

$$\int_{0}^{t} \| \exp[A(t-s)] \| ds \le \int_{0}^{\infty} \| \exp[As] \| ds$$

$$\le \int_{0}^{\infty} \exp[\alpha(A)t] \sum_{k=0}^{\infty} \frac{t^{k} v(A)^{k}}{(k!)^{3/2}} dt = j \quad (t \ge 0).$$

Hence, $\max_{t\geq 0} \|x(t)\| \leq a \|x(0)\| + \max_{t\geq 0} \|x(t)\| j$ and we arrive at (4.3).

References

- [1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Nauka, Moscow 1966 (in Russian).
- [2] L. de Branges, Some Hilbert spaces of analytic functions, J. Math. Anal. Appl. 12 (1965), 149-186.
- [3] M. S. Brodskii, Triangular and Jordan Representations of Linear Operators, Nauka, Moscow 1969 (in Russian); English transl.: Transl. Math. Monographs 32, Amer. Math. Soc., Providence, R.I., 1971.
- [4] N. Dunford and J. T. Schwartz, Linear Operators, II. Spectral Theory, Selfadjoint Operators in Hilbert Space, Interscience, New York 1963.
- [5] I. M. Gelfand and G. E. Shilov, Some Questions of the Theory of Differential Equations, Fiz.-Mat. Liter., Moscow 1958 (in Russian).
- [6] M. I. Gil', On an estimate for the stability domain of differential systems, Differential nye Uravneniya 19 (8) (1983), 1452-1454 (in Russian).
- [7] —, On an estimate for the norm of a function of a Hilbert-Schmidt operator, Izv. Vyssh. Uchebn. Zaved. Mat. 1979 (8) (207), 14-19 (in Russian).
- [8] —, On an estimate for the resolvents of nonselfadjoint operators "close" to selfadjoint and to unitary ones, Mat. Zametki 33 (1980), 161-167 (in Russian).
- [9] I. Ts. Gokhberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators, Nauka, Moscow 1965 (in Russian); English transl.: Transl. Math. Monographs 18, Amer. Math. Soc., Providence, R.I., 1969.
- [10] —, —, Theory and Applications of Volterra Operators in Hilbert Space, Nauka, Moscow 1967 (in Russian); English transl.: Transl. Math. Monographs 24, Amer. Math. Soc., Providence, R.I., 1970.
- [11] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin 1981.
- [12] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1966.

DEPARTMENT OF MATHEMATICS BEN GURION UNIVERSITY P.O. BOX 653 BEER SHEVA 84105, ISRAEL

> Received November 2, 1990 (2734) Revised version April 24 and November 8, 1991

On molecules and fractional integrals on spaces of homogeneous type with finite measure

by

A. EDUARDO GATTO and STEPHEN VÁGI (Chicago, Ill.)

Abstract. In this paper we prove the continuity of fractional integrals acting on non-homogeneous function spaces defined on spaces of homogeneous type with finite measure. A definition of the molecules which are used in the H^p theory is given. Results are proved for L^p , H^p , BMO, and Lipschitz spaces.

1. Definitions and statement results. We shall follow the definitions and notation of [GV], and we assume that the reader is familiar with that paper. In the present paper (X, δ, μ) is a normal space of homogeneous type of finite measure and of order γ , $0 < \gamma \le 1$. In this case the diameter of the space is finite and will be denoted by D. We may and will assume that $\mu(X) = 1$.

For the sake of completeness we will repeat the definitions of normality and order. (X, δ, μ) is a *normal space* if there are positive constants A_1 and A_2 such that for all x in X

$$(1.1) A_1 r \le \mu(\mathcal{B}_r(x)) \text{if } 0 < r \le R_x,$$

(1.2)
$$\mu(\mathcal{B}_r(x)) \le A_2 r \quad \text{if } r > r_x,$$

where $\mathcal{B}_r(x)$ denotes the ball of radius r and center x, and where $R_x = \inf\{r > 0: \mathcal{B}_r(x) = X\}$, and $r_x = \sup\{r > 0: \mathcal{B}_r(x) = \{x\}\}$ if $\mu(\{x\}) \neq 0$, and $r_x = 0$ if $\mu(\{x\}) = 0$. Note that $\sup\{R_x : x \in X\} = D < \infty$, that (1.1) holds for 0 < r < 2D with constant $A_1/2$ instead of A_1 , and that (1.2) holds for $r = r_x$ if $r_x \neq 0$. The space (X, δ, μ) is said to be of order γ , $0 < \gamma \leq 1$, if there exists a positive constant M such that for every x, y, and z in X,

$$|\delta(x,z) - \delta(y,z)| \le M\delta(x,y)^{\gamma} (\max\{\delta(x,z),\delta(y,z)\})^{1-\gamma}.$$

We will consider on (X, δ, μ) the following function spaces and norms. If $0 then <math>L^p$ and $||f||_p$ have their usual meaning. For a measurable

¹⁹⁹¹ Mathematics Subject Classification: Primary 42C99, 26A33, 44A99; Secondary 31C15.

function f the distribution function λ_f is defined for t>0 by $\lambda_f(t)=\mu(\{x:|f(x)|>t\})$, and f is said to belong to weak L^p $(=wL^p)$ for $1\leq p<\infty$ if $[f]_p^p=\sup\{t^p\lambda_f(t):t>0\}$ is finite. For $\beta>0$, the space $\mathrm{Lip}[\beta]$ is defined as the set of functions in $\mathrm{Lip}(\beta)$ as defined in [GV] with the norm

(1.3)
$$\|\varphi\|_{\operatorname{Lip}[\beta]} = \|\varphi\|_{\operatorname{Lip}(\beta)} + \|\varphi\|_{\infty}.$$

The fact that $\varphi \in \text{Lip}(\beta)$ is bounded is a consequence of $\mu(X) < \infty$.

On the space BMO as defined in [GV] we introduce the following norm:

$$||\psi||^* = ||\psi||_* + ||\psi||_1.$$

The fact that $\psi \in BMO$ is in L^1 follows from $\mu(X) < \infty$. The norms defined in (1.3) and (1.4) are referred to as nonhomogeneous norms, and the corresponding spaces as nonhomogeneous function spaces.

