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Stability of stochastic processes defined by integral functionals
by

K. URBANIK (Wroctaw)

Abstract. The paper is devoted to the study of integral functionals fooo fIX (¢ w))dt
for continuons nonincreasing functions f and nonnegative stochastic processes X (¢,w)
with stationary and mdependent increments. In particular, a concept of stability defined
in terms of the functionals f o J(aX(t,w))dt with a € (0, c0) is discussed.

1. Preliminaries and notation. In the sequel X = {X({,w) : t > 0}
will always dencte a nonnegative stochastic process with stationary and in-
dependent increments, right-continuous sample functions and satisfying the
initial condition X (0,w) = 0. Denote by w(X,¢,-) the probability distribu-
tion of the random variable X (f,w). The family =(X,t,-) (t > 0) forms a
convolution semigroup:

(1.1) a(X,t,) * m(X,u,") = (X, t +u, )
and

(1.2) 7(X,1,{0}) = e~ %X}
where ¢(X) € [0, oo]. Moreover,

(1.3) m(X,t,[0,a)) > 0

for any a € (0, 00) and sufficiently small ¢. All processes under consideration
in the sequel will tacitly be assumed to be nondegenerate, i.e. q(X) > 0.
It is well-known that for nondegenerate processes the potential

=23

[ m(x,t,4) dt

0

is finite on bounded Borel subsets A of the half-line [0, c0] ([1], Proposi-
tion 14.1}. In view of (1.2) we have

(1.4) o(X,{0}) = q(X)™*.

o X, A) =
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226 K. Urbanik

By &, we shall denote the probability measure concentrated at a € [0, c0).
The support of a measure g will be denoted by supp y.
Inequality (1.3) yields

(1.5) 0 € supp a(X,-).

A stochastic process X is said to be deterministic if X{t,w) = bt with
probability 1 or equivalently 7(X,t,.) = &, for all ¢t € [0, c0) and for some
positive constant b. In this case we have p(X, dy) = b~ dy.

LemMa 1.1. If supp w( X, to, ) 1s bounded for some positive ty, then the
process X is delerminisiic.

Proof. By (1.1) the probability distribution 7(X, g, -) is infinitely divis-
ible. Consequently, by Theorem 2.6.3 in [5], the boundedness of its support
yields 1 (X, tp, -) = &y, for some positive constant b. Applying the semigroup
prOpErty (1.1) we get w(X,#,-) = 6y for all ¢ € [0, 00), which completes the
proof,

A stochastic process X is sald to be a compound Poisson process if
o(X,{0}) > 0. In this case there exist a positive constant ¢ and a prob-
ability measure @ on the half-line [0, co) with Q({O}) = 0 such that

(16) X ¢, ) -qt E *'n,
=0
where Q"™ for n > 1 is the nth convolution power of @ and Q*7 = §;. The

set of processes X satisfying (1.6) will be denoted by Poiss(g, Q). It is easy
to check that

(1.7) (X)) =q

and

18 ©oeX)=q" i Q™
me=()

for X € Poiss{q, @).

Throughout this paper P, will denote the exponential probability cis-
tribution with parameter s > 0, i.e. Py(dy) = se™%¥dy on the half-line

[0, 00). We shall often refer to the following representation of processes from
Poiss(g, Q) ([4], Chapter TV, 2):

(1.9) X(tw) =0

(1.10) X(tw)= D g ;

fort e [0,190) ,

&

¢ forie [jilﬂj,Zﬂj)

i= =0 =0
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for k > 1 where the random variables 99,91, ...,&1,£2, ... are independent,
9; (7 =0,1,...) have probability distribution P, and &; (7 = 1,2,.. .) have
probability distribution €.

From (1.8) by simple calculations we get

(1.11) o(X, dy) = ¢~} (bo{dy) + s dy)

for X € Poiss(g, Py).

Two processes X and Y are said to be eguivalent, in symbols X ~ Y,
whenever 7(X,t,-) = n(¥,t,-) for all £ € [0, c0). By Proposition 15.21 in (1],
X ~ Y if and only if o(X,:) = o(Y,-). We write X < ¥ if o(X,[0,a))
o(¥,[0,a)) for all @ € (0,00). This order relation is reflexive and transitive.
Moreover, X <Y and V' < X yield X ~ Y.

Denote by F the set of all nonnegative, continuous and nonincreasing
functions defined on [0, 00).

