

Contents of Volume 103, Number 3

K. Urbanik, Stability of stochastic processes defined by integral functionals $$ E. Damek, Maximal functions related to subelliptic operators invariant under	
an action of a nilpotent Lie group	239-264
S. D. FISHER, Pick-Nevanlinna interpolation on finitely-connected domains	265-273
R. MORTINI, An example of a subalgebra of H^{∞} on the unit disk whose stable	
rank is not finite	275-281
T. Domínguez Benavides, Weak uniform normal structure in direct sum spaces	283-290
J. VÄISÄLÄ, Banach spaces and bilipschitz maps	291-294
G. Herzog, On linear operators having supercyclic vectors	295298
K. Urbanik, Functionals on transient stochastic processes with independent	
increments	299-315
K. Stempak, Almost everywhere summability of Laguerre series. II	317-327
V. MÜLLER and A. SOLTYSIAK, Spectral radius formula for commuting Hilbert	
space operators	329-333

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, A. Pełczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-293997

Correspondence concerning subscription, exchange and back numbers should be addressed to

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
Publications Department

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-293997

© Copyright by Instytut Matematyczny PAN, Warszawa 1992

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset in TEX at the Institute

Printed and bound by

C2-240 WARSZAWA, ul. Jekobinów 23

PRINTED IN POLAND

ISBN 83-85116-67-2 ISSN 0039-3223

STUDIA MATHEMATICA 103 (3) (1992)

Stability of stochastic processes defined by integral functionals

by

K. URBANIK (Wrocław)

Abstract. The paper is devoted to the study of integral functionals $\int_0^\infty f(X(t,\omega)) dt$ for continuous nonincreasing functions f and nonnegative stochastic processes $X(t,\omega)$ with stationary and independent increments. In particular, a concept of stability defined in terms of the functionals $\int_0^\infty f(aX(t,\omega)) dt$ with $a \in (0,\infty)$ is discussed.

1. Preliminaries and notation. In the sequel $X=\{X(t,\omega):t\geq 0\}$ will always denote a nonnegative stochastic process with stationary and independent increments, right-continuous sample functions and satisfying the initial condition $X(0,\omega)=0$. Denote by $\pi(X,t,\cdot)$ the probability distribution of the random variable $X(t,\omega)$. The family $\pi(X,t,\cdot)$ $(t\geq 0)$ forms a convolution semigroup:

(1.1)
$$\pi(X, t, \cdot) * \pi(X, u, \cdot) = \pi(X, t + u, \cdot)$$

and

(1.2)
$$\pi(X, t, \{0\}) = e^{-q(X)t}$$

where $q(X) \in [0, \infty]$. Moreover,

$$(1.3) \pi(X, t, [0, a)) > 0$$

for any $a \in (0, \infty)$ and sufficiently small t. All processes under consideration in the sequel will tacitly be assumed to be nondegenerate, i.e. q(X) > 0.

It is well-known that for nondegenerate processes the potential

$$\varrho(X,A) = \int_{0}^{\infty} \pi(X,t,A) dt$$

is finite on bounded Borel subsets A of the half-line $[0,\infty]$ ([1], Proposition 14.1). In view of (1.2) we have

(1.4)
$$\varrho(X, \{0\}) = q(X)^{-1}.$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 60H05.

By δ_a we shall denote the probability measure concentrated at $a \in [0, \infty)$. The support of a measure μ will be denoted by supp μ .

Inequality (1.3) yields

$$(1.5) 0 \in \operatorname{supp} \varrho(X, \cdot).$$

A stochastic process X is said to be deterministic if $X(t,\omega) = bt$ with probability 1 or equivalently $\pi(X,t,\cdot)=\delta_{bt}$ for all $t\in[0,\infty)$ and for some positive constant b. In this case we have $\rho(X, dy) = b^{-1} dy$.

LEMMA 1.1. If supp $\pi(X, t_0, \cdot)$ is bounded for some positive t_0 , then the process X is deterministic.

Proof. By (1.1) the probability distribution $\pi(X, t_0, \cdot)$ is infinitely divisible. Consequently, by Theorem 2.6.3 in [5], the boundedness of its support yields $\pi(X, t_0, \cdot) = \delta_{bt_0}$ for some positive constant b. Applying the semigroup property (1.1) we get $\pi(X, t, \cdot) = \delta_{bt}$ for all $t \in [0, \infty)$, which completes the proof.

