M. Cambern and P. Greim, The bidual of C(X, E), P Amer. Math. 8
ot 5 e (X, B), Proc, Amer. Math. Soc. 85

4] —, —, The dual of a space of vector measures, Math, Z. 180 (1982), 373-378.

icm

Fréchet spaces of continuous functions 267

5] M., Cambernand P Greim, Uniqueness of preduals for spuces of continuous vector
functions, Canad. Math. Bull. 31 {1988), 93-103.

6] P.Cembranos, C(K, ) contains o complerented copy of co, Proc. Amer. Math.
Soc. 91 (1084), 556-558.

[7] 8. Dierolfand D. N. Zarnadzce, A note on strictly regular Fréchet spaces, Arch.
Math, (Basel) 42 (1984), 549 -556.

8 J. Diestaol, Sequences and Series in Banach Spaces, Springer, New York 1984.

@ P Domadski, Ly-Spaces and dnjective locally conven spaces, Dissertationes Math.
208 (1990).

[10] P Domaheki and L. Drewnowski, Uncomplementability of the spaces of norm
corbinuous funciions in some spaces of “weakly” continuous funetions, Studia Math.
o7 (1991), 245 251,

1] T Dowmakeki aud A, Ovtyfiski, Complemented subspaces of products of Banach
apaces, ‘Trans, Amer. Math, Soc. 316 (1989), 215-231,

[12] G.Emmanuele, A dual sharacterization of Banach spaces not containing Iy, Bull.
Polish Acad. Sci. Math. 34 (1986), 155 159,

[13] R. Engelking, General Topolegy, Monograf. Mati, 60, PWN, Warszawa 1977.‘

[14] F.J. Freniche, Barrelledness of the space of vector-valued end simple functions,
Math. Aun, 267 (1984), 479 486.

[t8] H. Jarchow, Loeally Conver Spoces, Birkhiuser, Stuttgart 1080,

6] N.J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.

(17] ¢ Metalune and V. B. Moscatelll, Complemented subspaces of sums and prod-
ucts of Banach spaces, Ann. Mat. Pura Appl. 159 (1888), 175-190.

(18] -, Quojections and prequojections, ini Proc. NATO-ASI Workshop on Fréchet
gpaces, Istanbul, August 1988, T, Terziogie (ed.), Kluwer, Dordrecht 1989, 235~—2.’?4.

[18] A. Pelczytiski, Some aspects of the present theory of Banach spaces, in:
8. Banach, Qeuvres, Vol. I, PWN, Warszawa 1970, 218-302.

20} P. Pérez Carreras andJ. Bonet, Barrelled Loeelly Conwvex Spaces, North-Hol-

" Jand Math. Stud. 181, Elsevier/North-Holland, Amsterdam 1987.
[21] M. H. Schaefer, Topological Vector Spaces, Springer, Berlin 1973,

INSTITUTE OF MATHEMATICS
A, MICKIEWICZ UNIVERSITY
MATEJIKT 48/40

40-700 POZNAN, POLAND

Teceived December 18, 1991 (2869)