Integrating by parts we get the following simple result.

LeMMa 1.2. If X <Y, then

o

< [ fluel¥.du)

0

ff o(X, du)

for all f € F.
In the sequel we shall lean heavily on the following statement.

LEMMA 1.3. For every process X and a € (0,00) there exists a number
s ¢ (0,00} such that X =Y for Y € Poiss(o(X,[0,a)) 71, Ps).

Proof. Setting V(:) = [y~ e7'n(X,1,-) dt we get a probability measure
concentrated on [0, 00). By (1.2) and (1.4),

o(X,{0})
[ e S0

which yields m = [~ uV(du) € (0,00]. Put W = oo o V™. Applying the
Renewal Theorem ([3], XI) we have

lim W(0,y))/y = 1/m.
Y—ro0
Since, by Proposition 13.7 in [1], (X, [0,7)) =1+ W([0,y)), we have
Jim_o(X, [0,9)/y = 1/m.
Consequently, for any « € (0, co) the supremum

s = sup{a(X, [0, 1))/ (ve(X,[0,a))} 1 y = a}

is finite. The inequality o(X, [0,%)) < o(X,[0,a))(1 + sy) for all y € (0, o0)
is obvious. Observe that, by (l 11), the right-hand side of the last inequality
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is equal to o(¥,[0,)) for any ¥ € Poiss(g(X, [0,a)) "
the proof.

, Ps), which completes

2. Random integral functionals. This section is devoted to the study
of the probability distribution of random functionals

1K )= [ F(X(w) de
0

for f € F. The following simple formulae for the moments EI™( X, f) will
be needed below.
LeMMa 2.1. Forany f € F and n > 1,

EI'(X, f) —n'f f ny1+

=1
Proof We start from the formula

Ef fo

o0
=n!Ef

Ay eX,dy) .. o(X, dys)

EI"(X, f) (5, w)) dty . .. dbn

HfX(”1+ A uy,w)) dur -

J=1

(=]

Since f is nonnegative, we can change the order of integration to get

EI*X, f) Hn1f fEHf X(ui +...+uj,w)du ..

0 g=1

Now, by the stationarity and independence of the increments of X, it is easy
to check the formula

EHf(X(u1+...+uj,w))

W(X: Uy s dyn) )

o o+ Ay (X, dn) .
9

=1
which together with the previous one yields the assertion of the lemma.

The inequality f(y1 + ... +y;) £ fly;) G=1,...,n) for f € F and
Lemma 2.1 imply the following statement.

COROLLARY 2.L. For every f€ F andn > 1,
EI"(X,f) < ! (BI(X, f))".

- Further, the following result is an immediate consequence of Lemmas 1.2
and 2.1. '
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CoROLLARY 2.2. If X <Y, then EI™(X, f) < EI™(Y, f) forevery f € F
and n 2 1.

LeEMMA 2.2. If f € F and f° f
expectation EI(X, f) is finite.

Proof By Lemma 1.3 and Corollary 2.2 it suffices to prove the asser-

tion for X € Poiss(g, P;). But for these processes we have, by (1.11) and
Lemma 2.1,

BI(X, ) = ffy)QX W)= (10 +5 [ W),
a

which completes the proof.

Observe that for the deterministic process X (¢, w) = ¢t we have I(X, f) =
fo t) dt. Corsequently, Lemma 2.2 yields the following corollary.

COROLLARY 2.3. Suppose that f € F. The random functional I{X, f) is
finite with probability 1 for every process X if and only if fcoo fly)dy < oo

y) dy < co, then for every process X the

Denote by Fy the subset of F consisting of functions f satisfying
fo (y) dy < oco. Given f € Fy we denote by L(X f,-) the Laplace trans-
form of the probability distribution of I{X, f), i

L(X, f,2) = pa-ei)

for z € {0,00). Further, for every a € {0,00) we denote by 7, the shift
operator defined by the formula (T, f){y) = f{y +a) on Fp.
For any f € Fp using the representation (1.9)-(1.10) of a process X from
Poiss(g, @) we have
[ea)
(2.1) X, £) = FO)0+ S F(&+ ... +E)0
k=1
Taking two independent random variables ¥ and £ with probability distri-
butions P, and @ respectively such that the pair (#,£) is independent of
the process X we conclude, by (2.1), that the random variables I{X, f) and
FOY + I{X,Te f) are identically distributed. Hence we get the following
regult.