The H^p spaces are defined in terms of atoms. The function identically one is a p-atom for any p, $(1+\gamma)^{-1} . A measurable function <math>a \ne 1$ is called a p-atom, $(1+\gamma)^{-1} , if <math>a$ is bounded with support in a ball $\mathcal B$ and such that

(1.5)
$$||a||_{\infty} \le \mu(\mathcal{B})^{-1/p}, \qquad \int_{\mathcal{X}} a \, d\mu = 0.$$

The space H^1 is defined as follows. A measurable function f on X belongs to H^1 if it is in L^1 and if there exist a sequence $\{a_i\}$ of 1-atoms and a sequence of numbers $\{\lambda_i\}$ with $\sum_{i=1}^{\infty} |\lambda_i| < \infty$ such that

$$(1.6) f = \sum_{i=1}^{\infty} \lambda_i a_i,$$

convergence being in L^1 . The H^1 norm of f is defined by

$$||f||_{H^1}=\inf\sum_{i=1}^{\infty}|\lambda_i|\,,$$

where the infimum is taken over all possible representations of the form (1.6).

Now we define the space H^p for $(1+\gamma)^{-1} . If <math>\varphi \in \text{Lip}[1/p-1]$ and a is a p-atom, then

$$\langle a, \varphi \rangle = \int\limits_X a \varphi \, d\mu$$

defines a bounded linear functional on $\operatorname{Lip}[1/p-1]$. If $\{a_i\}$ is a sequence of p-atoms and $\{\lambda_i\}$ a sequence of numbers such that $\sum_{i=1}^{\infty} |\lambda_i|^p < \infty$ then the series $\sum_{i=1}^{\infty} \lambda_i \langle a, \varphi \rangle$ converges absolutely for every φ in $\operatorname{Lip}[1/p-1]$ and

defines a bounded linear functional f on Lip[1/p-1], and

(1.7)
$$\langle f, \varphi \rangle = \sum_{i=1}^{\infty} \lambda_i \langle a_i, \varphi \rangle.$$

The space H^p , $(1+\gamma)^{-1} , is defined as the space of continuous linear functionals on Lip<math>[1/p-1]$ which can be represented in the form (1.7) with $\sum_{i=1}^{\infty} |\lambda_i|^p < \infty$. One defines $||f||_{H^p}$ by

(1.8)
$$||f||_{H^p} = \inf\left(\sum_{i=1}^{\infty} |\lambda_i|^p\right)^{1/p},$$

where the infimum is taken over all representations of the form (1.7). The expression (1.8) is not a norm but its pth power defines a metric relative to which H^p is complete.

We shall now define the molecules that are needed in this paper. Other definitions of molecules were given in [CW], [MS1], and [TW]. We first consider the case s < 1.

Let $\varepsilon > 0$ and $(1 + \gamma)^{-1} < s < 1$. A measurable function M on X is an *s-molecule* if there exist a point x_0 in X and constants L > 0 and r > 0 such that

$$(1.9) |M(x)| \le L\mu(\mathcal{B}_r(x_0))^{-1/s} \text{for all } x,$$

$$(1.10) |M(x)|\delta(x,x_0)^{1/s+\varepsilon} \le L\mu(\mathcal{B}_r(x_0))^{\varepsilon} \text{for all } x,$$

$$\left|\int\limits_X M \, d\mu\right| \le L \, .$$

Now we consider the case p=1. Let $\varepsilon>0$. A measurable function M on X is a 1-molecule if there exist a point x_0 in X and constants L>0 and r>0 such that

(1.12)
$$|M(x)| \le L\mu(\mathcal{B}_r(x_0))^{-1}$$
 for all x ,

$$(1.13) |M(x)|\delta(x,x_0)^{1+\epsilon} \le L\mu(\mathcal{B}_r(x_0))^{\epsilon} \text{for all } x,$$

(1.14)
$$\left| \int_X M \, d\mu \right| \le \frac{L}{1 + \left| \log \mu(\mathcal{B}_r(x_0)) \right|}.$$

The following estimates will occur many times in this paper, and we state them for easy reference:

(1.15)
$$\int_{0<\delta(x,y)< r} \delta(x,y)^{\alpha-1} d\mu(y) \le C_1 r^{\alpha} \quad \text{for all } r>0 \text{ and } \alpha>0,$$

(1.16)
$$\int_{r \le \delta(x,y)} \delta(x,y)^{-\alpha-1} d\mu(y) \le C_2 r^{-\alpha} \quad \text{ for all } r > 0 \text{ and } \alpha > 0,$$

(1.17)
$$\int_{0<\delta(x,y)} \delta(x,y)^{\alpha-1} d\mu(y) \le C_1 D^{\alpha} for all \alpha > 0.$$

The inequalities (1.15) and (1.16) are the inequalities of Lemma II.1 of [GV]. The inequality (1.17) follows from (1.15) by taking $\mathcal{B}_{D+\varepsilon}(x)=X$ with $\varepsilon>0$, and letting ε tend to zero.

In order to define the kernel of the fractional integral without having to distinguish the case when the measure μ has atoms we shall adopt the following abuse of notation. If $0 < \alpha < 1$ we define

$$\frac{1}{\delta(x,y)^{1-\alpha}} = \begin{cases} 1/\delta(x,y)^{1-\alpha} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

The fractional integral of order α , $0 < \alpha < 1$, on measurable functions f is defined by

$$I_{\alpha}f(x) = \int\limits_{X} \frac{f(y)d\mu(y)}{\delta(x,y)^{1-lpha}}.$$

The letters c and c_i will denote constants, not necessarily the same at each occurrence.

We now state the main results.

THEOREM 1. Let $(1+\gamma)^{-1} < s \le 1$ and let M be an s-molecule. Then M belongs to H^s and

$$||M||_{H^s} \le C,$$

where C is a constant which depends only on s, ε , and L for s < 1, and on ε and L for s=1.

THEOREM 2. Let $0 < \alpha < 1$. Then the following statements hold:

(i) For f in $wL^{1/\alpha}$, $I_{\alpha}f(x)$ converges absolutely for a.e. x in X, and

$$||I_{\alpha}f||^* \le c[f]_{1/\alpha}$$

with a constant c independent of f.

