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e~-Entropy and moduli of smoothness in LP-spaces
by
A KAMONT (Sopot)

Abstract. The asymplotic behaviour of g-entropy of classes of Lipschitz functions in
L (T[d) is oblained. Moreover, the asymptotics of g-entropy of classes of Lipschitz functions
in LP(R%) whose tail function decreuses ag O(A™"} is obtained, In case p = 1 the relation

between the g-entropy of 4 given class of probability densities on 2% and the minimax rigk
for that clase is discussed. '

1. Introduction. First we recall the notions of s-entropy and g~capacity
(cf. 8])-

Let (X, ) be a metric space, and let 4 be a subset of X. A family
{Ui her of subsets of X is called an e-covering of A if A ¢ User Ut and the
diameter of each U, does not exceed 2¢. A subset U C X is called an e-net
of A if for each a € A there exists w € U such that ola,v) < e. A subset
U C X is called e-distinguishable if p(uy,up) > ¢ for any distinct wy,up € U.

A subset A C X is called totally bounded if for each & > 0 there exists a
finite e-net of 4. For a totally bounded A ¢ X define

Ne(A) = min{#T : {U; }her is an e-covering of A},
NX(A) = min{#U : U is an ¢-net of 4, U C X},
M (A) = gup{#M : M is an e-distinguishable subset of A},
where #1" denotes the cardinality of 7', and
He(A) = InN(A), ME(A) =1nNT(4), Ce(4)=InM(4),
where In is the natural logarithm.

He(A) and Cp(A) are called the e-entropy and e-capacity of A respec-
tively. Note that if A ¢ B then N (4) € No(B), M.(4) £ M (B),
He(A) £ He(B) and Ce(A) € Co(B). '

The following inequalitics are satisfied ([8]):

(1.1) Mae(A) S Ne(A) S NF(4) S NA(A) < Mc(4),
(12) Cae(4) < He(A) S M (A) S HE(A) < C(A).
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To formulate the main result we recall the definitions of moduli of stooth-
ness of order m in LP(I%) and LP(R%) ford € N, 1 £ p < 00, where =.0,1].
For f € LP(RY), m € N and u € R? let

ap )= > -0 () fla i)
i=0
and for § > 0 define
Win,p ([ §) = sup HA'Tf”P’
[hufisd

where j|u]| = U} + ...+ ud)t? for u = (u1,...,ug) € R,
For f &€ LP{I%) and u € R let
' Hd(u)z{meﬂd:x-kuelld‘}
and for m € N, 0 < § < 1/m define

' \/p
Wnp(f,8) = sup( f\ATf(a:){pdm) .

<8
”uli— Id(mu)

The functional we, »(f, §) is the modulus of smoothness of the function f of
order m in the IP-norm. In addition we put wm p(f,6) = |||y for m = 0.
Ford,meN 0<a<m,1<p<ooand C >0 define

Alp,d,m, 0, C) = {f € LF(I%) : | f]lp £ C,
Win,p{f,6) < C6% for 0 < § < 1/m}.
For f € LP(R?) the tail function &,(f, A) is defined as follows:
Zy=[-\A2% forA>0,

. 1/p
0,50 = ([ If@Pas) " e ).
R\ 2,

NowfordmeN, 0 <a<m,v>01<p<ooand C >0 define

Up, d,m, a7, C) = {f € LF(RY) : |F|lp £ C, wmp(fi6) < CE ford >0,

Bp(f,A) £ CA™7 for A > 0}.

We will discuss the asymptotic behaviour of the g-entropy of A(p, d,m, a, C)
and U(p,d,m,a,v,C) in the metric induced from the spaces LP(14) and

'LP(R?) respectively. It will be shown that there exist constants a),a; > 0
and £ > 0, independent of C and ¢, such that for all 0 < € £ Cgy

a1(C/e)H® < H (A(p,d,m, o, C)} < ay(C/e)¥*.
Results of this type are already known ([9], Theorem 10Q); however, we

present the proof, since the dependence of H.(A(p,d,m,a,C)) on C is
needed for estimating H.(U(p, d,m, a,v,C)). Moreover, it will be shown
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that there exist constants ky, kg > 0 and gg > 0, inde
such that for all 0 < ¢ < Cey

k; (Cv/&.)d(l/{ml“lf‘)’) < He(U(p, d,m, o, , o) < kﬁ(C/E)d(l/a+1/7) _

‘The proofs rely very much on the following theorem of G. G. Lorentz
([9], Theorem 2): :

THROREM L.3. Let (X,|| - ||) be o real separable Banach space, and let
@ = {p1,p2,...} be a scquence of linearly independent elements of X such

that X = spand. For q given f ¢ X set

Bolf)= Il Bulf) = inf{HfmZn:aWkH ay,...,an € R},
sl

Let A = {6y,81,...} be a noninereasing sequence of positive numbers such
that iy, e & = 0, and define

A(A,B) = {f € X : Bulf) <6n, n="0,1,...}.
Force R withl < e < 4 put
Ny=0, Ny=min{k:6 e} fori=1,2,...
Civen 0 < e <1, let § € N be such that c=U~Y <& < =0~ Then
(14) Ny-slne < Co(A(4, 8)),
(1.5) He(A(4, @) < M (A4, 9))

S(Ny+ ...+ Nj)(l+Ine)+ Njln

pendent of C and &,

"'"'l"g“ -t N] In 50 .
c—1

In the sequel the following notation will be used. For a multi-index a =
(a1,...,0q) € (NU{0})¢ define la| = a1 +...+aq, D* = B1®l /0 ... 25
if in addition b == (by, ..., b)) € (NU{0})¢, then we write a < b iff ¢; < by
forj=1,...,d.

2. The asymptotics of H.(A(p,d,m,,C)). In this section the
asymptotics for H,(A(p, dym, a, C)) will be obtained by means of Theo-
rem 1.3. We will find a sequence @ in LP(I¢) and two sequences of positive
numbers A’ and A" such that

AL, D) ¢ Alp,d, m, o, C)) C A(A", ).

It occurs that the sequence ¢ can be chosen in such a way that its ele-
ments are spline functions with dysdic knots. Some necessary definitions
are recalled below.

For cach n € N, n 2 2, there exists exactly one pair of integers y, k such
that n== 2/ 4k, p2 0,1 € & < 2% put

 [ajam for j € 2k,

Od =\ (G~ k)/2*  for j 2 2k +1.
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For r € N the B-splines N,grj) are defined by the formula

NEYE) = (Sngar = Sn,i)[Sngs s Smgtrs (5 = 5]

(where the square brackets denote the divided difference of (s — )77, taken
in the variable s at the points s, j,...,8n j+r). For the properties of the
B-splines we refer e.g. to [1]; some of those properties are listed below:

(2.1) N,E’:j is a function of class C"~2 and is a polynomial of degree at
most 7 — 1 on each interval [s, ¢, 8, iy1].