LEMMA 2.3. For f € Fy and X € Poiss(q, Q),

LK, £,2) = alg + 7027 [ LGT,A2Q) (2 € [0,00)).

0

LEMMA 2.4. For f € Fy and X € Poiss(q, Ps),

L(x,f,z):q(q+f(o>z>—1exp(—sz J L) (e oo,
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Proof Replacing f by T, f (u € [0,00)) and @ by P, in Lemma, 2.3 we
get

(22)  L{X,Tuf.2) = sqla+ f(w)2)” f L(X, Tuyufr 2™V dy.

Since T, f < f, we have limy e J(X, Tuj) = ( with probability 1 by the
bounded convergence theorem. Consequently,

(2.3) Jim L(X,T,f,2) =1

for all z € [0, 00). Setting H{u, z) = e 5*L(X T, f,z) for u,z & [0,00), we
get, by (2.2) and (2.3), the equation

o
(2.4) H{u, z) = sq(g + flu)z)™* f H{y,z)dy
with the limit condition
(2.5) lm ™ H(u,2z)=1.
U OQ

The general solution of (2.4) is of the form
(2.6) H(u,2) = G(z)sq{g + flu)z) " tex ( sq )
(w)z)"" exp f q+ f (y

Multiplying both sides by e* and letting « — co we get, by (2.5),

= Z ]85 eX A ooLy)—
=6 P(S Jq+f(y)zdy)’

which together with (2.6) for w = 0 implies the assertion of the lemma.

From Corollary 2.1 and Lemma 2.2 it follows that the function L{X, f,-)
can be extended to an analytic function in the circle |2|FI(X, f) < 1 with
the power series representation '

[».]

L) = S0 S EC)

|
n==l) w

Denote by »(X, f) the convergence radius of the above series, i.e.

(2.7 r(X, )7t = lm (BIMX, £)/al) /™,

Obsert.fe that, by Lemma 2.4, for X & Poiss(g, P;) the function L(X, f,-) is

analytic in the circle f(0)|z| < . Hence we get the following estimate.
LemmMa 2.5. If f € Fo and X € Poiss(q, Py), then r(X, f) > q/ £(0).

As an immediate consequence of Corollary 2.2 and formula (2.7) we get
the following statement,
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LEMMA 2.6. If X <Y, then (X, f) = (Y, f) for every f € Fo.
The following theorem will be useful later.

THEOREM 2.1. If f € Fp, then r(X, f) = (F{0)e(X,{0}})"* for every
process X.

Proof For every positive number a there exist, by Lemima 1.3, a positive
number s and a process Y € Poiss(o(X, [0,a))7!, P;) such that X < Y.
Applying Lemmas 2.5 and 2.6 we get (X, f) > (F(0) o(X, [0, a))) ~*. Letting
a — 0 we have

(2.8) (X, f) 2 (F(0)e(X,{01) ",
which completes the proof in the case p(X, {0}) = 0. In the remaining case
X is a compeund Poisson process and, by (2.1}, I(X,f) > f(0)d¢ with
probability 1 where the random variable #y has probability dlstnbutlon F,
and, by (1.4) and (1.7}, ¢7* = p(X, {0}). Thus

EI'X, f)z fH(0)Ed5g = f*(0)nlg™ (X, {0}) .

Hence and from (2.7) we get r(X, f)™' = f(0)e(X,{0}}, which together
with (2.8) yields the assertion of the theorem.

THEOREM 2.2. If I(X, f) 2 a with probability 1 for a function f from
Fo and a positive constant a, then the process X is deterministic.

Proof. Denote by B, the o-field of random events generated by the
values X (¢, w) for t € u. Suppose that the process X satisfies the assumption
of the theorem for some f € Fy and a € (0,00). We define the random
variable 7 by setting

) =sup fo ff X< 3.