(ii) For f in wL^p with $0 < \alpha - 1/p < \gamma$, $I_{\alpha}f(x)$ converges absolutely for every x in X, and

$$||I_{\alpha}f||_{\operatorname{Lip}[\alpha-1/p]} \leq c[f]_p$$

with a constant c independent of f.

THEOREM 3. Let $0 < \alpha + \beta < \gamma$ and $f \in \text{Lip}[\beta]$. Then the following statements are equivalent:

- (i) $I_{\alpha}1 \in \text{Lip}[\alpha + \beta]$,
- (ii) $I_{\alpha}f(x)$ converges absolutely for every x and there is a constant cindependent of f such that $||I_{\alpha}f||_{\text{Lip}[\alpha+\beta]} \leq c||f||_{\text{Lip}[\beta]}$.

Theorem 4. (i) Let $0 < \alpha < \gamma$. If $f \in L^{\infty}$ then $I_{\alpha}f(x)$ converges absolutely for every x in X, and there is a constant c independent of x such that

$$||I_{\alpha}f||_{\operatorname{Lip}[\alpha]} \leq c||f||_{\infty}.$$

(ii) Let $0 < \alpha < \gamma$ and $f \in BMO$. If $I_{\alpha}1$ satisfies

(1.19)
$$\sup_{x,y} \frac{|I_{\alpha}1(x) - I_{\alpha}1(y)|(1+|\log \delta(x,y)|)}{\delta(x,y)^{\alpha}} \le C_{I_{\alpha}1} < \infty,$$

then $I_{\alpha}f(x)$ converges absolutely for every x in X, and there exists a constant c independent of f such that

$$||I_{\alpha}f||_{\mathrm{Lip}[\alpha]} \leq c||f||^*.$$

Theorem 5. Let $(1+\gamma)^{-1} , <math>0 < \alpha < \gamma$ and $1 < 1/q = 1/p - \alpha$. Then the following statements are equivalent:

- (i) $I_{\alpha}1 \in \text{Lip}[1/p-1]$.
- (ii) For any p-atom a, $I_{\alpha}a$ belongs to H^q , there exists a constant c independent of a such that

$$||I_{\alpha}a||_{H^q}\leq c$$
,

and I_{α} extends to a continuous linear map from H^p to H^q .

THEOREM 6. Let $0 < \alpha < \gamma$. If $I_{\alpha}1$ satisfies (1.19) then for any $(1+\alpha)^{-1}$ -atom a, $I_{\alpha}a$ belongs to H^1 , there is a constant c independent of a such that

$$||I_{\alpha}a||_{H^1} \leq c,$$

and I_{α} extends to a continuous linear map from $H^{1/(1+\alpha)}$ to H^1 .

Remark 1. Since the assumptions of this paper do not change the L^p spaces, the Sobolev Theorem for $1 \le p < 1/\alpha$ is the one obtained in Theorem 1 of [GV]. Similarly when $1/(1+\gamma) the theorem which$ asserts that $I_{\alpha}: H^p \to L^q$ for $1/q = 1/p - \alpha < 1$ has the same proof as in [GV] except for the fact that $||I_{\alpha}1||_q \leq c$, which follows immediately from $\mu(X) < \infty$.

Remark 2. The main novelty in Theorems 3-6 is that the cancellation property introduced in [GV] is no longer necessary when $\mu(X) < \infty$. This cancellation property for $\mu(X) < \infty$ states that $I_{\alpha}1$ is constant. This condition has been replaced by a condition on the smoothness of $I_{\alpha}1$ in each of these theorems.

Remark 3. Observe that $I_{\alpha}1 \in \text{Lip}[\alpha + \eta]$ for some $\eta > 0$ implies that $I_{\alpha}1$ satisfies (1.19).

31

2. Proofs of the theorems

Proof of Theorem 1. To prove that M belongs to H^s and that (1.18) holds we write M as

(2.1)
$$M(x) = M_0(x) + I \frac{1}{\mu(\mathcal{B})} \chi_{\mathcal{B}}(x),$$

where $I = \int M d\mu$, $\mathcal{B} = \mathcal{B}_r(x_0)$ and $\chi_{\mathcal{B}}$ denotes the characteristic function of B. Let $g = I\mu(\mathcal{B})^{-1}\chi_{\mathcal{B}}$. It is easy to see that g satisfies (1.9)-(1.11) with constant L' that depends only on L, ε , and s if s < 1, and (1.12)-(1.14)with constant L" that depends only on L and ε if s=1. Consequently, M_0 also satisfies the same conditions with a constant that depends only on L, ε , and s, and $\int M_0 d\mu = 0$. Therefore by a known result (see [CW]), M_0 belongs to H^s and $||M_0||_{H^s} \leq C_1$, where C_1 is a constant that depends only on L, ε , and s.

Now we will show that $g \in H^s$ and $||g||_{H^s} \leq C_2$, where C_2 depends only on L, ε , and s. If $\mathcal{B} = X$ then g(x) = I for all x and $||g||_{H^s} \leq |I| \leq L$. Assume now that $\mathcal{B} \neq X$, and let $\mathcal{B}_k = \mathcal{B}_{2^k r}(x_0), k = 0, \ldots, K$, where $\mathcal{B}_K = X$ but $\mathcal{B}_{K-1} \neq X$. It is easy to see that $K \leq c_1(1 + \log(1/\mu(\mathcal{B})))$, where c_1 depends only on the space. For k = 1, ..., K, let

$$b_k = \frac{1}{\mu(\mathcal{B}_{k-1})} \chi_{\mathcal{B}_{k-1}} - \frac{1}{\mu(\mathcal{B}_k)} \chi_{\mathcal{B}_k}.$$

Then $b_k = \lambda_k a_k$ with

$$\lambda_k = \frac{\mu(\mathcal{B}_k)^{1/s}}{\mu(\mathcal{B}_{k-1})}, \quad a_k = \frac{1}{\mu(\mathcal{B}_k)^{1/s}} \left[\chi_{\mathcal{B}_{k-1}} - \frac{\mu(\mathcal{B}_{k-1})}{\mu(\mathcal{B}_k)} \chi_{\mathcal{B}_k} \right].$$