(2:2) N7 2 0, supp NT) = [$n,, 8440

(2.3) For a-given n € N and an interval (e, b) those functions Nfbrj) which

are nontrivial when restricted to (e,b), are linearly independent over that
interval, :

In the following the restrictions of N,(fj) to I will be considered. Let
st :span{N,(:j)- ij=—-r+Ll...,n-1} fornz2,

and for n = ~r+2,...,1 let S be the space of polynomials of degree
at most 1 4+ — 1, restricted to I. Then dimS{"” = n +r— 1 and S ¢
5‘,(1:),1. Let the sequence of functions ( f}"), J 2 2~r) be defined as follows:
f;_), =1, f}:_)l € Sjc?l, f}fr)l is orthogonal to S‘,E’N) (with respect to the inner
product in L2(T): {f,g) = fol f(z)g(z) dz), Hf}l)l ]2 = 1. Using the notation
Hf(t) = [ f(z)de, Df(t) = S#(2), define for k € Z, |k| < r,

£ for k=0,
fJ-(T'k) = Dkfj(r) cforO<k <y,
H#7 for —r <k <0,

Now we introduce the tensor product spline functions on I¢,
. For r = (TI,...,Td) S Nd, k = (kl,...,kd) & Zd, “(hl < i, j o=
roendads i 22 =1y + ki t= (b1, ..., 1) € 1% define

r,k 1, ra.k
50 = 52 @) A ).
Form e Nlet ky = (m+2,...,m+2) € N¢, rp, = 2k,,; let

(m) —_ ( m’km) y m)—km
™ =5 G = ffF )

]

for j = (41,...,7a) such that j; > —m for i = 1,...,d; observe that Fj(m)
are functions of class C™ and (ﬁ}(m),(}‘{m)) = 8. Now, for f & LP(I%),
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nz—m n=n,..,n),ms= (m,...,m) set
AN = 3 efME™.
~mzj<n
Note that QU™ is a projection onto the space
Vi = span{ F{™ : wm < j < n}.
For f & LP(I%) let
B = inf{|f - gllp : g € V™).
The following lemimas establish some relations between E,(,’f;}( f) and
wr,p(f16). Lemma 2.4 was proved in [5] as Theorem 9.18. The proof of

Lemma 2.5 is omitted, since it can be proved similarly to Theorem 10 of (2],
with the help of (5.14) of {4] and the inequality

J lAﬂ"*"“"f(w)I"dw)w

)
" 1/p
< dualull Y ( [ 1azorsra)
af=zk e g

which holds for k € N, f & C*(I*), m &€ NU {0}, u € RY, |[u]| < 1/(m + &),
1 <p < oo, where Ay,q I8 & constant independent of f, u, m and p.

LEMMA 2.4, Let 1 £ p < oo and m,d € N be given. There ezists a
constant My, p o such that

ESD) € Manpatom,p{ f 1/n)
Jor euery noz m and f & Lv(14).

LEMMA 2.5, Let 1 < p < oo and m,d € N be given. There exisis a

constant M), . ; such that

/]
wmpf, 1) € My =™ (Ifl + 3 =B (1)
12340
for every n = m and f & LP(14).
Let

B(p,d,m,a, ) .
= {f & LP(1%) : ||fll, < C, B S O/n® forn 2z m}.
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COROLLARY 2.6. Let 1 <p < oo, md ENand 0 < o < m be given.
There exist constants ¢, ¢ > 0, depending only on p, m, o ond d, such that
Jor every C' >0

B(p,d,m,a,e;C) C A(p,d, m,a, C) C B(p,d,m,a,cC).
Proof. The existence of cg follows from. Lemma 2.4.

As 0 < o < m, there exists amq such that 1+ 30 gm-l-e g
5

@m,on ® for every n > m. The existence of ¢; now follows from Lemina 2.
and the inequality wm p(f,61) S wmp(f,82) for 0 < § <6 < 1/m. m

Now we will find the asymptotic behaviour of the e-entropy of B(p,d,
m, o, M}

LEMMA 2.7 Let 1 < p< oo, m,d €N and 0 < a < m be given. There

ezxisi constants ay, a2 > 0 such that the following inequalities hold for each
M >0

a1 (M/e)*™ < H (B(p,d,m,0,M)) for 0<e< M/2,
He(B(p, d,m, 0, M)) < ax(M/e)¥*  for 0<e< M.
Proof. As B(p,d,m,e, M)={Mf: f € B(p,d,m, , 1)} and
He(B(p,d,m, e, M)) = He /a4 (Blp, dym, v, 1)),

it is enough to estimate M. (B(p, d, m, a,1)). We will use Theorem 1.3.
Consider V( ™ for n > m as subspaces of X = LP(I%) and set

di™ = dimV{™ = (n +m + 1)%.
The sequence & = {#1,92,...} is obtained by ordering {F:i(m) 1 i =
(Jis---»Ja) = (~m,...,—m)} so that span{e,..., Py } =
7 2 m. The sequence A is defined as follows: _
fo=...=8um =1, &=1/n" ford{™ <k<d.

Then B(p,d,m,a,1) = A(A,$). Let ¢ = e in Theorem 1.3 and write

i = ma.x(rei/"’] m) (where [a] = min{k € Z: a < k}); then N; = d{™.
First the constant a; will be found.
Inequality (1.2) implies

Cac(B(p, d,m, o, 1)) < He(B(p, d,m, a,1)).
For £ < 1/2 choose j such that e=U~%) < 2¢ < e=(1~2); then (1.4) yields
CQE(B(p,dma 1)} = N;_ 3=d( ) = (nj_g+ m+ 1)
2 (eV=/ey g 1)¢ > gli=9)d/w

d
= g~ 28/ g i-1)d/x > e—Zd/a ___lh /=
= 2 '

n(m) for every
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Setting ay = e~ *(1/2)Y% we obtain for any 0 < & < 1/2
(2.8) ar(1/&)%® < Ce(B(p, d,m,a,1)) .

