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[ llexplA(t—s)llds < [ [lexp[As]ids
0

Okl AVK
expla(A)] t—(a%); dt=j (t=0).
k=0

i
o;ﬁg

Hence, max»o |[2(8)]| < a|z(0)!] + max;zo |z(t)]j and we arrive at (4.3). m
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On molecules and fractional integrals on spaces
of homogeneous type with finite measure

by

A. EDUARDO GATTO and STEPHEN VAGI (Chicago, IIL)

Abstract. In this paper we prove the contimuity of fractional integrals acting on non-
homogeneous function spaces defined on spaces of homogeneous type with finite measure.
A definition of the molecules which are used in the H? theory 1s given. Results are proved
for L7, H? BMO, and Lipschitz spaces.

1. Definitions and statement results. We shall follow the definitions
and notation of [GV], and we assume that the reader is familiar with that
paper. In the present paper (X, §, 4) is a normal space of homogeneous type
of finite measure and of order v, 0 < v < 1. In this case the diameter of
the space is finite and will be denoted by D. We may and will assume that
w(X) =1

For the sake of completeness we will repeat the definitions of normality
and order. (X, 6, 1) is a normal space if there are positive constants 4; and
A, such that for all z in X

{1.1) Ayr < p(Bp(z)) H0<r<Re,

(1.2) p(Br(z)) < Aor i 7 >rg,

where B,.(z) denotes the ball of radius » and center z, and where Ry =
inf{r > 0: Bn(z) = X}, and r; = sup{r > 0 : B.(2) = {z}} if u({z}) # 0,
and ry = 0 if u({z}) = 0. Note that sup{R; : ¢ € X} = D < 00, that (1.1)
holds for 0 < r < 2D with constant A; /2 instead of Ay, and that (1.2) holds
for r = 7y if vy £ 0. The space (X, 8, u) is said to be of order v, 0 <y <1,
if there exists a positive constant M such that for every z, y, and z in X,

16(z,2) — 8y, 2)| < M6(w,y)" (max{8(z, 2),6(y.2)})" " -

We will consider on (X, §, 1) the following function spaces and norms. If
0 < p < oo then L and ||fll, have their usual meanirg. For a measurable
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26 A, E. Gatto and 8. Vigi

function f the distribution function Ay is defined for ¢ > 0 by A (2) == p({z:
If(z)| > t}), and f is said to belong to weak LP (= wLF) for 1 < p < oo if
[fI5 = sup{tPAf(t) : t > 0} is finite. For 8 > 0, the space Lip[3] is defined
as the set of functions in Lip(8) as defined in [GV] with the norm

(1.3) lellLipia = leliLipesy + lelloo -

The fact that o € Lip(#) is bounded is a consequence of u(X) < oo.
On the space BMO as defined in [GV] we introduce the following norm:

(14) 1™ = lisblle + 1ola -

The fact that v € BMO is in L' follows from u(X) < co. The norms
defined in (1.3} and (1.4) are referred to as norhomogeneous norms, and
the corresponding spaces as nonhomogeneous function spaces,

The H? spaces are defined in terms of atoms, The function identically
one is a p-atom for any p, (1+7)~! < p < 1. A measurable function a 5 1
is called a p-atom, (1++)™' <p <1, if a is bounded with support in a ball
B and such that

(19) lallo < 4(B), [ adu=o0.

X

The space H! is defined as follows. A measurable function f on X belongs
to H' if it is in L' and if there exist a sequence {a;} of l-atoms and a
sequence of numbers {A;} with 3., |A;| < 0o such that

(1.6) f= i Asdts

f==1

convergence being in L', The H' norm of f is defined by

o0
1£lers = inf 3" [\g],
=1
\(;vhere the infimum is taken over all possible representations of the form
1.6).