Then a_k is an s-atom, and

$$g = \sum_{k=1}^{K} I \lambda_k a_k + I \chi_X.$$

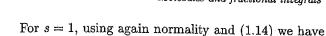
Therefore, for 0 < s < 1, using normality we obtain

$$||g||_{H^{s}}^{s} \leq \sum_{k=1}^{K} |I\lambda_{k}|^{s} + |I|^{s} \leq |I|^{s} \sum_{k=1}^{K} \frac{A_{2}2^{k}r}{A_{1}^{s}(2^{k-1}r)^{s}} + |I|^{s}$$

$$\leq |I|^{s} \frac{A_{2}}{A_{1}^{s}} r^{1-s} 2 \left[\frac{2^{(1-s)K} - 1}{2^{1-s} - 1} \right] + |I|^{s}$$

$$\leq |I|^{s} c_{2}(2^{K}r)^{1-s} + |I|^{s} \leq c_{3} |I|^{s} \left[\frac{\mu(X)}{A_{1}} \right]^{1-s} + |I|^{s}$$

$$\leq c_{4} |I|^{s} \leq c_{4} L^{s} = C_{2}^{s}.$$



$$||g||_{H^1} \le |I| \sum_{k=1}^K |\lambda_k| + |I| \le |I| \frac{A_2}{A_1} 2K + |I|$$

$$\le c_1 c_5 |I| (1 + |\log \mu(\mathcal{B})|) \le C_2' < \infty.$$

Proof of Theorem 2. Let f belong to $wL^{1/\alpha}$. Then

$$||f||_{1} = \int_{X} |f| d\mu = \int_{0}^{\infty} \lambda_{f}(t) dt$$

$$\leq \int_{0}^{\varepsilon} \mu(X) dt + \int_{\varepsilon}^{\infty} [f]_{1/\alpha}^{1/\alpha} t^{-1/\alpha} dt$$

$$= \varepsilon + \frac{\alpha}{1-\alpha} [f]_{1/\alpha}^{1/\alpha} \varepsilon^{1-1/\alpha}.$$

Setting $\varepsilon = [f]_{1/\alpha}$ in the above inequality we obtain $||f||_1 \le c[f]_{1/\alpha}$.

Now it follows easily from Fubini's Theorem, (1.17) and the last inequality that $I_{\alpha}f$ belongs to L^{1} , and

$$(2.2) $||I_{\alpha}f||_1 \le c_1 ||f||_1 \le c_2 |f|_{1/\alpha},$$$

where c_1 and c_2 are constants which only depend on (X, δ, μ) .

On the other hand, by Theorem 1.2 of [GV] we know that $||I_{\alpha}f||_{*} \leq$ $c[f]_{1/\alpha}$ with c independent of f. This inequality together with (2.2) concludes the proof of part (i) of the theorem.

In order to prove (ii) let f belong to wL^p with $0 < \alpha - 1/p < \gamma$. If $1/\alpha < s < p$ then an argument similar to the one used in (i) shows that $||f||_s \leq c[f]_p$, where c is independent of f. Now it follows from Hölder's inequality with s and s', (1.17), and the last inequality that

(2.3)
$$|I_{\alpha}f(x)| \leq \left[\int_{X} \frac{d\mu(y)}{\delta(x,y)^{(1-\alpha)s'}} \right]^{1/s'} ||f||_{s} \leq c[f]_{p},$$

where c is independent of f.

On the other hand, by Theorem I.3 of [GV] we know that $||I_{\alpha}f||_{\text{Lip}(\alpha-1/p)}$ $\leq c[f]_p$ with c independent of f. This inequality together with (2.3) proves (ii).

Proof of Theorem 3. The fact that (ii) implies (i) is obvious because $1 \in \text{Lip}[\beta]$. In order to prove that (i) implies (ii) let f belong to $\text{Lip}[\beta]$; since $\delta(x,\cdot)^{\alpha-1}$ is in $L^1(X)$ and f is in L^{∞} , $I_{\alpha}f(x)$ converges absolutely for every x, and using (1.17) we have

$$(2.4) ||I_{\alpha}f||_{\infty} \le c||f||_{\infty}.$$

Let now $x_1 \neq x_2$ be points of X, $\delta(x_1, x_2) = r$, and $\mathcal{B} = \mathcal{B}_{2\varkappa r}(x_1)$, where \varkappa is the constant in the inequality $\delta(x, z) \leq \varkappa(\delta(x, y) + \delta(y, z))$ valid for all x, y, z in X. Write

$$I_{\alpha}f(x_{1}) - I_{\alpha}f(x_{2}) = \int_{X} \left[\frac{1}{\delta(x_{1}, y)^{1-\alpha}} - \frac{1}{\delta(x_{2}, y)^{1-\alpha}} \right] f(y) d\mu(y)$$

$$= \int_{X} \left[\frac{1}{\delta(x_{1}, y)^{1-\alpha}} - \frac{1}{\delta(x_{2}, y)^{1-\alpha}} \right] (f(y) - f(x_{1})) d\mu(y)$$

$$+ f(x_{1})(I_{\alpha}1(x_{1}) - I_{\alpha}1(x_{2})).$$

Since $I_{\alpha}1 \in \text{Lip}[\alpha + \beta]$, for the second term we have

$$|f(x_1)(I_{\alpha}1(x_1) - I_{\alpha}1(x_2))| \le ||f||_{\infty} c_1 \delta(x_1, x_2)^{\alpha + \beta}.$$

Now we rewrite the first term as follows:

$$\int_{\mathcal{B}} \frac{f(y) - f(x_1)}{\delta(x_1, y)^{1 - \alpha}} d\mu(y) - \int_{\mathcal{B}} \frac{f(y) - f(x_1)}{\delta(x_2, y)^{1 - \alpha}} d\mu(y) + \int_{\mathcal{B}^c} (f(y) - f(x_1)) \left[\frac{1}{\delta(x_1, y)^{1 - \alpha}} - \frac{1}{\delta(x_2, y)^{1 - \alpha}} \right] d\mu(y) = I_1 - I_2 + I_3.$$