It is clear that T is finite with probablhty 1,

(2.9) [ F(X(tw)dt=
¢

with probability 1 and {r(w) < u} € By for all u € (0,00), i.e. the ran-
dom variable 7 is a stopping time. Consequently, setting n.= X(r,w) and
Y(t,w) = X{t+7w)— X(r,w) for t €0, 00) we conclude that X ~ ¥ and
the process Y and the random variable i are independent ([4], ‘Chapter I,
4, Theorem 7). By (2.9) we have
00
YT = [ FX@w)dt >

7 (w)

[l ]
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with probability 1. Consequently, denoting by A the probability distribution
of np and taking into account the independence of n and ¥ we get I(Y, T, f) >
a/2 with probability 1 for all y € supp A. Since limy_. o I(Y, T, F') = 0 with
probability 1, we conclude that supp A is bounded. Thus X(7,w) < b with
probability 1 for some constant b. On the other hand, by (2.9}, f(0)7 < a/2
with probability 1. Put £ = a/(2£(0)). Since the sample functions of the
process X are nondecreasing, we infer that X {(tp,w) < b with probability 1.
Applying Lemma 1.1 we get the assertion of the theorem.

3. f-stable processes. Suppose that to every process X there corre-
sponds a random variable J(X). Denote by N(X,J) the set of probability
distributions of the random variables J(aX) with @ € (0, 00}, A process X
is said to be J-stable whenever N(X,.J) is closed under convolution. Ob-
serve that for the mapping Jo{X) = X(tg, ) for some positive number £y
the Jy-stability coincides with the usual one. The purpose of this section is
to study J-stable processes X in the case J(X) = I(X, f) for some f € F.
Of course, we exclude the trivial case f(0) = 0 for which I(X, f) = 0 with
probability 1. Denote by F; the subset of Fy consisting of functions taking
a positive value at the origin. Let A(X, f,-) denote the probability distribu-
tion of I(X, f) and A(X, f} = {A(eX, f,-) : o € (0,00)}. Further, for any
e € (0,00) we put (U, f)(z) = f(az). It is clear that F, is invariant under
all transformations U, and

(3'1) )\(GX,f,'):)\(X,Uaf,')'

We shall say “f-stable” instead of “I(X, f)-stable” for short. Thus X is
f-stable if and only if A(X, f) is closed under convolution or, equivalently,
the set of Laplace transforms {L{X,U,f,-) : ¢ € (0,00)} is closed under
peintwise multiplication.

To begin with, we give some examples of f-stable processes.
ExAMPLE 3.1. Deterministic processes are f-stable for all f € F,.. In
fact, if X (¢,w) = bt with probability 1 for some constant b € (0, c0), then
1 o0
IaX,fy=— [ fy)dy forall a & (0,00)
ab 0

and, consequently, A(X, f) = {6.:¢ € (0,00)}.

Throughout this section y(e,w, ) will denote the gamma probability
distribution with positive parameters c and w, i.e. v(c,w, dy) = I'(w)~*c¥ x
¥~ 'e~¥ dy on the half-line [0, 00). The Laplace transform of y(e,w, ) Is
equal to c¥(c+ 2}~ and

(3.2) ¥le,v, ) * yle,w, ) =y{c,v +w,).
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EXAMPLE 3.2. Let h(z) = e®. The processes from Poiss(q, ;) for q¢,s €
(0,00) are h-stable. In fact, by Lemma 2.4,

q =) e—au q 1+a~ts
exp(wszf-m——du):( ) )

+z 5 4a +eToz q+z

which, by (3.1}, yields AMaX, b, ) = v(g,1 +a"1s,-). Consequently, A(X, A)

= {v(g,w,-) : w € (1,00)}, which, by (3.2), shows that X is h-stable.

We now establish some properties of the Laplace transform L(X,U.f,")
for f € 7, which will be needed below. Since U,f = Upf for o < b, we
infer that for every # € [0,00) the mapping a — L(X,U,f, z) is nonde-
creaging and, by the bounded convergence theorem, continuous. Moreover,
limg g I(X, Usf) = oo with probability 1, which yields

(3.3) linb (X U.f,2)y=0 for z € (0,00).
a—

L(X,Ugh,z) = 7

Applying Lemma 2.1 we have lim, ..o EI(X,U.f) = f(0)o(X,{0}),
which yields limg— oo I(X,Usf) = 0 with probability 1 in the case
0({X,{0}) = 0. In the remaining case taking the representation (2.1) we
get limg oo [{X, Usf) = F(0)¥p in probability where the random variable
95 has probability distribution P, and, by (1.4) and {1.7), ¢7' = o(X, {0}).
Hence

(3.4) lim L(X,Uaf,2) = (14 £(0)e(X,{0})2) ™
for z € [0, 00).