A stochastic process X is said to be a compound Poisson process if $\varrho(X,\{0\})>0$. In this case there exist a positive constant q and a probability measure Q on the half-line $[0,\infty)$ with $Q(\{0\})=0$ such that

(1.6)
$$\pi(X,t,\cdot) = e^{-qt} \sum_{n=0}^{\infty} \frac{(qt)^n}{n!} Q^{*n}$$

where Q^{*n} for $n \geq 1$ is the nth convolution power of Q and $Q^{*0} = \delta_0$. The set of processes X satisfying (1.6) will be denoted by Poiss(q, Q). It is easy to check that

$$(1.7) q(X) = q$$

and

(1.8)
$$\varrho(X,\cdot) = q^{-1} \sum_{n=0}^{\infty} Q^{*n}$$

for $X \in \text{Poiss}(q, Q)$.

Throughout this paper P_s will denote the exponential probability distribution with parameter s > 0, i.e. $P_s(dy) = se^{-sy} dy$ on the half-line $[0,\infty)$. We shall often refer to the following representation of processes from Poiss(q, Q) ([4], Chapter IV, 2):

(1.9)
$$X(t,\omega) = 0 \qquad \text{for } t \in [0, \vartheta_0).$$

(1.9)
$$X(t,\omega) = 0 \quad \text{for } t \in [0, \vartheta_0),$$

$$X(t,\omega) = \sum_{j=1}^{k} \xi_j \quad \text{for } t \in \left[\sum_{j=0}^{k-1} \vartheta_j, \sum_{j=0}^{k} \vartheta_j\right)$$

for $k \geq 1$ where the random variables $\theta_0, \theta_1, \dots, \xi_1, \xi_2, \dots$ are independent, ϑ_i $(j=0,1,\ldots)$ have probability distribution P_q , and ξ_j $(j=1,2,\ldots)$ have probability distribution Q.

From (1.8) by simple calculations we get

(1.11)
$$\varrho(X, dy) = q^{-1}(\delta_0(dy) + s \, dy)$$

for $X \in \text{Poiss}(q, P_s)$.

Two processes X and Y are said to be equivalent, in symbols $X \sim Y$, whenever $\pi(X,t,\cdot)=\pi(Y,t,\cdot)$ for all $t\in[0,\infty)$. By Proposition 15.21 in [1], $X \sim Y$ if and only if $\varrho(X,\cdot) = \varrho(Y,\cdot)$. We write $X \prec Y$ if $\varrho(X,[0,a)) \leq$ $\varrho(Y,[0,a))$ for all $a\in(0,\infty)$. This order relation is reflexive and transitive. Moreover, $X \prec Y$ and $Y \prec X$ yield $X \sim Y$.

Denote by \mathcal{F} the set of all nonnegative, continuous and nonincreasing functions defined on $[0, \infty)$.

Integrating by parts we get the following simple result.

LEMMA 1.2. If $X \prec Y$, then

$$\int\limits_0^\infty f(u)\, arrho(X,du) \leq \int\limits_0^\infty f(u)\, arrho(Y,du)$$

for all $f \in \mathcal{F}$.

In the sequel we shall lean heavily on the following statement.

LEMMA 1.3. For every process X and $a \in (0, \infty)$ there exists a number $s \in (0, \infty)$ such that $X \prec Y$ for $Y \in \text{Poiss}(\rho(X, [0, a))^{-1}, P_s)$.

Proof. Setting $V(\cdot) = \int_0^\infty e^{-t} \pi(X,t,\cdot) dt$ we get a probability measure concentrated on $[0, \infty)$. By (1.2) and (1.4),

$$V(\{0\}) = \frac{\varrho(X, \{0\})}{1 + \varrho(X, \{0\})} < 1,$$

which yields $m = \int_0^\infty u \, V(du) \in (0, \infty]$. Put $W = \sum_{n=0}^\infty V^{*n}$. Applying the Renewal Theorem ([3], XI) we have