By (1.15)

$$|I_1| \leq ||f||_{\operatorname{Lip}[\beta]} (2\varkappa r)^{\beta} \int_{\mathcal{B}} \delta(x_1, y)^{\alpha - 1} d\mu(y) \leq C_1 ||f||_{\operatorname{Lip}[\beta]} (2\varkappa r)^{\alpha + \beta}$$
$$\leq c_2 ||f||_{\operatorname{Lip}[\beta]} \delta(x_1, x_2)^{\alpha + \beta}.$$

To estimate I_2 set $\widetilde{\mathcal{B}} = \mathcal{B}_{\varkappa(2\varkappa+1)r}(x_2)$, and note that $\mathcal{B} \subset \widetilde{\mathcal{B}}$. We have

$$|I_2| \leq \int_{\widetilde{\mathcal{B}}} \frac{|f(y) - f(x_2)|}{\delta(x_2, y)^{1-\alpha}} d\mu(y) + |f(x_2) - f(x_1)| \int_{\widetilde{\mathcal{B}}} \frac{d\mu(y)}{\delta(x_2, y)^{1-\alpha}}.$$

Both terms are estimated as I_1 , and hence

$$|I_2| \leq c_3 ||f||_{\operatorname{Lip}[\beta]} \delta(x_1, x_2)^{\alpha + \beta}.$$

Now we estimate I_3 . Using Lemma II.3 of [GV], $\alpha + \beta < \gamma$, the fact that $f \in \text{Lip}[\beta]$ and (1.16) we have

$$||I_{\alpha}f||_{\mathrm{Lip}[\beta]}\delta(x_1,x_2)^{\gamma}\int_{\mathcal{B}^{\circ}}\delta(x_1,y)^{\alpha-1-\gamma+\beta}\,d\mu(y)\leq c_4||f||_{\mathrm{Lip}[\beta]}\delta(x_1,x_2)^{\alpha+\beta}\,.$$

Combining (2.4) and the estimates for I_1 , I_2 , and I_3 we finally obtain

$$\|I_{lpha}f\|_{\mathrm{Lip}[lpha+eta]}\leq c\|f\|_{\mathrm{Lip}[lpha]}$$
 .

Proof of Theorem 4. To prove part (i) let f belong to L^{∞} , let $x_1 \neq x_2$ be points of X and let $\mathcal{B} = \mathcal{B}_{2\times r}(x_1)$, where $r = \delta(x_1, x_2)$. Then

$$I_{\alpha}f(x_{1}) - I_{\alpha}f(x_{2}) = \int_{\mathcal{B}} \frac{f(y) d\mu(y)}{\delta(x_{1}, y)^{1-\alpha}} - \int_{\mathcal{B}} \frac{f(y) d\mu(y)}{\delta(x_{2}, y)^{1-\alpha}} + \int_{\mathcal{B}^{c}} \left[\frac{1}{\delta(x_{1}, y)^{1-\alpha}} - \frac{1}{\delta(x_{2}, y)^{1-\alpha}} \right] f(y) d\mu(y) = I_{1} - I_{2} + I_{3}.$$

Now $|I_1| \leq C_1(2\varkappa r)^{\alpha} ||f||_{\infty}$ by (1.15). Let $\widetilde{\mathcal{B}} = \mathcal{B}_{\varkappa(2\varkappa+1)r}(x_2)$ and note that $\mathcal{B} \subset \widetilde{\mathcal{B}}$. Using (1.15) again we have

$$|I_2| \leq \int\limits_{\widetilde{\mathcal{B}}} \frac{|f(y)| \, d\mu(y)}{\delta(x_2,y)^{1-lpha}} \leq C_1 (\varkappa(2\varkappa+1)r)^lpha ||f||_\infty \, .$$

By Lemma II.2 of [GV], $\alpha < \gamma$ and (1.16) we have

$$|I_3| \le c_1 \delta(x_1, x_2)^{\gamma} \int_{\mathcal{B}^c} \delta(x_1, y)^{\alpha - 1 - \gamma} |f(y)| d\mu(y) \le c_1 C_2 (2\varkappa r)^{\alpha} ||f||_{\infty}.$$

On the other hand, by (1.17), $||I_{\alpha}f||_{\infty} \leq C_1 D^{\alpha} ||f||_{\infty}$. This concludes the proof of (i).

To prove (ii) let f belong to BMO and let x be a point of X. Then

$$|I_{\alpha}f(x)| \leq \int\limits_{X} \frac{|f(y) - m_X(f)|}{\delta(x,y)^{1-\alpha}} d\mu(y) + \int\limits_{X} \frac{|m_X(f)| d\mu(y)}{\delta(x,y)^{1-\alpha}},$$

where $m_X(f)$ is the average of f over X, and therefore $|m_X(f)| \leq ||f||_1$. Setting $r = D + \varepsilon$ with $\varepsilon > 0$ in Lemma II.5(i) of [GV], and then letting ε tend to zero we find that the first integral is majorized by $c_2 D^{\alpha} ||f||_*$. By (1.15) the second integral is majorized by $C_1 D^{\alpha} ||f||_1$. These two estimates imply

Now let $x_1 \neq x_2$ be points of X, $r = \delta(x_1, x_2)$ and $\mathcal{B} = \mathcal{B}_{2 \times r}(x_1)$. Note that $x_2 \in \mathcal{B}$; thus we have

$$I_{\alpha}f(x_{1}) - I_{\alpha}f(x_{2}) = \int_{X} \left[\frac{1}{\delta(x_{1}, y)^{1-\alpha}} - \frac{1}{\delta(x_{2}, y)^{1-\alpha}} \right] f(y) d\mu(y)$$

$$= \int_{X} \left[\frac{1}{\delta(x_{1}, y)^{1-\alpha}} - \frac{1}{\delta(x_{2}, y)^{1-\alpha}} \right] (f(y) - m_{\mathcal{B}}(f)) d\mu(y)$$

$$+ m_{\mathcal{B}}(f) [(I_{\alpha}1)(x_{1}) - (I_{\alpha}1)(x_{2})].$$

We first estimate the second term. To do this we need the following inequality:

$$|m_{\overline{B}}(f)| \leq c_1 ||f||^* (1 + |\log \mu(\overline{B})|),$$

Molecules and fractional integrals

where $\overline{\mathcal{B}}$ is any ball in X, f is a function in BMO, and c_1 is independent of $\overline{\mathcal{B}}$ and f. To prove this inequality write

$$m_{\overline{\mathcal{B}}}(f) = \int\limits_X f(y) \frac{1}{\mu(\overline{\mathcal{B}})} \chi_{\overline{\mathcal{B}}}(y) \, d\mu(y)$$

and use that f belongs to BMO, duality, and the fact proved in Theorem 1 that

$$\left\| \frac{1}{\mu(\overline{\mathcal{B}})} \chi_{\overline{\mathcal{B}}} \right\|_{H^1} \le c_2 (1 + \left| \log \mu(\overline{\mathcal{B}}) \right|).$$

This inequality and normality imply that

$$(2.7) |m_{\mathcal{B}}(f)((I_{\alpha}1)(x_1) - (I_{\alpha}1)(x_2))| \le c_3 ||f||^* \delta(x_1, x_2)^{\alpha}$$

with c_3 independent of f and \mathcal{B} .