Now the constant az will be found. For &€ < 1 choose j such that
e < e < e, As N; < (et - +2)% + (2m 4+ 1)4, it follows from
(1.5} that

He(B(p, d, o, 0,1)) € 221\1’ + N; 111 < bZN

feml te=l

J
< b(2m 4 1) + bZ(ei/“ +m+2)¢

ie=]

<b>: (m + 2)4 ekl ol
ehle -1

k=1,
+b((m +2)" + (2m + 1)%)3,
where b = 2 + In{12/(e ~ 1)). Setting

ko
blme() m - 2)% '”&Af;awp by = b((m + 2)* + (2m + 1)%),

fozml

we get

dfo
. 1 1
He(B(p, d,m, o, 1)) < bre!/® + byj < bye?¥° (E> e (m e 2) '

Asg 2
e ]
23"
d

by setting az = byed/® 4 &by -+ 2by we obtain
{2.9) He(Blp, dym, o, 1)) € ag(1/6)4®
for any 0 < & < 1. Our lemma now follows from (2.8) and (2.9). =

COROLLARY 2,10, Let 1 € p < oo, m,d € N and 0 < & < m be given.
There exist constants ay,0p > O and g9 > 0 such that

“'l(ﬂ'f/@)d/“ < He‘-(A(pa d, m, e, M)) < ai(M/E)d/a
Jor each M > 0 and 00 < & < Mzo.

This follows frorn Lemma 2.7 and Corollary 2.6.
The case m == 1 will be considered more carefully. Deﬁne

At(pyd, 1,0, M) = {f € A(p,d, 1,0, M) f 20}
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For f € LP(1%) set f, = max(f,0), f- = max(—f,0); then fy,f. > 0,
f=Ff+—JF-. As g(a) = max(a,0) is a Lipschitz function with constant 1,
for any x,y €14

(@) = fe I < UF =) = F)l, 1F-(2) ~ f- ()] S | (=) — ),
which implies
wl,p(f—l—, 6) < wl;:ﬂ(f: 6) and wl,p(f—s 6) < wl,p(f: '5)

for each 0 < § < 1; in addition || f1|lp < |[fllp, | F~llx < Ifllp. Therefore, if
f € Alp,d, 1,0, M) then fy,f € At (p,d,1,0, M). Let U = {Uz,..., Ui}
be an e/2-covering of AT (p,d,1,a, M), and Vi; = {f € A(p,d, 1,q, M)
f+ €Uy, foeUstfori,j=1,....k Then V ={Vj;:4,5= 1,...,k} is an
e-covering of A(p,d, 1, e, M) with #V < k? = (#U)?; this implies

He (A(p, d’ Lo, M)) < 2HE/2(‘A‘+(p7 d: L e, M)) .

As AT(p,d, 1,0, M) C A(p,d, 1, e, M), the last inequality and Corollary 2.10
yield

COROLLARY 2.11. Let 1 < p<oo,deNand0 < a < 1 be given. There
exist conslants ay,as > 0 and gy > 0 such thaet

ay(M/e)"* < Ho (4 (p,d, 1,0, M) < an(M /)Y
for every M > 0 and 0 < £ < Mey.

Lemma 212 Let 1 <p<oo, deN, 0 <a < 1, My, Mz > 0 be given;
let

M(p, d; 0, My, M} = {f € IP(I%) : £ 2 0, ||f||, = My,
wi p(f,8) € My My6™ for0 <6 <1}.
Then there are constants my,ma > 0 and gq > 0 such that
mi(1/e)* < Ho(M(p, d, o, My, My)) < mg(1/e)¥/e

for 0 < e < g.

Proof. As for My = max(My, My Ms) we have M(p,d, o, My, M)
At(p,d, 1, 0, My), the existence of mg >0 and &3 > 0 such that

He(M(p,d, a, My, Mp)) < ma(1/e)4/

for every 0 < ¢ < &9 follows from Corollary 2.11.
Now we prove the existence of my. Define

M(p,d, o, My, My) = {f € L?(1%) : | > 0, ||, < M,
wip(f,8) < M) f[|8* for 0 < § < 1.
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Set Co = min(M, /2, My My/2); for every constant ¢ and f € LP(I%) we
have wi(f,6) = win(f + 6,6), and s0 {f + Co: f € A*(p,d,1,0,C0)}
Mip, d, v, My, My). Thuy M (1 d, cx, My, My) contains a subset isometric to
At (p,d, )y 0, Co) and it follows from Coroliary 2.11 that there are m* > 0
and > 0 such that

(2.13) m" (16 < He(M(p,d, 0, My, M)
for each 0 < g < 1.

Now, given an g/2-net of M(p,d, o, My, M), we construct an s-net of
M{p, d, v, My, My).

Fivst notice that, for any a > 0, || f - glip S |laf — ag|| < ae and
(2.14) M(p,d, v, ady, My) = {af : f € M(p, dy o, My, M)} .
Let M {a) denote the minimal number of elements of an s-net of M (v, d,
o, aM(, My), consisting only of elements of this set. It follows from (2.14)
that A (a) = N, (1), Let € > 0 be given, and r = [M; /¢] + 1. For given
feM(p,d o, My, Mz) choose an integer k, 0 < k < 7, such that

2k~ 1 2k+1
Mg < || fllp < My

For || £l o 0 set

oMk S
r |\ Flly
then f* 22 0, [[f*]lp = (k/r)M,
. Mk 1 k
Lp( [ 6) = A, < S My Mys°
wl,p(f 7‘5) , ”prwl.]J(.fP 6) = 14K2
and f* € M(p,d, o, (k/r)My, Mz). In addition,
" ,Mfik M1 Ml 3 €
I - 171y = 1~ e s P 2o e

Set U = {0} U Uy {100+ Sk} where i = Njp(k/7), & =1,
and {fiksoes fup it © Mip,d, e, (k/’f’)%‘,MQ) is an &/2-net of M(p, d, e,
(k/r)My, My). Then U7 is an g-net of M(p, d, v, M1, My). This and (1.1)
yield

P »
M(ﬁ(pa dy ey My, M-ﬂ)) Sl = 1A Z :/g(k/T') = ]+ ZJV;*/E.T/k(l)
Rl k=1
= (1 + T)szd(M(pa d, o, My, MQ)) 5
which implies

Hg(ﬁ(p,d, oy My, MQ)) < ln(Ml/E + 2) + HE/‘l{M(p’ d, o, My, Mz)) !
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As lim,_o e In(My /e + 2) = 0 for any s > 0, it follows from the last in-

equality and (2.13) that there exist &1 > 0 and my > 0 such that
mi(1/e)%* < He(M(p,d, 0, My, My))

forevery 0 <e <e1. m

3. The asymptotics of H.(U(p,d, m, o, v, C)), Recall that for m,d
eN1<p<oo,0<a<my>0and C >0

Ulp,d,m, e, v, C) = {f € L*(RY) : (1fllp SO, wmp(f,8) < Cé*foré>0,
&,(f,)) < CA™" for A > 0},

where wm p(f, 8) = supy,|<s || A7 fll, is the modulus of smoothness of f of
order m in LP(R%), and ®,(f,A) = (fRd\z, {f()|P d)*P is the tail function
(recall that Z, = [, A]9),

THEOREM 3.1. Let 1 <p < oo, m,d e N,0 < a < m and v > 0 be given.
There exist constants ki, ke > 0 and e > 0, depending only on p, d, m, o
_and v, such that

klco/s)d(1/a+1/'r) < HE(U(p,d,m,a,fy,C)) < kz(o/s)d(l/a+1/q)
for every C >0 and 0 < & £ Ceg.