$$\lim_{y\to\infty}W([0,y))/y=1/m.$$

Since, by Proposition 13.7 in [1], $\varrho(X, [0, y)) = 1 + W([0, y))$, we have

$$\lim_{y\to\infty}\varrho(X,[0,y))/y=1/m.$$

Consequently, for any $a \in (0, \infty)$ the supremum

$$s = \sup\{\varrho(X,[0,y))/(y\varrho(X,[0,a))) : y \ge a\}$$

is finite. The inequality $\varrho(X,[0,y)) \leq \varrho(X,[0,a))(1+sy)$ for all $y \in (0,\infty)$ is obvious. Observe that, by (1.11), the right-hand side of the last inequality is equal to $\varrho(Y,[0,y))$ for any $Y \in \text{Poiss}(\varrho(X,[0,a))^{-1},P_s)$, which completes the proof.

2. Random integral functionals. This section is devoted to the study of the probability distribution of random functionals

$$I(X,f) = \int_{0}^{\infty} f(X(t,\omega)) dt$$

for $f \in \mathcal{F}$. The following simple formulae for the moments $EI^n(X, f)$ will be needed below.

LEMMA 2.1. For any $f \in \mathcal{F}$ and $n \geq 1$,

$$EI^{n}(X,f) = n! \int_{0}^{\infty} \dots \int_{0}^{\infty} \prod_{j=1}^{n} f(y_{1} + \dots + y_{j}) \varrho(X,dy_{1}) \dots \varrho(X,dy_{n}).$$

Proof. We start from the formula

$$EI^{n}(X,f) = E \int_{0}^{\infty} \dots \int_{0}^{\infty} \prod_{j=1}^{n} f(X(t_{j},\omega)) dt_{1} \dots dt_{n}$$

$$= n! E \int_{0}^{\infty} \dots \int_{0}^{\infty} \prod_{j=1}^{n} f(X(u_{1} + \dots + u_{j},\omega)) du_{1} \dots du_{n}.$$

Since f is nonnegative, we can change the order of integration to get

$$EI^{n}(X,f) = n! \int_{0}^{\infty} \dots \int_{0}^{\infty} E \prod_{j=1}^{n} f(X(u_{1} + \dots + u_{j},\omega)) du_{1} \dots du_{n}.$$

Now, by the stationarity and independence of the increments of X, it is easy to check the formula

$$E\prod_{j=1}^n f(X(u_1+\ldots+u_j,\omega))$$

$$=\int_0^\infty \ldots \int_0^\infty \prod_{j=1}^n f(y_1+\ldots+y_j) \,\pi(X,u_1,dy_1)\ldots \pi(X,u_n,dy_n),$$

which together with the previous one yields the assertion of the lemma.

The inequality $f(y_1 + \ldots + y_j) \leq f(y_j)$ $(j = 1, \ldots, n)$ for $f \in \mathcal{F}$ and Lemma 2.1 imply the following statement.

COROLLARY 2.1. For every $f \in \mathcal{F}$ and n > 1,

$$EI^n(X, f) \le n! (EI(X, f))^n$$
.

Further, the following result is an immediate consequence of Lemmas 1.2 and 2.1.

COROLLARY 2.2. If $X \prec Y$, then $EI^n(X, f) \leq EI^n(Y, f)$ for every $f \in \mathcal{F}$ and $n \geq 1$.

LEMMA 2.2. If $f \in \mathcal{F}$ and $\int_0^\infty f(y) dy < \infty$, then for every process X the expectation EI(X, f) is finite.

Proof. By Lemma 1.3 and Corollary 2.2 it suffices to prove the assertion for $X \in \text{Poiss}(q, P_s)$. But for these processes we have, by (1.11) and Lemma 2.1,

$$EI(X,f) = \int_{0}^{\infty} f(y) \, \varrho(X,dy) = q^{-1} \Big(f(0) + s \int_{0}^{\infty} f(y) \, dy \Big),$$

which completes the proof.

Observe that for the deterministic process $X(t, \omega) = t$ we have $I(X, f) = \int_0^\infty f(t) dt$. Consequently, Lemma 2.2 yields the following corollary.

COROLLARY 2.3. Suppose that $f \in \mathcal{F}$. The random functional I(X, f) is finite with probability 1 for every process X if and only if $\int_0^\infty f(y) \, dy < \infty$.