Now we rewrite the first term as follows:

$$\int_{\mathcal{B}} \frac{f(y) - m_{\mathcal{B}}(f)}{\delta(x_{1}, y)^{1-\alpha}} d\mu(y) - \int_{\mathcal{B}} \frac{f(y) - m_{\mathcal{B}}(f)}{\delta(x_{2}, y)^{1-\alpha}} d\mu(y)
+ \int_{\mathcal{B}^{c}} (f(y) - m_{\mathcal{B}}(f)) \left\{ \frac{1}{\delta(x_{1}, y)^{1-\alpha}} - \frac{1}{\delta(x_{2}, y)^{1-\alpha}} \right\} d\mu(y) = I_{1} - I_{2} + I_{3}.$$

By Lemma II.5(i) of [GV], $|I_1| \leq c_4 (2\varkappa r)^{\alpha} ||f||_*$. To estimate I_2 note that $\mathcal{B} \subset \widetilde{\mathcal{B}} = \mathcal{B}_{\varkappa(2\varkappa+1)r}(x_2)$, and hence

$$|I_2| \leq \int_{\widetilde{\mathcal{B}}} \frac{|f(y) - m_{\widetilde{\mathcal{B}}}(f)|}{\delta(x_2, y)^{1-\alpha}} d\mu(y) + |m_{\mathcal{B}}(f) - m_{\widetilde{\mathcal{B}}}(f)| \int_{\widetilde{\mathcal{B}}} \frac{d\mu(y)}{\delta(x_2, y)^{1-\alpha}}.$$

Again by Lemma II.5(i) of [GV] the first integral is majorized by $c_5 \times (\varkappa(2\varkappa+1)r)^\alpha ||f||_*$. Now note that $|m_{\mathcal{B}}(f) - m_{\widetilde{\mathcal{B}}}(f)| \leq c_6 ||f||_*$, where c_6 is independent of x_1 , x_2 , r, and f. Therefore by (1.15) the second term is majorized by $c_6 C_1 r^\alpha ||f||_*$. Combining these estimates we have

$$|I_2| \leq c_7 \delta(x_1, x_2)^{\alpha} ||f||_*$$
.

Now we estimate I_3 . Using Lemmas II.3, II.5(i) of [GV] and the fact that $\alpha < \gamma$ we have

$$|I_3| \leq c_8 \delta(x_1, x_2)^{\gamma} \int_{\mathcal{B}^c} \frac{|f(y) - m_{\mathcal{B}}(f)|}{\delta(x_1, y)^{1 - \alpha + \gamma}} d\mu(y) \leq c_9 ||f||_* \delta(x_1, x_2)^{\alpha}.$$

Combining the estimates for I_1 , I_2 and I_3 with (2.7) we obtain $||I_{\alpha}f||_{\text{Lip}(\alpha)} \le c_{10}||f||^*$. Finally, using (2.6) we have $||I_{\alpha}f||_{\text{Lip}[\alpha]} \le c||f||^*$.

Proof of Theorem 5. We shall prove first that (i) implies (ii). Let a be a p-atom with support in $\mathcal{B} = \mathcal{B}_r(x_0)$. Since the diameter D of X is finite, $\mathcal{B}_r(x) = X$ when r > D, therefore we can assume without loss of

generality that a p-atom is supported in a ball of radius r less than or equal to 2D.

If a is a p-atom and $r \leq r_{x_0}$, then $\int a \, d\mu = 0$ forces a to be identically zero and consequently $I_{\alpha}a \equiv 0$. If a is not identically 1 and $r_{x_0} < r \leq 2D$ we shall prove (1.9)–(1.11) with s = q and $\varepsilon = 1 + \gamma - 1/p$. To prove (1.9) we consider two cases: $\delta(x,x_0) < 2\varkappa r$ and $\delta(x,x_0) \geq 2\varkappa r$. If $\delta(x,x_0) < 2\varkappa r$ we have

$$|I_{\alpha}a(x)| \leq \int_{\mathcal{B}} \frac{1}{\delta(x,y)^{1-\alpha}} |a(y)| \, d\mu(y) \leq \int_{\delta(x,y) \leq \varkappa(2\varkappa + 1)r} |a(y)| \, d\mu(y)$$

$$\leq C_{1}\mu(\mathcal{B})^{-1/p} [\varkappa(2\varkappa + 1)r]^{\alpha} \leq (2/A_{1})^{\alpha} C_{1} [\varkappa(2\varkappa + 1)]^{\alpha} \mu(\mathcal{B})^{-1/q}$$

$$= L_{1}\mu(\mathcal{B})^{-1/q} .$$

If $\delta(x,x_0) \geq 2\varkappa r$, then

$$|I_{\alpha}a(x)| \leq \int_{\mathcal{B}} \frac{1}{\delta(x,y)^{1-\alpha}} |a(y)| \, d\mu(y) \leq \frac{1}{(2\varkappa r)^{1-\alpha}} \mu(\mathcal{B})^{-1/p} \mu(\mathcal{B})$$
$$\leq (A_2/(2\varkappa))^{1-\alpha} \mu(\mathcal{B})^{\alpha-1} \mu(\mathcal{B})^{1-1/p} \leq L_2 \mu(\mathcal{B})^{-1/q} \, .$$