Now we define the space H? for (1 +4)" <p <1 Ifp e Lip[t/p — 1]
and a is a p-atom, then

(00) = [ oo

defines a bounded linear functional on Lip[l/p —1]. If {a;} is a sequence
of p-atoms and {\;} a sequence of numbers such that 3oy Al < oo then
the series .2, Ai{a, ) converges absolutely for every ¢ in Lip{1/p— 1] and
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defines a bounded linear functional f on Lip[Ll/p — 1], and
(1.7) {f,0) =D Nilag, ) -
i=1

The space H?, (1++)7! < p < 1, is defined as the space of continuous linear
functionals on Lip[1/p — 1] which can be represented in the form (1.7) with
Yoot |A]P < 00. One defines || f||g» by

(18 Il = 5nf (S nle)
f=1

where the infimum is taken over all representations of the form (1.7). The
expression (1.8) is not a norm but its pth power defines a metric relative to
which H? is complete.

We shall now define the molecules that are needed in this paper. Other
definitions of molecules were given in {CW)], [MS1], and {TW]. We first con-
sider the case s < 1.

Let ¢ > 0 and (1 + 7)™ < s < 1. A measurable function M on X is
an s-molecule if there exist a point zo in X and constants L > 0 and r > 0
such that

(1.9) | M{x)| < Lu(B.(z0))"Y*  for all z,
(1.10) | M()|8(, z0)"/*+¢ < Lp(Br(20))*  for all 2,
(1.11) U Mdu‘ <L.

X

Now we consider the case p = 1. Let £ > 0. A measurable function M
on X is a 1-molecule if there exist a point o in X and constants L > 0 and
r > 0 such that

(1.12) |M(z)| < Lu(B.(z0))™" for all z,
(1.13) | M(x)|6(x, z0) " < Lu(B.(z0))  forall z,
. L

(134) |JMW¥1HMM&mM'

The following estimates will occur many times in this paper, and we
state them for easy reference:

(1.15) f Sz, )* T du(y) < Cir®  forallr >0anda >0,
0<é(m,y)<r ’
(1.18) f 8(z, )" Tdu(y) £ Cor™® forallr>0and a >0,
r<8(e,y) :
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(1.17) f 8(z,y)*  du(y) < C1D*  forall > 0.
- 0<é(x,y)

The inequalities (1.15) and {1.16) are the inequalities of Lemma II.1 of [GV].
The inequality (1.17) follows from (1.15) by taking Bpye{z) = X withe > 0,
and letting £ tend to zero.

In order to define the kernel of the fractional integral without having
to distinguish the case when the measure p has atoms we shall adopt the
following abuse of notation. If 0 < o < 1 we define

_LWZ 1/6(zy)'~> ifz#y,
8z, y)t-a 0 if =y

The fractional integral of order o, 0 < & < 1, on measurable functlonb fis
defined by

y)d
lafle) = f &z, y)ﬂl(y“'

The letters ¢ and ¢; will denote constants, not necessarily the same at each
occurrence.
We now state the main results.

THEOREM 1. Let (1 +7)~1 < 5 < 1 and let M be an s-molecule. Then
M belongs to H® and

(1.18) 1Mz < C,

where C' is a constant which depends only on s, £, and L fo'r §< 1, and on
€ and L for s = 1.

 THEOREM 2. Let 0 < o < 1. Then the following statements hold:
(i) For f in wLY/® I, f(z) converges absolutely for a.e. © in X, and

HaflI* < e[fl1/a

wzth a constant ¢ independent of f.

(ii) For f in wLP with0 < a~1/p < ~, I, f(z) converges absolutely for
every x i X, and

Hch.f“pr[a—«l/p] < C[ﬂ

wzth a constant ¢ independent of f.

THEOREM 3. Let 0 < a+ 3 < v and f € L1p[ﬁ}‘ Then the following
statements are equivalent:

- (1) Il € Lip[a + 4].