Denote by \mathcal{F}_0 the subset of \mathcal{F} consisting of functions f satisfying $\int_0^\infty f(y)\,dy < \infty$. Given $f\in \mathcal{F}_0$ we denote by $L(X,f,\cdot)$ the Laplace transform of the probability distribution of I(X,f), i.e.

$$L(X, f, z) = Ee^{-zI(X, f)}$$

for $z \in [0, \infty)$. Further, for every $a \in [0, \infty)$ we denote by T_a the shift operator defined by the formula $(T_a f)(y) = f(y+a)$ on \mathcal{F}_0 .

For any $f \in \mathcal{F}_0$ using the representation (1.9)–(1.10) of a process X from Poiss(q, Q) we have

(2.1)
$$I(X,f) = f(0)\vartheta_0 + \sum_{k=1}^{\infty} f(\xi_1 + \ldots + \xi_k)\vartheta_k.$$

Taking two independent random variables ϑ and ξ with probability distributions P_q and Q respectively such that the pair (ϑ, ξ) is independent of the process X we conclude, by (2.1), that the random variables I(X, f) and $f(0)\vartheta + I(X, T_{\xi}f)$ are identically distributed. Hence we get the following result.

LEMMA 2.3. For $f \in \mathcal{F}_0$ and $X \in \text{Poiss}(q, Q)$,

$$L(X, f, z) = q(q + f(0)z)^{-1} \int_{0}^{\infty} L(X, T_{y}f, z) Q(dy) \quad (z \in [0, \infty)).$$

LEMMA 2.4. For $f \in \mathcal{F}_0$ and $X \in \text{Poiss}(q, P_s)$,

$$L(X,f,z) = q(q+f(0)z)^{-1} \exp\left(-sz \int_{0}^{\infty} \frac{f(u)}{q+f(u)z} du\right) \quad (z \in [0,\infty)).$$

Proof. Replacing f by $T_u f$ $(u \in [0, \infty))$ and Q by P_s in Lemma 2.3 we get

(2.2)
$$L(X, T_u f, z) = sq(q + f(u)z)^{-1} \int_0^\infty L(X, T_{u+y} f, z) e^{-sy} dy.$$

Since $T_u f \leq f$, we have $\lim_{u\to\infty} I(X, T_u f) = 0$ with probability 1 by the bounded convergence theorem. Consequently,

$$\lim_{u \to \infty} L(X, T_u f, z) = 1$$

for all $z \in [0, \infty)$. Setting $H(u, z) = e^{-su}L(X, T_u f, z)$ for $u, z \in [0, \infty)$, we get, by (2.2) and (2.3), the equation

(2.4)
$$H(u,z) = sq(q + f(u)z)^{-1} \int_{u}^{\infty} H(y,z) \, dy$$

with the limit condition

(2.5)
$$\lim_{u \to \infty} e^{su} H(u, z) = 1.$$

The general solution of (2.4) is of the form

$$(2.6) H(u,z) = G(z)sq(q+f(u)z)^{-1}\exp\bigg(-sq\int\limits_0^u\frac{dy}{q+f(y)z}\bigg).$$

Multiplying both sides by e^{su} and letting $u \to \infty$ we get, by (2.5),

$$1 = G(z)s \exp\left(sz \int_{0}^{\infty} \frac{f(y)}{q + f(y)z} dy\right),\,$$

which together with (2.6) for u = 0 implies the assertion of the lemma.

From Corollary 2.1 and Lemma 2.2 it follows that the function $L(X, f, \cdot)$ can be extended to an analytic function in the circle |z|EI(X, f) < 1 with the power series representation

$$L(X, f, z) = \sum_{n=0}^{\infty} \frac{(-z)^n EI^n(X, f)}{n!}.$$

Denote by r(X, f) the convergence radius of the above series, i.e.

(2.7)
$$r(X,f)^{-1} = \lim_{n \to \infty} (EI^n(X,f)/n!)^{1/n}.$$

Observe that, by Lemma 2.4, for $X \in \text{Poiss}(q, P_s)$ the function $L(X, f, \cdot)$ is analytic in the circle f(0)|z| < q. Hence we get the following estimate.

LEMMA 2.5. If
$$f \in \mathcal{F}_0$$
 and $X \in \text{Poiss}(q, P_s)$, then $r(X, f) > q/f(0)$.