To prove (1.10), observe first that if $\delta(x, x_0) < 2\varkappa r$ then (1.10) follows from (1.9) using normality:

$$|I_{\alpha}a(x)|\delta(x,x_0)^{1/q+\varepsilon} \le L_1\mu(\mathcal{B})^{-1/q}(2\varkappa r)^{1/q+\varepsilon} \le L_3\mu(\mathcal{B})^{\varepsilon}.$$

If $\delta(x, x_0) \geq 2 \varkappa r$, then since $\int a \, d\mu = 0$ we can write

$$I_{\alpha}a(x) = \int\limits_{\mathcal{B}} \left[\frac{1}{\delta(x,y)^{1-\alpha}} - \frac{1}{\delta(x,x_0)^{1-\alpha}} \right] a(y) d\mu(y).$$

Now using Lemma II.3 of [GV] and normality we have

$$\begin{split} |I_{\alpha}a(x)| &\leq c_1\delta(x,x_0)^{\alpha-\gamma-1}\mu(\mathcal{B})^{-1/p}\int_{\mathcal{B}}\delta(y,x_0)^{\gamma}\,d\mu(y) \\ &\leq c_1\delta(x,x_0)^{\alpha-\gamma-1}\mu(\mathcal{B})^{-1/p}r^{\gamma}\mu(\mathcal{B}) \\ &\leq c_1(2/A_1)^{\gamma}\delta(x,x_0)^{\alpha-\gamma-1}\mu(\mathcal{B})^{\varepsilon} = L_4\delta(x,x_0)^{\alpha-\gamma-1}\mu(\mathcal{B})^{\varepsilon} \,. \end{split}$$

In order to show (1.11), consider

$$\int I_{\alpha}a(x) d\mu(x) = \int\limits_X \left(\int\limits_X \frac{a(y)}{\delta(x,y)^{1-\alpha}} d\mu(y) \right) d\mu(x).$$

Changing the order of integration, and using $\int a d\mu = 0$, the above integral is equal to

$$\int a(y) I_{\alpha} 1(y) \, d\mu(y) = \int a(y) [I_{\alpha} 1(y) - I_{\alpha} 1(x_0)] \, d\mu(y) \, .$$

Since $I_{\alpha}1$ belongs to Lip[1/p-1] and a is a p-atom supported in $\mathcal{B}_r(x_0)$ we have

(2.8)
$$\left| \int I_{\alpha} a \, d\mu \right| \leq \|I_{\alpha} 1\|_{\text{Lip}[1/p-1]} r^{1/p-1} \int |a(y)| \, d\mu(y)$$
$$\leq \|I_{\alpha} 1\|_{\text{Lip}[1/p-1]} D^{1/p-1} = L_5.$$

This proves that $I_{\alpha}a$ is a q-molecule with constant $L = \max\{L_i : 1 \le i \le 5\}$ which depends only on the space, α , and p. When a is identically 1, (1.17) implies that $|I_{\alpha}1(x)| \le C_1 D^{\alpha}$, and therefore $I_{\alpha}a$ is a q-molecule for any $x_0 \in X$, r = 2D and any $\varepsilon > 0$, and its constant L depends only on the space, α , and p. Applying now Theorem 1 we see that $I_{\alpha}a$ is in H^q and

$$(2.9) ||I_{\alpha}a||_{H^q} \leq C.$$

Let now f be an element of H^p , and consider an atomic decomposition of f, i.e. $f = \sum_{i=1}^{\infty} \lambda_i a_i$ with $\sum_{i=1}^{\infty} |\lambda_i|^p \leq 2^p ||f||_{H^p}^p$. Then by (2.9) we have

(2.10)
$$\sum_{i=1}^{\infty} \|\lambda_i I_{\alpha} a_i\|_{H^q}^q \le C^q \sum_{i=1}^{\infty} |\lambda_i|^q \le C^q \left(\sum_{i=1}^{\infty} |\lambda_i|^p\right)^{q/p} < \infty.$$

Since H^q is complete, (2.10) implies that $\sum_{i=1}^{\infty} \lambda_i I_{\alpha} a_i$ converges in H^q to an element g of H^q . Furthermore, we have

$$(2.11) ||g||_{H^q} \le 2C||f||_{H^p}.$$

In order to extend I_{α} to all of H^p we must show that g does not depend on the particular atomic decomposition of f. Let a be a p-atom and let φ belong to $\mathrm{Lip}[1/q-1]$. Observe that by Theorem 3, $I_{\alpha}\varphi$ belongs to $\mathrm{Lip}[1/p-1]$ and

$$\langle I_{\alpha}a, \varphi \rangle = \langle a, I_{\alpha}\varphi \rangle;$$

in fact,

$$\langle I_{\alpha}a, \varphi \rangle = \int \varphi(x) \left[\int a(y) \frac{1}{\delta(x, y)^{1-\alpha}} d\mu(y) \right] d\mu(x)$$

$$= \int \left[\int \varphi(x) \frac{1}{\delta(x, y)^{1-\alpha}} d\mu(x) \right] a(y) d\mu(y)$$

$$= \int I_{\alpha}\varphi(y) a(y) d\mu(y) = \langle a, I_{\alpha}\varphi \rangle,$$

because $\varphi(x)a(y)\delta(x,y)^{\alpha-1}$ is in $L^1(X\times X)$. Now

$$\langle g, \varphi \rangle = \sum_{i=1}^{\infty} \lambda_i \langle I_{\alpha} a_i, \varphi \rangle = \sum_{i=1}^{\infty} \lambda_i \langle a_i, I_{\alpha} \varphi \rangle = \langle f, I_{\alpha} \varphi \rangle.$$

This shows that g is independent of the particular atomic decomposition of f, and defining $I_{\alpha}f = g$ by (2.11) we have

The following section
$$\|I_{lpha}f\|_{H^q}\leq 2C\|f\|_{H^p}$$
 ,

for all f in H^p . This concludes the proof that (i) implies (ii). To prove that (ii) implies (i) we use the fact that Lip[1/p-1] is the dual space of H^p . Since the transpose $I_{\alpha}^t = I_{\alpha}$, (ii) implies that I_{α} is continuous from Lip[1/q-1] to Lip[1/p-1], consequently $I_{\alpha}1 \in \text{Lip}[1/p-1]$.