The proof of Theorem 3.1 is split into several lemmas. First the upper
estimate for H.(U(p, d, m, o, v,C)) is obtained.

LEMMA 3.2. Let 1< p< oo, mdeN, 0<a<m and v > 0 be given.
There exist constants k > 0 and g9 > 0, depending only on P, d, m, ¢ and
¥, such that

He(Ulp,d,m, 07, 0)) < k(C/e) 4/ a1/
for every C > 0 and 0 < £ < Ce,,

Proof For f € L?(Z,) and 0 < § < 2)\/m define

. 1/p
W, (£,8) = sup( I tAﬂ“f(m)l"’dw) ,

llul <8 Z5(mu)
where Z)(mu) = {z € Z) : 5+ mu € Z,}. Set
U)\(pi d7 m, o, O) = {f S LP(ZA) : “f”L-P(Z,\) < O?
Wi(f,6) € O6% for 0 < 6 < 2A/m}.
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Then for f & Up,d,m,a,v,0) and X > 0 we have b= f
IO . AR o g = flz, € Ux(p,d,
my e, O} For & = 0 write Ay = (20/2)7 then for f.9€U(p, é‘, m, a:\,g" o)

| ) . i/p
0= glly = (KI | () *V'g(m)lf'dm) +8,(f - g,A)
g
“ i ae = ga, Hm(z,\‘) +e,
so i |[Sa, - o llira,,) e then || f ~ gl < 2, therefore
(3,3) 7":.--“-’(?% ”{1 LIRS e 8 (‘1)) = 71!:/2(”»)\x (pa dr m, &, 0)) .

Now H, pu (U, (2 dy o, 0, C)) will be estimated from above; we will find
e > 0 and o wubset A ¢ LP(I) such that Hepa(Us, (2, d,m, 0, 0)) <
Ha, (As).

Define

e 1 [0,1] = [~Ae, Ag], Pe(t) = A (28— 1),
Ve i [0 0 Zay Wty oy tg) = (e (8), ... e(ta)) .
Then for any f € LV(Z,)
“f lls"(f‘h,) e (2)\@")4/?)”.1' o SZ?EHLP(N) ,
A ) = Ayang (T 0 ) (F7 (2)),

Za, (mu) = W, (ﬂcz (mi\%)) |

g i 5
A0 = @A) (Fo o)
e/ Le(l

end for f e Uy, (p dym, o, O)
IF 0 Well sy € (20e)PC,
W F 0 Wy 8) ity & (200 )P O™
Set 1 = &(2A,) 40, A, = Alp, dymy (2A,)84/P(), Notice that if
g € Up, (pydlymy v, 1) wre wuch that || f oW, ~ g oWl paqey S e then || f —

9llinz,,y < & In addition, A = 1 for g € 2C, end if f € U, (p,d,m, o, C)
then f oW, ¢ A,. Therefore

(3"4) Hﬂ-‘/-ﬂ([in (?91 ('il ™, &, C)) = H‘rj; (Aa') :

Corollary 2.10 Implies the existence of constants € > 0 and 4 > 0, indepen-
dent of €' and «, such that if 5, < (27, )*"¥PCE then

(85) My, (A) < al(20)V PO )% = K(O/e) i3/,
where k = 241+1/7) g,

which implics
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g0 must be chosen so that the inequalities ¢ < 2C and 7. < (2A;)*~ . PCE
hold for any 0 < & < Cep. It is enough to take g = min(2, 2{7/(“*“’?’)). Now
our lemma follows from (3.3)-(3.5). =

To estimate H.(U(p,d,m,a,~,C)) from below it is convenient to use
Theorem 1.3. Some spaces of spline functions are also needed, and the
classical relation between the distances from those subspaces and the moduli
of smoothness will be recalled. The following notation will be used:

NG (z) = 8[0,...,5 (- —z)"] forseN, zeR,

Ni(’;)(m)zN(s)(E:gﬁ) for h>0,4i¢Z, xR,

Ny, ta) = N (0).. NI (tg)
forz = (21,...,24) € N%, j = (j1,.-.,74) € Ze h = (h1y..., hg) € RY,
hi >0,t = (t1,...,ts) € RL

Some useful properties of spline functions Nj( ) are mentioned below.
They are multivariable analogues of Schoenberg’s result {[10]).

(3.6) There exists a constant ¢; > 0 such that

hdjl/p( Z |Gjip) i/p

jezs

< ” > 4Ny , S ealha -hd)””( >, Iajl”)l/p

jezd jezd

C;l(h]_...

for every sequence (a;)jeze-
(3.7) For a € (NU {0})? and z € N¥ with (0,..
9= eze gjf\’:i(fh) we have

BT hgiDYg = ) (AT,
jeid

Argy = > (al) (Zd)(-l)l“""lb’gb-u-

0<h<a by d
(3.8) For each m,d € N there exists a constant My, 4 > 0 such that
1458l < Memaltel™ 3 101 s
[al=m
for any 1 < p < 00, f € C™(RY) ﬂL”(]Rd) and u € R%,
Define

0) €< a < zand

where

Im=(m+2,...,m+2)eN formeN,

icm
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by, = (hn‘i h‘n) € Rd = 1/21'IJ forneNU {U} s
Vnrf’,’f) = span{ N} h”' j € Z%) N LP(RY).

Notice that Vi{"™ ¢ V(T” !

Tor f & L-”(W) define

BUD(F) = inf{|f = g, : g € Vi),

The following lomuna recalls the wellknown relation between B
W'rn.p(fa ‘5) (Cf [3])'

LeMMA 3.9, Let m,d € N be given. There exists a constant Cn,a such

that ‘
omo (1) 5 T2 (110 + 27520

i=0
for every 1 < p < oo, f € LP(RY) and k € NU {0}.
For m,d € N, 0 < a < m and v > 0 put
Ry, s ko (10, 0, ) = (4 3)2"7 for m e NU {0},
Ui = ﬂpan{Nj(f{;:) 1§ €29 supp N(”"‘) C [k, knl?},
and for 1 € p < oe, f & LP(RY) set

DEY(f) = wf{}f -~ gll, : g € US™Y.