As an immediate consequence of Corollary 2.2 and formula (2.7) we get the following statement. LEMMA 2.6. If $X \prec Y$, then $r(X, f) \geq r(Y, f)$ for every $f \in \mathcal{F}_0$.

The following theorem will be useful later.

THEOREM 2.1. If $f \in \mathcal{F}_0$, then $r(X, f) = (f(0)\varrho(X, \{0\}))^{-1}$ for every process X.

Proof. For every positive number a there exist, by Lemma 1.3, a positive number s and a process $Y \in \text{Poiss}(\varrho(X,[0,a))^{-1},P_s)$ such that $X \prec Y$. Applying Lemmas 2.5 and 2.6 we get $r(X,f) \geq (f(0) \varrho(X,[0,a)))^{-1}$. Letting $a \to 0$ we have

$$(2.8) r(X,f) \ge (f(0)\varrho(X,\{0\}))^{-1},$$

which completes the proof in the case $\varrho(X,\{0\})=0$. In the remaining case X is a compound Poisson process and, by (2.1), $I(X,f)\geq f(0)\vartheta_0$ with probability 1 where the random variable ϑ_0 has probability distribution P_q and, by (1.4) and (1.7), $q^{-1}=\varrho(X,\{0\})$. Thus

$$EI^{n}(X,f) \ge f^{n}(0)E\vartheta_{0}^{n} = f^{n}(0)n!\varrho^{n}(X,\{0\}).$$

Hence and from (2.7) we get $r(X, f)^{-1} \ge f(0)\varrho(X, \{0\})$, which together with (2.8) yields the assertion of the theorem.

THEOREM 2.2. If $I(X, f) \ge a$ with probability 1 for a function f from \mathcal{F}_0 and a positive constant a, then the process X is deterministic.

Proof. Denote by \mathcal{B}_u the σ -field of random events generated by the values $X(t,\omega)$ for $t \leq u$. Suppose that the process X satisfies the assumption of the theorem for some $f \in \mathcal{F}_0$ and $a \in (0,\infty)$. We define the random variable τ by setting

$$au(\omega) = \sup \left\{ v: \int\limits_0^v f(X(t,\omega)) \, dt < rac{a}{2}
ight\}.$$

It is clear that τ is finite with probability 1,

(2.9)
$$\int_{0}^{\tau(\omega)} f(X(t,\omega)) dt = \frac{a}{2}$$

with probability 1 and $\{\tau(\omega) \leq u\} \in \mathcal{B}_u$ for all $u \in (0, \infty)$, i.e. the random variable τ is a stopping time. Consequently, setting $\eta = X(\tau, \omega)$ and $Y(t, \omega) = X(t + \tau, \omega) - X(\tau, \omega)$ for $t \in [0, \infty)$ we conclude that $X \sim Y$ and the process Y and the random variable η are independent ([4], Chapter I, 4, Theorem 7). By (2.9) we have

$$I(Y, T_{\eta}f) = \int\limits_{ au(\omega)}^{\infty} f(X(t, \omega)) dt \geq rac{a}{2}$$

with probability 1. Consequently, denoting by λ the probability distribution of η and taking into account the independence of η and Y we get $I(Y,T_yf)\geq a/2$ with probability 1 for all $y\in\operatorname{supp}\lambda$. Since $\lim_{y\to\infty}I(Y,T_yF)=0$ with probability 1, we conclude that $\operatorname{supp}\lambda$ is bounded. Thus $X(\tau,\omega)\leq b$ with probability 1 for some constant b. On the other hand, by (2.9), $f(0)\tau\leq a/2$ with probability 1. Put $t_0=a/(2f(0))$. Since the sample functions of the process X are nondecreasing, we infer that $X(t_0,\omega)\leq b$ with probability 1. Applying Lemma 1.1 we get the assertion of the theorem.