(ii) Tof(z) converges absolutely for every x and there 45 o conatant ¢
independent of f such that || I, Flluiplats < ell fllLipta-
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THEOREM 4. (i) Let 0 < o < 4. If f € L™ then I.f(2) converges
absolutely for every z in X, and there is a constant ¢ independent of © such
that

“Iaf”Lip[a} < Cllf”oo .
(i) Let 0 < o < v and f € BMO. If I,1 satisfies
Iyl{x) - I,1
(1'19) sup | (:I:) I (y)l(l + ]10g5(m,y)|) < €1 < o0,
@,y 5z, y)®

then Io f(z) converges absolutely for every z in X, and there exists a con-
stant ¢ independent of f such that

Hafllipla) < cll£II7

THEOREM 5. Let (1+7) ' <p<l,0<a<yandl<1l/g=1/p—c.
Then the following statements are equivalent:

(i) In1 € Lip[l/p - 1].
(ii) For any p-atom a, Ina belongs to HY, there exists a constant ¢ in-
dependent of a such that

”Iaa”H'? <e,

and I, extends to a continuous linear map from HP to HY.

THEOREM 6. Let 0 < o < v. If I,1 satisfies (L.19) then for any
(1 + «)~t-atom a, I,a belongs to H', there is a constant ¢ independent
of o such that

”Iaa*”Hl < ¢,

and I, eztends to a continuous linear map from HY/(1+a) 4o H1,

Remark 1. Since the assumptions of this paper do not change the
L? spaces, the Sobolev Theorem for 1 < p < 1/ is the one obtained in
Theorem 1 of [GV]. Similarly when 1/(1 ++) < p < 1 the theorem which
asserts that I, : H¥ — L% for 1/g = 1/p — & < 1 has the same proof as
in [GV] except for the fact that [|1,1]]; < ¢, which follows immediately from
wX) < o0,

Remark 2. The main novelty in Theorems 3-6 is that the cancellation
property introduced in [GV] is no longer necessary when p(X) < oc. This
cancellation property for u(X) < oo states that J,1 is constant. This con-
dition has been replaced by a condition on the smoothness of I, 1 in each of
these theorems.

Remark 3. Observe that [,1 € Llp[a + ?ﬂ for some 7 > 0 implies that
1,1 satisfles (1.19).
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2. Proofs of the theorems

Proof of Theorem 1. To prove that M belongs to H* and that
(1.18) holds we write M as

21) M(z) = Mo(z) + rf@xam ,

where [ = [ Mdu, B = B,(xq) and xs denotes the characteristic function
of B. Let g = Iu(B)'xs. It is easy to see that g satisfies (1.9)-(1.11) with
constant L' that depends only on L, €, and s if s < 1, and (1.12)~(1.14)
with constant L that depends only on L and ¢ if s = 1, Consequently, My
also satisfies the same conditions with a constant that depends only on L,
g, and s, and [ Modpu = 0. Therefore by a known result (see [CW]), My
belongs to H® and ||Mo| &+ < C1, where C} is a constant that depends only
on L, ¢, and s.

Now we will show that g € H® and ||g| s < C3, where C; depends only
on I, g, and s. If B = X then g(z) = I for all z and ||gl{zs £ |I| < L.
Assume now that B # X, and let By = Boxn(20), k = 0,..., K, where
By = X but Bx_1 # X. It is easy to see that K < c1(1 + log(1/u(B))),
where ¢; depends only on the space. For k=1,... K, let

1 1
by =~ X By, — — XBp -
§ T uBey) BT u(B

Then by, = Arax with

p(Bg)M? 1 { #(Br—1) }
Ap= BTk g = xB, — g, | -
pBen) T WBOE [T By
Then ay is an s-atom, and
' K
g=y_Ihear +Ixx.
k=1

Therefore, for 0 < s < 1, using normality we obtain

K X Az2k?" 8
] 3 ] 8 e
I|9||HaS§11AkI +1* < 1) k; rirys T

2(1—~5)K -1
P

< |I|.“ Ai rl=2

a2 I
= ]+||

neol
< MPea(@r) 11 < calat A0 e

S C4|I|B S C4Ls = 0'29 .
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For s = 1, using again normality and (1.14) we have