It follows from the definitions of US™ and Vnm) that U™ C V; rf,’;}), which
implies ESS < DI (). The properties of the functions Nj(1h1_) imply that
o c U

Define

W (p, dym, e, 7, C) = {f € FRY || f]lp S C,

DEM(f) & C/2™ for n € NU{0}}.

LEMMA 3,10, Let dyom e N, 0 < o <m, v >0 and 1 < p < oo be given.

There exists a constont a > O such that for any C >0

Wi(p,d,m, a,,0C) C Ulp, dm a,7,C).
Proof. First notice that for f € W(p,d, m,a,7,aC)

S (f) and

(3.11) 7], < aC:
Now we estimate wy, »(f, 6), For § > 1 we have
(3.12) wWinp(1,6) € 27 fllp S 27aCE*.
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For 0 < § < 1 choose k € NU {0} such that 1/28+! < § < 1/2%; then it
follows from Lemma 3.9 that

Crm L. i polom
(3.13) wm,p(f,a)Swm,p(f,zik)sg,:,#(llfllﬁzz B (1)

t==(}
Crma, : (m)
™, ) m <1 y
< Skm (Ilf o+ ?_;02 "D (f)) < 9™ aCE®
We also have to estimate $,(f, A). As f € W(p,d, m, @, 7, aC), the definition
of U™ implies ‘ .

" m -+ 3)7
2,7, ) < D) s Vg

For 0 < X < ky we have
(m +3)7

(3.1 2,5, < Il < ac < LN o6
For A > kj choose n € NU {0} such that k,, < A < kpp1; then
+
N
(3.15) 2,073 < B(frk) < 5o
o 7 o ¥
_Pneay T
kn—l—l : /\T

It follows from (3.11)-(3.15) that it is enough to take
a=min(27™, 27 (Mg 9 (m 4 3);7'). n
Now the e-entropy of W(p,d, m, @, v, C) will be estimated from below.

LEMMA 3.16. Letd,m e N, 0 <a<m, v>0andl <p < oo be given.
There exist constants k > 0 and g5 > 0 such that
k(C/e) 1ot < H (W ip,d,m,a,7,0))
for every C' >0 and 0 < £ < Cey.

Proof We will use Theorem 1.3.

First let C = 1. Write dJ™ = dim U{™; then (27k,)% < di™ < oo for
n & NU{0}. Choose a sequence & = {i1, pg,...} in LP(R%) so that UL™ =
span{ei, . . . »Pqim } for each n € NU {0}. The sequence A = {60,81,...} 18
defined as follows:

1
50=...W5dém)_1=1, 5&—"‘—5}""“&
Then W = W(p,d, m,a,v,1} = A(A, $).
Let ¢ = 2 in Theorem 1.3. For 0 < & < 1/2 choose 7 € N such that
27U < 22 < 2702, then Nj_g = d'n('z?_)s, where n; = max(m, [i/a]).

for dl™) < k <dﬁf_’|ﬁ)l, n>0.

icm
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(1.2} and (1.4) now imply
He(W) z CoelW) 2 Ny ln2 = d{™ In2

> (20 k’l’ﬂ-_j. a)“lnz > 2.M3rl(1/cx+l/7)(,m+ 3)d(1/5)d(1/a+1/7) n2.

Teke k = 273/ (m 4 8)010 2, g = 1/2. As W(p, d,m, o, v, )
{Cf : f e Wipdim,a,y, 1)} it follows that H(W(p, d,m,a,v,C))
Heyo (W (p,dymy e, v, 1)), and go for 0 < e § Cey

k(Ce) /) < o (W(p,dym, e, 7,C)) . w

Theorem 3.1 now follows from Lemmas 3.2, 3.10 and 3.16.

([

Now let U1 (p,d, Y, O) = {f € Ulp,d, m, a,7,C) + f > 0} for
m = 1,2, The following result can be proved similarly to Corollary 2.11:

Conorrany 3.17. Letd e N, 0 <a <1, v> 0 and L € p < oo be given.
There exist constonts ky, ke >0 and 59 > 0 such that

k1 (O/E)fi{l/w.} 1/1) % Hg(U'iw(p’ d, e, @, Y, C)) < kz(cl/s)d(ljcx-i-l/-y)
for every O » 0 and 0 < ¢ < Cey.

Similar inequalities will be proved for m = 2 and 0 < o < 2. First some
mote notation will be introduced. Define

MY = (. Ay NY forje 2t meN 1= (.. J) €RY, 1> 0,
Q@)=Y [ MEP@f@at-NP(@) for f e IP(RY),
Jerd g
wk.m,p(fa 6) == |SP‘:I:)5 “Aidmf”p for f € LP(Rd)' :
%

where e; = (814, ..., 8a;). It was proved in [3] that for any f € LP(R%)

d .
(f ~ Qii)f“p « 1620»32.@.1:“1 EANE

FECNN
For m, k € NU{0}, [ & C*(RY) N LP(RY) and & > 0 the following inequality
holds:
(3.14) Wrn 4 p U 6) S 65m 00, p(DP £, 6).

CLEMMA 820, Let d € N, 0 € & < 2,7 > 0 and 1 < p < oo be given.
There exist constanis k > 0 and g9 > 0 such thet for every C > 0 and
Oxe < Qe

k(C/e) e < 0 (U (p,d, 2, 07, C)) -



icm

292 A. Kamont
Proof Let z = (4,

1 1
U'r(i.z) = span {Ni(;l)n th, = (2_,1: E _2';) 5 R » SUPP N:i(j:\)n - {—kﬂ: kn]d} .

.,4) € N% and recall that

For f ¢ LP(R?) set
DER(S) =int{|)f — gllp: g € U, g2 0}
and define
Wt(p,d,0,7,C) ={f e I?(R*): || f|, < C,
D{H(f) < €/2° for n € NU{0}}.
Notice that if f € W*(p,d,a,7,C) then f > 0. As in the proof of

Lemma 3.10, it is possible to find a constant ¢ > 0 such that for every
>0

(321) W+(p)ds o, 7, GO) - U+(ps d,Q,O{,")’,C') :

Now the z-capacity of W(p,d, o, v, C) will be estimated from below.
It follows from (3.6), (3.7}, (3.18) and (3.19) that there exists a constant
A > 0such that for any s € NU{0}, g € U and 1= (is, ..., 1) with l; > 0

d 2
. d )2
Is — @l < Atgll, iz

&

(recall that h, = 1/25) Let s € N be chosen so that 2 23(1“""‘/7) (2¢/7 — 1)
> 1; then for g € U and n > s we have supr C [—kn, kn)d. As