PROPOSITION 3.1. Suppose that f € F.. and the set A(X, f) consists of
gamma distributions. Then X ts a compound f-stable Poisson process,
(3.5) AX, ) = {v(F(0) " o(X, {0}) 7" w, ) s w e (1,000}
and supp o(X, -) = [0,00).

Proof By the assumption for every a € (0,00) there exist positive
numbers ¢(o) and w(a) such that
(3.6) LIX,Usf,2) = c(a)* @ (c(a) + z)~w@)
Hence the convergence radius r(X, f) is equal to ¢(a), which, by Theo-
rem 2.1, yields

(3.7) o(a) = £(0)*e(X, {017

This shows that (X, {0}) > 0 and, consequently, X is a compound Poisson
process. Moreover, w(-) is a noninereasing continuous function satisfying, by
{3.3) and (3.4), the limit conditions

(3.8) lim w(a) =co and lim w(a)=1.

et [2 Snde =]



234 K. Urbanik

Further, X & Poiss(g, @) for some ¢ and @, which, by (1.8), yields

(3.9) o(X,)=¢7" ) Q™.

n=0

In particular, g~ = o(X, {0}). Now applying Lemma 2.3 we get from (3.6)
and (3.7) the equation

310) (L4 O AN = [ LK T0.5,2) Q)
0

for z € [0,00). Observe that the convergence radius of the right-hand side
is at least inf{r(X,T,U.[) : y € suppQ}. By Theorem 2.1 this infimum
is flayo) *o(X,{0))™* where yo == minsupp Q. If w(a) > 1, then the con-
vergence radius of the left-hand side of (3.10} is f(0)~*o(X, {0})~". Conse-
quently, f(ayo) = f(0). Since f is nonincreasing, we have

(3.11) F(0) = flayy) for w(a)>1.

By (3.6)-(3.8) in order to prove (3.5) it suffices to show that w(a) > 1
for all @ € {0, 00). Suppose the contrary and put ag = inf{e : w{a) = 1}.
Since w{-) is nonincreasing, we have, by (3.8), w(b) = 1 for b > ap. Hence
and from (3.10) it follows that

J X, LU, 2)Q(dy) =1 forb>ag.
0

Since the integrand is not greater than 1, we conclude that L{X, T,,U} f, z) =
Lforally € supp @, b > ap and z € [0, c0) and, consequently, r(X, T, U, f) =
o0o. On the other hand, by Theorem 2.1, r(X, T,U, f) = f(by) ~te(X, {0})~*
which implies that f(by) == 0 for y € supp @ and b > ag. By the continuity
of f we get f(apyo) = 0. On the other hand, by (3.11), flagys) = F(0},
which contradicts the assumption f € F,. The inequality w(a) > 1 for all
a € {0,00) is thus proved.

Of course, from (3.5) it follows immediately that the process X is f-
stable. Moreover, by (3.11), yp = 0 because functions from F, are not
constant. Since Q({0}) = 0, we infer that supp @ contains arbitrarily small
positive numbers. Consequently, the closed additive semigroup containing
supp @ coincides with [0, 00). Hence and from (3.9) we get supp .g(X {0}) =
[0,p0), which completes the proof.

Let /C be the space of all real-valued continuous functions defined on
the open half-line (0,00) with the topology of uniform convergence on every
compact subset of (0,00). Tt is clear that K is metrizable. In what follows
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for the sake of brevity we shall use the notation
@(O,Z) ﬁ0: @(a,z) :L(X: Uﬂ.fvz)a
P(o0,2) = (1 + F(0)o(X,{0})

where a, z € (0, 0c). It is easy to verify, by (3.3) and (3.4), that the mapping
ela) = P(a,-) from the compactified half-line [0, c0] mto K is continuous.
Put Ke = o{[0, cc]}. It is clear that K¢ is compact and connected, i.e. g
is a continuum.

(3.12)

LeMMA 3.1. For every continuum C' contained in K the inverse image
@1 (C) is also a continuum.

Proof Since [0, ool is compact, we infer, by Theorem 3.1.12 in [2], that
the mapping ¢ is closed. Consequently, the fibres ¢ ~1(®(a,-)) are compact.
Put a~ = minp~(H(a,-)) and at = maxe~(F{a,-)). Suppose that & €
[a~,aT]. Since the function ¢ — $(a,-) is nondecreasing, we have

®(a, ) =®(a”,) &b} < @(Cﬁ—a ) = (‘-ﬁ(aa ) s
which yields ®(b,) = ®(q,-) and, consequently, b € ¢~ {®(a,-)). Thus
e Y(P(a,)) = [a~,aT], which shows that all fibres ¢~"'(&(a,-)) are con-
nected. Now our assertion is a direct consequence of Theorem 6.1.28 in [2].