K

A
lollern < 1Y Pl + 1] < |11522K + |11
k=1 Ay

< eresI|(1 + [log u(B)|) < €3 < 0.
Proof of Theorem 2. Let f belong to wL'/*. Then

Il = [ fldu="[ rs(t)at
X o}
< [ux)a+ [ e tea
0 £

- o e 1-1/a
€ 5 (f]; Taf .
Setting € = [f]1/q in the above inequality we obtain || f]j; < e[fl1/a-
Now it follows easily from Fubini’s Theorem, (1.17) and the last inequal-
ity that I, f belongs to L', and

(2:2) Hafll < allflh € e2lflije s

where ¢; and ¢ are constants which only depend on (X, 6, p)-

On the other hand, by Theorem 1.2 of [GV] we know that || I, f[l« <
¢[fli/a with ¢ independent of f. This inequality together with (2.2) con-
cludes the proof of part (i) of the theorem.

In order to prove (i) let f belong to wL® with 0 < a — 1/p < v. If
l/a < & < p then an argument similar to the one used in (i) shows that
|l flls £ c[flp, where ¢ is independent of f. Now it follows from Holder’s
inequality with s and s’, (1.17), and the last inequality that

dpy) 1M
(2.3) L flz)| £ [;! 5z, )07 1Flls S elflp,
where ¢ is independent of f.
On the other hand, by Theorem 1.3 of [GV] we know that || L f|Lip(a~1/p)
< ¢[f], with ¢ independent of f. This inequality together with (2.3)
proves (ii).

Proof of Theorem 3. The fact that (i) implies (i) is obvious be-
cause 1 € Lip[8]. In order to prove that (i) implies (ii) let f belong to Lip[3];
since §(z,-)®~* is in L*(X) and f is in L™, I, f(x) converges absolutely for
every z, and using (1.17) we have

(2.4) Maflloo < ellfllo
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Let now £, 5 zo be points of X, 8(zq, zz) = r, and B = By, (21), where
a¢ is the constant in the inequality 6(x, 2) < »(8(x,y) + &§(y, 2)) valid for all
x,y, 2z in X. Write :

Leflen) = Tfen) = | Eex :

6(m1,y)1‘°‘ (w2, )

- f [ B(zy, y)tme 5(wz,11/)1““](f(y)"f("’”'l))du(y)
+ flz1)Tal(z1) — Lal(zs)) .

Since I,1 € Lip[e + 3], for the second term we have
(25) [F(21) (Tal(21) = Tad(22))] £ || fllooc18(@1, )

Now we rewrite the first term as follows

f f(ml,y 133;) f 5(532 v) 1 “x .U(’y)

+ [ (fly) - - -
o

1_4 £ (v) duly)

f(ml))[ :Jdut) =5 -1+ I

S(zyy)i=> 6w, y)"
By (1.15)
11| < | fhuspig (22)P [ 8(a, 1)* " dpsly) < Cul|Fllvipys) (20er)° 77

B
< 2| fllLiplg 6z, 22) 7.

To estimate I set B = B..(2:e41yr(22), and note that B C B. We have

u|<f‘“’) TE dty) + 11(aa) - !IMMM-

Both terms are estimated as I7, and hence

(L] < csll fllipey6 (@, 22)* 7 .