Q(z)g 2 0 for g > 0, the above inequality gives for n > s and g € U} 2)
920,

D{R(g) < g — Qgll, < Ad-—[lgﬁp < Ad Hgflp

As Dr(f’p) (9) < ligllp for 2 < s, putting Co = min(1, 1/(Ad)) we obtain for
9ecUP g>o0, lglls < CoChE,

Dt (gy < ChE  formeNU {0}.
Set By = {j € Z*: SuPP_Nj(,?, C {~ks, ka}7}; the last inequality implies

Wic={o= 3 N, a2 0, gl < GO} € WH(p,dyay,0),
JEER,

so for any £ > 0

(3.22) ' Ce(We,0) S Cc(WH(p,d,a,,0)).
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Now the e-capacity of W, ¢ will be estimated from below. It follows
from (3.6) that for some ¢z > 0

w3 la) | 0w < et (3 lag) ™
a7 IeB, ’ ieB,
Let

G’ c ..
G = {““ (@ hen, : lall, = (Z |aj|p) < 2R dlp) gy > 0}.
i€h,

Then for any @ == (ay)jen, € G we have g, = E.jel% ajN(h) € W, ¢, and

for any a,b € @, if |la ~ b, 2 7e = ecghi®® then l9a — iy > &, so

Co(Wyer) = C.,, (@), G is asubset of R%”, where d¥ = dim U = #E,.
It can be checked (using the method of the proof of Lemma 1 of [9]) that

() 402
1 iy C(]G a—d/p) ¥
M@z () (Dngem)”
which implies

Cy(@) 2 4P 1n (G"O; Ko 4/?)

Therefore e 1
CeWac) 2 0a(6) 2 10 (22 2ne ).
Let
[t o (o OV,
8,00 = Eng 22e ¢ !
then
chC1l,,

which implies
(3.23) Ce(Wa, o,0) 2 4D, 2 (2%, o) 2 k{Cfe)Ht/ott/m)
Choosa gy > 0 in such a way that
9. gieabalvga/r 1) > 1
for every 0 < & < C'ep. The lemma now follows from. (3.21)—(3.23). =
Lemoas 3.2, 8.20 and inequalities (1.2) imply

LEMMA 3.24. Letde N, 0 <a < 2,7 >0 and 1 < p < 00 be given.
There exist constants kv, kz > 0 and g¢ > 0 such that

kl((}/s)d(lfcr-ld/'v) < HE(U+(P1d,‘2,a,’)’,C)) < kz(O/E)d(lfaH/fy)
for every ¢ >0 and 0 < £ £ Ceop. :
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LEMMA 3.25. Letde N, me {1,2}, 0<a<m, v> 0,1 < p <coand
My, My, M3 > 0 be given. Sel

M(p,d, m, a7y, M1, My, M)
={fe LPRY): f >0, |flp = M1, wmp(f,8) < M1 M8 for §> 0,
B,(f,A) < MyMg)™ for A > 0},
Assume that there exists @ € LP(R®) such thet ¢ 2 0, ||, > 0,
Wi, 8) < aylel|p8* foré >0,
Bolie, A) S asllollpA™  for A>0

for some 0 < a1 < Ma, 0 < ap < Ma. Then there exist ky, ko, 80 > 0 such
that for any 0 < g < gg

ky (1/e) 30/ < M (M(p, d,m, @, v, M1, My, My)) < ko(1/€)31/oH1/7),

Proof. Define
M(p,d, m, o, vy, My, Ma, M)
={f e LP®RY): 20, ||fll, < My, wmp(f,6) < Ma| f,6% for § > 0,
B,(£,%) < My|F,A™7 for A >0},
and set par, = Mip/(2]j¢llp) and
by — %1_, | by — Ml(M§~a1)’ by = Ml(Ms _““(1,2),

Then {(le + f : f € U+(p1 da ™m, 0,7, b)} c H(p: d: m, &, Y, Mls MQ: Mﬂ)
and the rest of the proof is similar to the proof of Corollary 2.12. =

b= min(bl,bz,b3).

4. e~-Entropy and nonparametric density estimation. A measur-
able function F,, : R™ x R — R is called o density estimator if for any
T1, .., Zn € RE, Fr(zyy. .., 20;¢) : R? — R is a probability density on R%,

For a given densm_y f: Rd — R and density estimator F, : R* xR¢ — R
define

EfD(f Fp)= f D fa (‘751: 1 ¥, ))f(wl) (m'n)d'ﬂl 0%,
Rnd
where
D(f,9)= [ |f(@)—g(x)jdz for f,g € L}(RY).
Rd
Let F be a family of densities on RY, F is considered as a metric space
with metric induced from L*(R?). Define

Rr(n) = inf sup E;D(f, F,),
Fn fer
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where the infimum is taken over all density estimators F,, (based on a sample
of size n} such that Fn(zy,...,2,;) € F for any 1,...,2, € RY. Re(n)
is called the minimaz risk for F, corresponding to samples of size n and
loss function 2. Our aim is to establish some relations between Rx(n) and
He (F).

THEOREM 4.1. Let F be a family of densities on R* which is totally
bounded in the L*(RY) metric.

(4.2) If there exist gqg > 0, C' > 0 and > 0 such that
HAF) < C(1/e)" for0<e<eay,
then there exist M > 0 and ng € N such that
Ren) < Mo~ Y@M forn > ng.
(4.3) If there exist M >0, n > 0 and ng € N such that
Mn~ Y < Rz(n)  forn > ng,
then there exist C > 0 and &y > 0 such that
C(1/e)" < HAF) forO<e<ep.

The result analogous to (4.2), but under the additional assumption that
the supports of all elements of 7 are contained in a compact set § C R4,
was proved earlier by P. Groeneboom ([7]). The present proof is based on
the main idea of the proof in [7]. The following lemma will be used {[7]):

LeMMA 4.4. Let S be a compact subset of RY, and f1, fa be two densities
on R with supports contained in S. For £ > 0 define

B(fu€)={h R* =+ R: k20, f ()do = [ Mz)dz =1, D(fi,h) < g}
Rd
For any n & N there exists a measurable function @y, 1, : 8™ — {0,1} such
that

n

(4.5) sup f @ a2 mﬂ)Hh(mi)dwl.‘_.dxn
h&B{f1,€) gt fz=l

L]
+ sup f (1_‘Pf1.fz(m1}'-'swn) I]:h 4 d$1 L
i=]

h&B(f2,£) gn =
< exp{—n(D(f1, f2) — 201}
Proof of Theorem 4.1. The following notation will be used:

Rf ={z e R?: |lz| <A} forA>0,

&5\ = [ |f@)de for A>0, feL'RY,
* sl
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and g(A) = sup;er (f, A). Notice that g is nonincreasing and nonnegative;
we now show that limy e g(A) = 0. It is enough to check that for every
¢ > 0 there is a A > 0 such that g(A¢) < €. Let {f1,--., fr} be a finite
£/2-net of F (which exists since F is totally bounded); then for each i,
1 < i < k, there is a A; such that &(f;, A) £ €/2. It is enough to put
}\g = max{/\l, faay )\k}

Now let X > Ay/g; then &(f,2) < g(A) £ 1/2 for f € F. Moreover,
define

for jlz|l > A,

0
filz) = { Tjgm\—)f(w) for ||zl < A.