A set M of probability measures is said to be closed under convolution
powers if u** € M for every n > 2 whenever p € M.

PROPOSITION 3.2. Suppose that f € Fy and A(X, f) is closed under
convolution powers. Then either A(X, f) consists of gamma distributions or
the process X is deterministic.

Proof. Given n > 2 we put for a € [0, o]
(3.13) pala) = pla)" = 2(a, )"
Cbviously @, is a continuous nondecreasing mapping from [0,c0] into K.

Since A{X, f) is closed under convolution powers, we have ¢, ((0, oo)) C Kg,
which, by the compactness of Kg, yields

(3.14) onl([0,00]) € K.

Mowover ¢n([0,00]) is a continuum and, by Lemma 3.1, the inverse 1mage
Lon ([0, 00])) is also a continuum. Since, by (3.12), ¢ (0) =0 = (0},

conclude that

(3.15) 2™ (#a{[0, 00])) = {0, va]

where v, € (0,00], As @n(-) is nondecreasing, we have @(v,) = @a(cc),

which, by (3.12), yields

(3.16) Blom2) = (L+ F0)e(X, {0D)) ™.
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Hence

(3.17) v, = oo if o(X,{0}) =0,
(3.18) v, oo if p(X,{0}) > 0.

First consider the case o(X, {0}) = 0. By (3.15) and (3.17) there exists
a number b, & (0, co) such that @, (b,) = ©(1). Thus

Dby, 2) = B(1,2)Y"  (n=2,3,...)

for z € [0, 00). Differentiating both sides with respect to z and taking into
account the formulae

d . d? 2 ;
E@(a, z) . - —EI(X: Uaf)v E’;ﬁ'@(a: z) =0 = EI (Xw Ua,.f)
we get
1

BI(X, Uy, f) = ~EI(X,f),

EPF(X, U, f) = %EIZ(X, £+ %(% - 1) (BI(X, f)%.

Applying Corollary 2.1 we get

BI*(X, U, f) < ABI(X, Uy, F)* = 5 (BI(X, )7,
Consequently,
EBI*(X,f)+ (5 — 1) (BI(X, f))* < E(EI(X, E.
T k1

Letting » — oo we obtain EI2(X, f) — (FI(X, f))? € 0, which shows that
the variance of the random variable I(X, f) is 0. Thus I{X, f) = EI{X, f)
with probability 1. Since £(0) > 0, we infer that EI(X, f} > 0. Now applying
Theorem 2.2 we conclude that X is deterministic.

Now consider the case p(X, {0}) > 0. By (3.18) we have v, < 0o. More-
over, by {3.16), vk+n < v, for k > 1. Consequently, by (3.15), there exists
a positive number ¢y, such that (viyn, ) = Blcpn, )", which, by (3.16),
vields

(3.19) Blehn, 2) = (1 + F(0)o(X, {0})z)" 11/
forn=2,3,..., k=1,2,... and z € (0, 00). Setting
p(a) = (1+ £(0)o(X, {0})z) 1 7H/¢

for @ € [0, 00] and z € (0, 00) we get a continuous mapping from [0, oo] into
K. Since, by (3.19), ¥(k/n) = ®(cg n, ) € Ko we conclude, by the compact-
ness of Kg, that 4:([0,00]). C K. Since 4(0) == 0 = (0) and 4(c0) = p(x),

icm
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we have, by Lemma 3.1, 7' (4([0,cc])) = [0, 00]. Consequently, for any
a € (0,00) there exists a number b € (0, oc] such that

®la,z) = (L+ F(0)o(X, {0})2) 7,

which shows that the random variable I(a X, f) has a gamma distribution.
The proposition is thus proved.

As an immediate consequence of Propositions 3.1 and 3.2 we get the
following result.
TugoOREM 3.1. Let f € F,.. The following statements are equivalent:

(i) the process X is f-stable,
(1) the set A(X, f) is closed under convolution powers,
(iil) either A(X, f) consists of gamma distributions or X is deterministic.