Now we estimate I3. Using Lemma IL3 of [GV], & + 8 < v, the fact that
f € Lip[#] and (1.16) we have

|aflipi8@s,@2) [ 61, 9)* 1~ duly) < calf
BG

Combini'ng (2.4) énd the estimates for I, Iy, and I we finally obtain

Lip|g)6(z1, 32) 7.

e fllipa+a) < cllfilLipla) -

Proof of Theorem 4. To prove part (i) let f belong to L™, let
z1 # o2 e points of X and let B = By,.,(z1), where r = §(z;,2;). Then
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we have
Fly)dp(y) (y) duly
Lf(@) ~ Taf(za) = [ 1Y)
g! 8(z1, yy = f5(«'ﬂ2‘y

1
+z§[ Ls(fﬂl,y)l“a Thth
Now LI1| < Ch(25r)%|| flloo by (1.15). Let B = Bi(25e-1)(z2) and note that
B ¢ B. Using (1.15) again we have

wldey)
I <

11 f P o
By Lemma I1.2 of [GV], o < v and (1.16) we have

|| < exb(er,22) [ 8(2, 1) (@) dpsly) < e1Ca(2960)%| flioo -
BC
On the other hand, by (1.17), |[Iaflee < C1D%||f|lw
proof of (i).
To prove (ii} let f belong to BMO and let « be a point of X. Then

m d

where mx (f) is the average of f over X, and therefore lmx (£ < ||Ifll1-
Setting r = D + & with € > 0 in Lemma IL5(i) of [GV], and then letting £
tend to zero we find that the first integral is majorized by coD?| fll«.

(1.15) the second integral is majorized by C1D%|| f l1. These two estlmates

imply
(2:6) NHaflleo < eI

Now let #; # zo be points of X, r = §(z1,%2) and B = B, (z:). Note
that zo € B; thus we have

1
_ 5($2?y)1_a] F)duly) = I

Cr(o#(222 + 1)) | f | -

. This concludes the

1 1

L) - Tofen) = | [5(3:1,.@)1-“ " T

)1ma]f(z)) 2u(y)

- f[ i 1)1_a}(f(y)-ms(f))dn(y)

6(932::‘:’

+mg(f)({al)(21) — (Lal)(22)).

We first estimate the second term. To do this we need the following
inequality: :

Img(£)i < et FII* (1 + Nlog u(B))),
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where B is any ball in X, f is a function in BMO, and ¢; is independent of
B and f. To prove this inequality Write

f f B) XB ) P"(y)
and use that f belongs to BMO, duality, and the fact proved in Theorem 1
that

. _
i P ca{1+ [log pu(B)}).

This inequality and normality imply that

(2.7) Ime (f)((Lad)(z1) — (Tal)(22))] € sl fII"6(21, 22)"

with ¢z independent of f and B.
Now we rewrite the first term as follows:

ff(yml y)l o f f,g(m e (f)‘d#('y)

1
+ J )~ ms(f)){ LS

By Lemma IL5(1) of [GV], |L1]| € ¢a(23er)®| f|l«. To estimate I note that
B C B = B, (2:.41)r(22), and hence

1] < f wdm) + Ims(f) -

XB

1
- duly) = I, — I,
o a(mz,y)““} p)=h—la+ 1o

s s
B

Again by Lemma IL5(i) of [GV] the first integral is majorized by ¢z %
(3(23c + 1)r)*[| f|is. Now note that [mgs(f) — mg(f)| < csllfll«, where cg
is independent of x1, 25, v, and f. Therefore by (1 15) the second term is
majorized by c¢gCy1r?||f|l«. Combining these estimates we have

[Ta] < eré(zy, 2)%|| £
Now we estimate I3. Using Lemmas IL3, IL5(i) of [GV] and the fact that
o < «y we have

i < ablan [ e —rellly

#(y) £ cof| fllu6 (@1, 22)"
Combining the estimates for 1, I and Iy with (2.7) we obtain || 1o f||Lip(e) <
c1o|| FII*. Finally, using (2.6) we have || I, fHpr[a] < el FIi*.

Proof of Theorem 5. We shall prove first that (i) implies (ii). Let
a be a p-atom with support in B = B,(zp). Since the diameter D of X is
finite, B.(z) == X when r > D, therefore we can assume without loss of
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generality that a p-atom is supported in a ball of radius r less than or equal
to 2D.