3. f-stable processes. Suppose that to every process X there corresponds a random variable J(X). Denote by N(X,J) the set of probability distributions of the random variables J(aX) with $a \in (0,\infty)$. A process X is said to be J-stable whenever N(X,J) is closed under convolution. Observe that for the mapping $J_0(X) = X(t_0,\cdot)$ for some positive number t_0 the J_0 -stability coincides with the usual one. The purpose of this section is to study J-stable processes X in the case J(X) = I(X,f) for some $f \in \mathcal{F}_0$. Of course, we exclude the trivial case f(0) = 0 for which I(X,f) = 0 with probability 1. Denote by \mathcal{F}_+ the subset of \mathcal{F}_0 consisting of functions taking a positive value at the origin. Let $\lambda(X,f,\cdot)$ denote the probability distribution of I(X,f) and $A(X,f) = \{\lambda(aX,f,\cdot): a \in (0,\infty)\}$. Further, for any $a \in (0,\infty)$ we put $(U_af)(x) = f(ax)$. It is clear that \mathcal{F}_+ is invariant under all transformations U_a and

(3.1)
$$\lambda(aX, f, \cdot) = \lambda(X, U_a f, \cdot).$$

We shall say "f-stable" instead of "I(X,f)-stable" for short. Thus X is f-stable if and only if $\Lambda(X,f)$ is closed under convolution or, equivalently, the set of Laplace transforms $\{L(X,U_{a}f,\cdot):a\in(0,\infty)\}$ is closed under pointwise multiplication.

To begin with, we give some examples of f-stable processes.

EXAMPLE 3.1. Deterministic processes are f-stable for all $f \in \mathcal{F}_+$. In fact, if $X(t,\omega) = bt$ with probability 1 for some constant $b \in (0,\infty)$, then

$$I(aX, f) = \frac{1}{ab} \int_{0}^{\infty} f(y) dy$$
 for all $a \in (0, \infty)$

and, consequently, $\Lambda(X, f) = \{\delta_c : c \in (0, \infty)\}.$

Throughout this section $\gamma(c, w, \cdot)$ will denote the gamma probability distribution with positive parameters c and w, i.e. $\gamma(c, w, dy) = \Gamma(w)^{-1}c^w \times y^{w-1}e^{-cy}\,dy$ on the half-line $[0, \infty)$. The Laplace transform of $\gamma(c, w, \cdot)$ is equal to $c^w(c+z)^{-w}$ and

(3.2)
$$\gamma(c,v,\cdot) * \gamma(c,w,\cdot) = \gamma(c,v+w,\cdot).$$

EXAMPLE 3.2. Let $h(x) = e^{-x}$. The processes from Poiss (q, P_s) for $q, s \in (0, \infty)$ are h-stable. In fact, by Lemma 2.4,

$$L(X, U_a h, z) = \frac{q}{q+z} \exp\left(-sz \int_0^\infty \frac{e^{-au}}{q+e^{-au}z} du\right) = \left(\frac{q}{q+z}\right)^{1+a^{-1}s},$$

which, by (3.1), yields $\lambda(aX, h, \cdot) = \gamma(q, 1 + a^{-1}s, \cdot)$. Consequently, $\Lambda(X, h) = \{\gamma(q, w, \cdot) : w \in (1, \infty)\}$, which, by (3.2), shows that X is h-stable.

We now establish some properties of the Laplace transform $L(X,U_af,\cdot)$ for $f\in\mathcal{F}_+$ which will be needed below. Since $U_af\geq U_bf$ for $a\leq b$, we infer that for every $z\in[0,\infty)$ the mapping $a\to L(X,U_af,z)$ is nondecreasing and, by the bounded convergence theorem, continuous. Moreover, $\lim_{a\to 0}I(X,U_af)=\infty$ with probability 1, which yields

(3.3)
$$\lim_{a\to 0} L(X, U_a f, z) = 0 \quad \text{for } z \in (0, \infty).$$

Applying Lemma 2.1 we have $\lim_{a\to\infty} EI(X,U_af)=f(0)\varrho(X,\{0\})$, which yields $\lim_{a\to\infty} I(X,U_af)=0$ with probability 1 in the case $\varrho(X,\{0\})=0$. In the remaining case taking the representation (2.1) we get $\lim_{a\to\infty} I(X,U_af)=f(0)\vartheta_0$ in probability where the random variable ϑ_0 has probability distribution P_q and, by (1.4) and (1.7), $q^{-1}=\varrho(X,\{0\})$. Hence

(3.4)
$$\lim_{a \to \infty} L(X, U_a f, z) = (1 + f(0) \varrho(X, \{0\}) z)^{-1}$$

for $z \in [0, \infty)$.