Proof of Theorem 6. Let a be a $1/(\alpha+1)$ -atom supported in $\mathcal{B}=\mathcal{B}_r(x_0)$. The proofs of (1.12) and (1.13) are the same as the proofs of (1.9) and (1.10) in Theorem 5 if p and q are replaced respectively by $1/(1+\alpha)$ and 1. In order to prove (1.14) write

$$\int I_{\alpha}a(x)\,d\mu(x) = \int\limits_X a(y)(I_{\alpha}1(y) - I_{\alpha}1(x_0))\,d\mu(y)$$

as in the proof of (1.11) in Theorem 5. Using condition (1.19) we majorize the absolute value of the last integral by

$$C_{I_{oldsymbollpha} 1} \int\limits_X |a(y)| rac{\delta(x_0,y)^{oldsymbollpha}}{1+|{
m log}\,\delta(x_0,y)|} \, d\mu(y) \, .$$

Since $y \in \mathcal{B}_r(x_0)$ and $r \leq 2D$ there is a constant c_1 such that the integral is less than or equal to

$$c_1 \frac{r^{\alpha}}{1+\left|\log r\right|} \int\limits_X |a(y)| \, d\mu(y) \, .$$

Using the fact that a is an $1/(1+\alpha)$ -atom and normality in the last expression we finally obtain

$$\left| \int I_{\alpha} a \, d\mu \right| \leq L_6 \frac{1}{1 + \left| \log \mu(\mathcal{B}) \right|}.$$

Finally, if $a \equiv 1$ then (1.15) implies that $|I_{\alpha}1(x)| \leq C_1 D^{\alpha}$, and therefore $I_{\alpha}1$ is a 1-molecule for any $x_0 \in X$, r = 2D, and any $\varepsilon > 0$, whose constant L depends only on the space, α , and ε .

Applying Theorem 1 we conclude that $I_{\alpha}a$ is in H^1 and

Let now f be an element of $H^{1/(1+\alpha)}$ and let $f = \sum_{i=1}^{\infty} \lambda_i a_i$ with $\sum_{i=1}^{\infty} |\lambda_i|^{1/(1+\alpha)} \leq 2^{1/(1+\alpha)} ||f||_{H^{1/(1+\alpha)}}^{1/(1+\alpha)}$ be an atomic decomposition of f. Then by (2.13)

(2.14)
$$\sum_{i=1}^{\infty} \|\lambda_i I_{\alpha} a\|_{H^1} \le C \sum_{i=1}^{\infty} |\lambda_i| \le C \left(\sum_{i=1}^{\infty} |\lambda_i|^{1/(1+\alpha)} \right)^{1+\alpha}.$$

Since H^1 is complete, (2.14) implies that $\sum_{i=1}^{\infty} \lambda_i I_{\alpha} a_i$ converges in H^1 to an element g of H^1 , and $\|g\|_{H^1} \leq 2C\|f\|_{H^{1/(1+\alpha)}}$. The extension of I_{α} to all of $H^{1/(1+\alpha)}$ is done as in the proof of Theorem 5, except that instead of using Theorem 3 we use part (ii) of Theorem 4.

Acknowledgements. Our original proof of Theorem 1 relied on the β -maximal function of Macías and Segovia [MS] for estimating $||g||_{H^s}$. Also, the condition (1.14) was originally stated as $|\int_X M d\mu| \leq L\mu(\mathcal{B}_\tau(x_0))^\eta$ for some $\eta > 0$. We thank Professor M. Taibleson and the referee for suggesting the present proof of Theorem 1, which is shorter and direct, and condition (1.14).

3. A correction to [GV]. In [GV] the definition of the cancellation property (page 174, third paragraph) is incorrect if the measure μ has atoms. In order to state the cancellation property in a way that includes this case we have to define the kernel of the fractional integral as in this paper, i.e. for $0 < \alpha < 1$

$$\frac{1}{\delta(x,y)^{1-\alpha}} = \begin{cases} 1/\delta(x,y)^{1-\alpha} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

Then the fractional integrals are defined by

$$\begin{split} I_{\alpha}f(x) &= \int\limits_{X} \frac{f(y)}{\delta(x,y)^{1-\alpha}} \, d\mu(y) \,, \\ \widetilde{I}_{\alpha}f(x) &= \int\limits_{X} \left[\frac{1}{\delta(x,y)^{1-\alpha}} - \frac{\psi_{z}(y)}{\delta(z,y)^{1-\alpha}} \right] f(y) \, d\mu(y) \,, \end{split}$$

where z and ψ_z are as in [GV], page 177 (cf. (I, 21) and (I, 22) of [GV]). Now the cancellation property can be stated as follows:

(3.1)
$$\widetilde{I}_{\alpha} 1 \equiv \text{const.},$$

or equivalently

$$(3.2) \qquad \qquad \int\limits_X \left[\frac{1}{\delta(x_1,y)^{1-\alpha}} - \frac{1}{\delta(x_2,y)^{1-\alpha}} \right] d\mu(y) = 0$$

for all x_1 and x_2 in X (cf. (I,10) of [GV]). To show that (3.1) implies (3.2) observe that the integral in (3.2) is $\widetilde{I}_{\alpha}1(x_1) - \widetilde{I}_{\alpha}1(x_2)$. To see that (3.2) implies (3.1) add and subtract $\psi_z(y)/\delta(z,y)^{1-\alpha}$ in the integrand of (3.2). With these definitions all the theorems and their proofs in [GV] are valid when μ has atoms.

References

- [CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [GV] A. E. Gatto and S. Vági, Fractional integrals on spaces of homogeneous type, in: Analysis and Partial Differential Equations, Cora Sadosky (ed.), Marcel Dekker, New York 1990, 171-216.

[MS1] R. A. Macías and C. Segovia, Singular integrals on generalized Lipschitz and Hardy spaces, Studia Math. 65 (1979), 55-75.

[MS2] —, —, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309.

[TW] M. H. Taibleson and G. Weiss, The molecular characterization of Hardy spaces, Astérisque 77 (1980), 66-149.

DEPARTMENT OF MATHEMATICS DEFAUL UNIVERSITY CHICAGO, ILLINOIS 60614 U.S.A.

Received November 8, 1990
Revised version November 29, 1991
(2741)