If o is a p-atom and r < 1y, then [ady = 0 forces o to be identically
zero and consequently I,e = 0. If o is not identically 1 and Tpe <17 < 2D
we shall prove (1.9)-(1.11} with s = g and e = 1 + « — 1/p. To prove (1.9)
we consider two cases: 6(g,xo) < 2xr and 8(z, zo) > 2ser. If 6z, o) < 2a0r
we have

1
[Taal2)| £ | wrm—gmsla(y)] duly) <
Bfﬁ(a:’y)l ! 5(m,y)sx{2x4:1)r
< CLa(B) VP [e(2o0 + )] < (2/A2)*Cl[oe(20¢ + 1)]* u(B) /1
= Lypu(B)~Y4.

If &(z,zq) = 22¢r, then

Taa(s)| < [ 5
B

la(y)] dp(y)

oy 0 u(e) < g5l o)

<(Aa/(256))w(B)* " u(B)' P < Lou(B) V1.

To prove (1.10), observe first that if §(z, zo) < 23¢r then (1.10) follows from
(1.9) using normality:

|Tna(z)|8(z, 2o)/9+e < Lip(B)~/9(2ser) /0% < Lau(B)E
If &(z, g} > 2s¢r, then since fa,d,u. = () we can write
1 1
faalz) = ,;f [S(w,y)l““ - 6(x,zO)1~a}

Now using Lemma IL3 of [GV] and normality we have

Taa(2); < e1b(z, 20)* "7 u(B) 7 [ b(y, 20)" duy)
B

< ey, o)~ u(B) TP u(B)
< 01(2/A1)7’5(x,mo)"‘“"’_l,u.(B)E = L4z, 20} " u(B)E.

In order to show (1.11}, consider

f.[ a(x) du(w) f(f é(ma;yl g y)) du(z) -

Changing the order of integration, and using [ a du = 0, the above integral
is equal to

aly)du(y) -

[awai) duy) = [a@)lually) — Il(xo]dm)
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Since I, 1 belongs to Lip{1/p 1] and a is a p-atom supported in B,.(zq) we
have

28) | feods| < WLl /o [ la(w)|du(y)
S “Ia]-”Lipfl/p—l}lep_l = Lg.

This proves that I, a is a g-molecule with constant [ = max{L; : 1 <
¢ < 5} which depends only on the space, e, and p. When a is identically 1,
(1.17) implies that |I,1(2)| < €1 D%, and therefore Ia is a g-molecule for
any zg € X, 7 == 2D and any ¢ > 0, and its constant L depends only on the
space, ¢, and p. Applying now Theorem 1 we see that l,a is in H? and

(2.9 |[Haa)lge < C.

Let now f be an element of H?, and consider an atomic decomposition
of f,le f =372, Aia; with 322, [AsfP < 22| f]1%,5- Then by (2.9) we have

o0 o0 o] q/p
(2.10) S nLeild. <053 Al < oq(pr) <.
i=1 i=]

dzm]
Since H? is complete, (2.10) implies that } ;o AiJ.a; converges in HY to
an element g of H4. Furthermore, we have

(2.11) lglizre < 2€| Fll s

In order to extend I to all of H? we must show that g does not depend
on the particular atomic decomposition of f. Let a be a p-atom and let
@ belong to Lip[1/¢ — 1]. Observe that by Theorem 3, I, belongs to
Lip[1/p—1] and
(2.12) (Iaa, v} = {a, Iyp);

in fact,

it

(lag,0) = | w(w)[ f a(y)m dn(y)} du(z)

J [ J ) Sy ;)M du(w)] aly) du(y)
[ Laedaly) duty) = (0, Luyp),
because p(z)a(y)6(z,y)* " isin L1(X x X). Now
(9799) = Z Ai<Iaaia ‘P-) = Z Ai(ai:Iatp> = <f: Iaﬂp) .
i=1 i=1

This shows that g is independent of the particular atomic decomposition
of f, and defining I,f = g by (2.11) we have

Hafllre < 2C||filns,
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for all f in HP. This concludes the proof that (i) implies (ii). To prove that
(ii) implies (i) we use the fact that Lip[L /p—1] is the dual space of H?. Since
the transpose I}, = I, (i) implies that I, is continuous from Lip[1/g — 1]
to Lip[1/p — 1], consequently I,1 € Lip{l/p — 1].