THEOREM 3.2. Suppose that f € Fu and f(c) = 0 for some ¢ € (0, 00).
Then f-stable processes are deterministic.

Proof Suppoge that X is a nondeterministic f-stable process. Then,
by Theorem 3.1 and Proposition 3.1, (X, {0}) > 0 and

A(Xa f) = {7(.)0(0)“19(}(: {0})_1:?—”3 ) LW E (LOO)} :

Consequently, for every o € (0, co) there exists a number w(a) € (1,00) such
that

(3.20) L(X,Uaf,2) = (1+ f(0)a(X,{0})2) (.
Since f is nonincreasing, we have f(u) =0 for u > c. Hence
(3.21) LX,T,U.f,2)=1 foryela e, 00) and z € [0,00).

We may assume that X € Poiss(g,@) for some Q and ¢! = o(X, {0}).
Using Lemma 2.3 and formula (3.20) we obtain

oo

(1+ F(O)o(X, {0)2) @ = [ L(X, Uaf, %) Qdy)
0

for z & [0, 00), which, by (3.21), yields
(1+ F(0)e(X,{0)2)' ) > Q(la™ ¢, 00)).

Letting z - oo we get Q([a~'c,00)) = 0, which, by the arbitrariness of a,
implies (Q((0,00)} = 0. But this is impossible because @ is a probability
measire concentrated on the half-tine (0,00). The theorem is thus proved.

In what follows h(z) will denote the exponential function e ™. Obviously,
h &€ F,. We shall give a complete description of all h-stable processes. We
begin with a uniqueness lemma.

LEMMA 3.2. If the random variables I(X, k) and I(Y, k) are identically
distributed, then X ~ Y.
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Proof By Lemma 2.1 we have

7 =}
ErrX,py=n] [e™o(X du) (n=12..).
j=1 0
Hence for I{X, h) and I(Y, k) identically distributed,

o™X duy= [e™o(Vidu) (n=12.),
0

which yields o(X, -} = o(Y, -} ([3], Chapter XIII, 1). Thus X ~ Y".

THEOREM 3.3. A process X is h-stable if and only if either X is deter-
ministic or X € Poiss{g, P,) for some positive g and 5.

Proof. The sufficiency follows from Examples 3.1 and 3.2. To prove
the necessity suppose that X is a nondeterministic h-stable process. By
Theorem 3.1 and Proposition 3.1 the random variable I(X, &) bas gamma
distribution with parameters (p(X,{0})™%, w) for some w > 1. Put g =
o(X,{0})" and s = w — 1. It was shown in Example 3.2 that for ¥ €
Poiss(g, P;) the random variable I{V,h) has gamma distribution with pa-
rameters (o(X, {0})71, w). Hence and from Lemma 3.2 it follows that X ~
Y, which yields X & Poiss(g, P;). This completes the proof.
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Maximal functions related to subelliptic operators
invariant under an action of a nilpotent Lie group

by

EWA DAMEK {Wroclaw)

- Abstract. On the domain £2; = {(2,b) 12 € N,b € R*,b> a}, where N is a simply
connected nilpotent Lie group and a > 0, certain N-invariant second order subelliptic
operators L are considered. Every bounded L-barmonic function F' is the Poisson integral

Flz,b) = f *p5(z)

for an f € L°°(N). The main theorem of the paper asserts that under some assumptions
the maximal functions

Mif(@)= sp |, Mofle)= e |+ (@)
a<b<a+l

are of weak type {1,1). Some results about moments of the harmonic measures pb are
also inclhuded.

1. Introduction. The aim of this paper is to study some maximal func-
tions naturally associated with differential operators invariant under an ac-
tion of a nilpotent Lie group N and defined on N x R*. Suppose that for
every o € R we have left-invariant vector fields Y1(a),...,Yx(a), Y(a),
depending smoothly on a, such that ¥i(a),...,Yi(a) genera,te n as a Lie
algebra and for every a, Yi(a), ..., Yi(a) belong to the same linear subspace
v of n. We consider the opera,tor

(1.1) flz,0)= (ZY V{a) + ad? - m%)f(m,a)

im=1
on the domain
Qaﬂ:ﬂ{(ma:weNa>aﬂ}: ap 2 0,

and so we go a step further than in [DH], where operators invariant with
respect to a solvable group structure on V RT have been considered.
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