Clearly £, is a probability density on R? with support contained in R¢. Note
that for f, h € F we have

(4.6) D(f,h) < 49(X) + D(fx, ha) »

(4.7) D{fx,h) < 2¢(X) + D(f,h) -

Set u(e) = HI_o(F); u(e) is a nonincreasing, left-continuous function and
u(g) = KT (F) for e > 0.

Now let 0 < € < L and A > 0 such that g(A) < /4 be given. We are
going to construct a suitable density estimator.

Let {fi,...,fx} be an e-net of F, consisting of elements of JF, such
that Ink = HZ(F) < ule). Write h; = (fi)x.and put £ = £+ 2g(A).
For i < j choose pp, n, : {R§)® — {0,1} as in Lemma 4.4. Moreover, let
©nshy = L—p;n, fori < j. Clearly, in the latter case inequality (4.5) holds
as well.

For (z1,...,7,) € (R$)™ put

In@1, - mn) = {hy  ppyp @, ..., 20) =1}

and
max D(h;, Ry} if J e ,
Lhi(wla ceey -’En) = {hjejhi (Tisee®n) ( " J) ' M(ml :mn) ?é @
. ithI(m]‘_,.n-,wn)::wv
Now define

fi if ||zl > A for some !, 1 €1 <n,
Olzy,... an; ) = { i where Ly, (zy,...,2,) = hl,n.l.iﬂakth (®1,. .1 %0)
if ol £ Aforalll, 1< < n.
For f € F and i € N we have
(4.8) _P}I{(ml=--~)¢n) & (R)"™: D(f,0(m1,...,2n;-)) = (5 + 1)}
< PR {01,120} € (RO DU, 051,505 ) > (54 D)e),
where P} denotes the probability measure on R™* with density [T\, f(z:).

Bntropy and moduli of smoothness 297

Choose r, 1 £ r < k, such that D(f, f») < e. Then
D(f, 01, ,&n;")) < D(fr, O®1,.- -, %n; ) €
and (by (4.6) and the choice of A)
D(fr, O(z1,.. ., 2n;)) e+ D(hn, OZ1,. .., Bn; ),

s0 (4.8) implies
(4.9)  Pi{{z1,...,z0) € R : D(F,O(21,. .., %n;")) = (5+ 1))

L PR {(®1y.. 1) € (RE™ : D(hy, @21y, Tni)a) = (B + D)6}
It follows from the definition of @ that if D(h,,@(21,...,%n; )2) = @ then

there is j, 1 < j < k, such that ¢p, »,(21,...,2a) = 1 and D(h., h;) = a.
Therefore we obtain from (4.9)

(410)  PP{(z1,...,20) € RY)™ : D(f,O(21,.--,2057)) = (5+ i)}
< PR {(@1,. 1) € (R : Srcuch D(ho, hy) 2 (34 )
and @p,_n,(Z1,...,2a) = 1}.
Let
= #{l: (34 7)e £ D(hy, he) < (44 j)e};

As D(f, fr)
and (4.10) give

PH(z1,. o %n) € (RE)" : D(£, 0215, 25 ) 2 (5 +)e}
s Z exp "%R(D(hmm) - 25)3-} < ij exp —%njzaz}.

3
then 37 5, k; < k.
< g, (4.7) implies D(f, hr) < €+ 2g(\) = £. Thus, (4.5)

D{hryhg) 2 (3+i)e jzi
Now
EiD(£,6) = [ D(f.0y,.. . e N [] i) des .. dan
. ]Rnd jz=1
=( [ + f)D(f,@(o:l,..,,a:n;-))Hf(rc,-)dml...dmn
REA(RD™ RO i=1
< 2ng(\) + 5(6 + 3 4k e}cp{—-%njzaz}) .
izl -

For & > 2/+/7 we have § exp{~}nj?e?} < exp{—§ne?}, which together with
the lagt inequality gives :
(4.11) - EpD(f,0) < 2ng(A) +s(6+ Zk,- exp{—-;—nsz})
. izl
< 2ng(A) +&(6 + exp{ule) — tne?}),



208 A, Kamont

and this implies

(4.12) Rr(n) < 2ng(A) + £(6 + exp{u(e) — ine?}).

Since (4.12) bolds for any A > 0such that g(}) < /4, and limy .00 g(A) = 0,
we get '
(4.13) Rr(n) < &(6 + exp{u(e) ~ gne’}).

We recall that the inequalities (4.11)-(4.13) only bold for 2/v/n <& < 1,
Now, let the assumption of (4.2) hold. It follows from (1.2) and the
definition of u that '

(4.14) u(e) < C(1/e)" for 0 < e < &gp=2e, C=27C.

If we put &, = (8C/n)Y/ (247} then we find that there is an ny € N such
that 2/y/n < e, < min(1,2ey) for n > ng. Thus, from (4.13) and (4.14) we
obtain

Rer(n) < T(RCYW/ TN (1/n)YEH for n > ng.

Now, let the assumption of (4.3) hold. This assumption and (4.13) imply
that F contains infinitely many distinct elements, so that lir,_.q u(g) = oa.

Let 4f(e) = 8¢™%u(e). Then ¢ is a left-continuous, strictly decreasing
function on some interval (0,¢) and lim,_g¥(e) = co. For m € N, m >

$((), let

£m = sup{e : () 2 m}.
Then (e -+ 0) < m < ¥(em) = ¥(em — 0). For convenience assume that
&m 1is defined for all m € N, Note that Emtl S Em and mpy, oo e = 0.
Now, define

fi=e1=...=¢ep_1> ¢y,
§2=6k1 = Efy ] D By,
§nt1 =Bk, = ... = Ekypnol > Ehny, -

Note that limy, oo bn = oo, limy e én = 0 and k, — 1 < pep,~1) =
(&) <)kn (f kn < $(6n), then e, > &a, but the choice of ky,, implies
fn > Eg, )

For n large enough we have u(2/1/5) > 1/2 and 0 < 2/vky < ¢, hence

o() =ohmu( ) 2 k> e,

which implies £, > 2/v/k,,. Note that u(e)—~ tkae? < Ofor € > &,. Therefore
(4.13) implies for n large enough

(4.15) C Ralkn) < T,

Our assumption implies that M(1/n)/ @+ < Rz(n) for n > ny. Choose
s € N such that for.any n > s we have k, > g, Y(€n) > 1 and (4.15) holds.
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Now k, < 2¢(¢,) for n > 5 and

y 1\ (&) 1\ Y (@+n)
(w(én)) . M(};;) < Ry(kn) < T

The definition of 4 now implies
(4.16) MeT" < u(én),
where M = & (M/T)2+,
Now for & > 9(¢) define
Tty d ¥ P =,
vle)= {y iy +0) <z <¢P(y).