Proof of Theorem 6. Let o be a 1/{e + 1)-atom supported in
B = B.(zo). The proofs of (1.12) and (1.13) are the same as the proofs
of (1.9) and (1.10) in Theorem 5 if p and ¢ are replaced respectively by
1/(1+ o) and 1. In order to prove (1.14) write

f La(z) du(z) = f a(y)(Tal(y) — Ial(zo)) du(y)
X

as In the proof of (1.11) in Theorem 5. Using condition (1.19) we majorize
the absolute value of the last integral by

8{zo, y)*
et J o gy 0

Since y € B.(zo) and r < 2D there is a constant 1 such that the integral is
less than or equal to

g Jletilduto)

Using the fact that a is an 1/(1+ a)-atom and normality in the last expres-
sion we finally obtain
1

If Iaad,u.} < le—_ﬁ—m.

Finally, if @ = 1 then (1.15) implies that |I,1{x)| < C1D?, and therefore
I,1is a 1-molecule for any zq € X, r = 2D, and any ¢ > 0, whose constant
L depends only on the space, o, and &.

Applying Theorem 1 we conchude that I e is in H! and

(2.13) | Zaallsm < C.
Let now f be an element of H'/(+®) and let f = $°%° Ajo; with

Soroy At < 21/(1+°‘)l|f”¥1(}:52¢) be an atomic decomposition of f.
Then by (2.13)

3 - > 14
214) Y Indaalm <O Y < o0 o) T
=1 =1

i=1
Since H? is complete, (2.14) implies that 32 A;J,a; converges in H!
to an element g of H?, and ||g| g1 < 2C||f| zr/¢+er . The extension of I, to
all of H'/(1+9) ig done as in the proof of Theorem 5, except that instead of
using Theorem 3 we use part (i) of Theorem 4.
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Acknowledgements. Our original proof of Theorem 1 relied on the
B-maximal function of Macias and Segovia [MS] for estimating ||g| z.. Also,
the condition (1.14) was originally stated as | [, Mdy| < Lu(B.(20))7 for
some # > 0. We thank Professor M. Taibleson and the referee for sug-
gesting the present proof of Theorem 1, which is shorter and direct, and
condition (1.14).

3. A correction to [GV]. In {GV] the definition of the canceliation
property (page 174, third paragraph) is incorrect if the measure u has atoms.
In order to state the cancellation property in a way that includes thig case
we-have to define the kernel of the fractional integral as in this paper, ie.
for0<ca<l

1 {1/5(93,@)1—& if @ # y,

8z, y)t—e 0 ifz=y.
Then the fractional integrals are defined by
oy O
Iaf(m) = )‘[ 6(3:, y)l_a ‘U'(y) 3
~ 1 B
Iaf(m) = f {6(.1:, y)l_a - 5(20, ;)yl)_a]f(y) d/*l‘(y) 1

X

where z and 1, are as in [GV], page 177 (¢f. (I,21) and (I, 22) of [GV]).
Now the cancellation property can be stated as follows:

(3.1) _ T,1 = const.,
or equivalently

1 1
0 ! T e e ) =0
for all z, and =3 in X (cf. (T,10) of [GV]). To show that (3.1) implies (3.2)
observe that the integral in (3.2) is To1(z1) — Jo1(z). To see that (3.2)
implies (3.1) add and subtract 9.(y)/6(%,¥)*"* in the integrand of (3.2).
With these definitions all the theorems and their proofs in [GV] are valid
when ¢ has atoms.
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