Then ¢~ is nonincreasing and ¥~1(k,) = &upy. As u is nonincreasing, we

have
—z
- G2 £ I R L
2ie) = 1670 <8( ) w( ) “(5)
and the inequality k, — 1 < 9{£,) < kn < (€ngr) implies
bng1 = "Tb‘"l(k’n) 2 {5”1(2(]"11 - 1))
2 97 (20(6n)) 2 BT W€/ VD)) = Ea/VE.

Now, let 0 < & < £,; choose n > s such that £, < e < £, then the last
inequality and (4.16) imply

(4.17) u(e) > M272(1 /ey,
As u(g) = HI_o(F) and HI_o(F) is nonincreasing (so that the set of its

discontinuity points is countable) it follows from (4.17) that
HE(F) 2 M27"2(1/e)" for 0<e<&,.
The last inequality and (1.2) give (4.3). w
EXAMPLES.

(418) Letd,m e N, 0 <a <m, vy >0, C1,Cs > 0 be given parameters,
and

Fu{feL*RY : 20, Ifli =1, wmi(f,8) < CL6% for 6 > 0,
B1(f,X) € CoA™7 for A > 0} .

It follows from Lernma 3.2 that there exist € > 0 and &g > 0 such that
He(F) < O(L/e)4A/+YM for 0 <e < g
{4.2) now implies the existence of M > 0 andnp € N such that
Rr(n) € M(1/n)*v/Gertdletn))  for p > ny,
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(4.19) Let d,m € N, 0 < @ < m, C > 0 be given parameters, and
F={feL'@®):f>20, |fli=1 wmi(f,8) <C6* for 0< 6 < 1/m}

where the L!-norm and the modulus of smoothness are taken in L*(I4). F
can also be considered as a family of densities on R? whose supports are
contained in I¢ (while the modulus of smoothness is still taken in L*(I%)).
It will be proved that there exist Ay, Ag, My, Mo > 0,80 > 0 and np € N
such that

(4.20)  Ay(1/e)¥¢ < H(F) < A(1/e)¥®  for 0 <e < e,
(4.21)  Mi(1/n)¥ D) < Rp(n) < Ma(1/n)*/ P29 for n > ny.
(Note that {4.20) resembles Lemma 2.12, which was proved for all 1 < p <
oa, but for 0 < « < 1 only.)

The existence of A; follows from Corollary 2.10, and the existence of My
is a consequence of (4.2). Once the existence of M; has been proved, the
existence of A; will follow from (4.3). So it remaing to prove the left-hand

side inequality in (4.21). In order to do this, we use Assouad’s Lemma (its
proof can be found for example in [6]):

THEOREM 4.22 (Assouad’s Lemma). Forr € N set Z, = {-1,1}"; for
2€ Zp and 1 <4 < r define .
Zig = (21, o Zim1, L 2g1, 0000 20)
Bi— = (zla N T RBitly--e; Z.,..) .
Let {f.: 2z € Z.} be a family of 27 distinct densities on R9. Assume that

there emists a partition of R info measurable sets Ay,..., A, such that for
any z2€ 2, and1 <1 <r

[ fors (@) = Fru (@) dz 2 p > 0.
A

Moreover, let

[ Vi @fa. @ dz 2 ¢ > 0.
[}
Then for any density estimator F,

SupEfD(fm )>——-ma.x(1_\/___W 1 Qn)'

zE€Z,

Now we prove the left-hand side inequality in (4.21). For a given m € N
take k € N, k > m+ 2; recall that N®(z) = k[0,..., k(- — z)%~1. Choose
h > 0 and r € N such that 2khr = 1 and put :

grisltr, -, ta) = NE (8 /n) ... N®Y(2/R).
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Then supp gri = [0, kh]%; for iy,...,ig € {0,1,...,7 — 1} define
Afiyiay = [2khiz, kR (61 + 1] % . .. x [2khig, 2kh(ia + 1)]
iy e ig) = g'r,k(tl - Zkh'bl, N 2 2khid)

~ Gkt — 2kR(i1 + 3),. .. ta — 2kh(ia + 1))
For each ¢ € {1,2,...,7%} choose a multi-index u; € {0,1,...,r — 1}¥ 50
that Uiy 3‘9 Uiy for 1 711 ig.
LetaeR,0<a<1'foreacthZd 2= (71,...,%pa), 86t

e a1 +a2 1 Bigu,(t) it €19,
1x(®) { = ifteRI\I2,
First note that [jy fo(z)de = [, fo(z)de =1 and f, > 0 for any 2z € Z,.e.
The parameters a and r will be chosen | in such a way that f, restricted to
¢ is an element of F.

The properties of the functions Nf h) mentioned in Section 3 imply that
there exists a constant Cp, > 0 such that for every z € Z,4, @, r and h

T'd’

Wn, l(fz:"s) < azwm 1 gu“'s) < Oma(2k)
i=l
Therefore, for given 0 < a < m and k > m~+2 it is possible to find a constant
Crn ko, independent of a and r, such that we 1(fz, 8) < Cm kaar®6® for any
z € Z.u. Note that

f |fz¢+(93 fz{_ (E)l dz = 4ahd = 4(1( ;r)d =p,

min((6/R)™,1) .

f V Froy (8) Fa_ () da = j V¥ oy () Fas () da

>1- Z(kh) + 2(kh)4T —a2 > 1—2(kh)%a® = ¢.

Take r > (C/Cma)™ a= (C/Cnio)r~® then f, € F for z € Z,a. It
follows from Theorem 4.22 that for any density estimator F,

(4'23) sup EfD(f: Fn) 2 S'l;p Ef.D(fz: Fn) 2 %prd(l —2(1~ qn))
ferx ZEZ

> Lpr(1 - v/2n(T = 9)) = 51" *(L = VVsgmr = F9).

where 81, 95 are some positive constants, independent of n and r. Take
T = [(dagn)t/ et 41

[ 6pnrs20+d < %

Then
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also 7y > (O/Crmp,a)*/® and ry < 2(4son)/ (3¢ +d) for n large enough. This
and (4.23) imply the left-hand side inequality in (4.21).
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