PROPOSITION 3.1. Suppose that $f \in \mathcal{F}_+$ and the set $\Lambda(X, f)$ consists of gamma distributions. Then X is a compound f-stable Poisson process,

(3.5)
$$\Lambda(X,f) = \{ \gamma(f(0)^{-1}\varrho(X,\{0\})^{-1}, w, \cdot) : w \in (1,\infty) \}$$
 and supp $\varrho(X,\cdot) = [0,\infty)$.

Proof. By the assumption for every $a \in (0, \infty)$ there exist positive numbers c(a) and w(a) such that

(3.6)
$$L(X, U_a f, z) = c(a)^{w(a)} (c(a) + z)^{-w(a)}.$$

Hence the convergence radius r(X, f) is equal to c(a), which, by Theorem 2.1, yields

(3.7)
$$c(a) = f(0)^{-1} \varrho(X, \{0\})^{-1}.$$

This shows that $\varrho(X, \{0\}) > 0$ and, consequently, X is a compound Poisson process. Moreover, $w(\cdot)$ is a nonincreasing continuous function satisfying, by (3.3) and (3.4), the limit conditions

(3.8)
$$\lim_{a\to 0} w(a) = \infty \quad \text{and} \quad \lim_{a\to \infty} w(a) = 1.$$

Further, $X \in \text{Poiss}(q, Q)$ for some q and Q, which, by (1.8), yields

(3.9)
$$\varrho(X,\cdot) = q^{-1} \sum_{n=0}^{\infty} Q^n.$$

In particular, $q^{-1} = \varrho(X, \{0\})$. Now applying Lemma 2.3 we get from (3.6) and (3.7) the equation

(3.10)
$$(1 + f(0)\varrho(X, \{0\})z)^{1-w(a)} = \int_{0}^{\infty} L(X, T_y U_a f, z) Q(dy)$$

for $z \in [0,\infty)$. Observe that the convergence radius of the right-hand side is at least $\inf\{r(X,T_yU_af):y\in \operatorname{supp}Q\}$. By Theorem 2.1 this infimum is $f(ay_0)^{-1}\varrho(X,\{0\})^{-1}$ where $y_0=\min\operatorname{supp}Q$. If w(a)>1, then the convergence radius of the left-hand side of (3.10) is $f(0)^{-1}\varrho(X,\{0\})^{-1}$. Consequently, $f(ay_0)\geq f(0)$. Since f is nonincreasing, we have

(3.11)
$$f(0) = f(ay_0) \quad \text{for } w(a) > 1.$$

By (3.6)–(3.8) in order to prove (3.5) it suffices to show that w(a) > 1 for all $a \in (0, \infty)$. Suppose the contrary and put $a_0 = \inf\{a : w(a) = 1\}$. Since $w(\cdot)$ is nonincreasing, we have, by (3.8), w(b) = 1 for $b > a_0$. Hence and from (3.10) it follows that

$$\int_{0}^{\infty} L(X, T_y U_b f, z) Q(dy) = 1 \quad \text{for } b > a_0.$$

Since the integrand is not greater than 1, we conclude that $L(X, T_y U_b f, z) = 1$ for all $y \in \operatorname{supp} Q$, $b > a_0$ and $z \in [0, \infty)$ and, consequently, $r(X, T_y U_b f) = \infty$. On the other hand, by Theorem 2.1, $r(X, T_y U_b f) = f(by)^{-1} \varrho(X, \{0\})^{-1}$, which implies that f(by) = 0 for $y \in \operatorname{supp} Q$ and $b > a_0$. By the continuity of f we get $f(a_0 y_0) = 0$. On the other hand, by (3.11), $f(a_0 y_0) = f(0)$, which contradicts the assumption $f \in \mathcal{F}_+$. The inequality w(a) > 1 for all $a \in (0, \infty)$ is thus proved.

Of course, from (3.5) it follows immediately that the process X is f-stable. Moreover, by (3.11), $y_0 = 0$ because functions from \mathcal{F}_+ are not constant. Since $Q(\{0\}) = 0$, we infer that $\sup Q$ contains arbitrarily small positive numbers. Consequently, the closed additive semigroup containing $\sup Q$ coincides with $[0,\infty)$. Hence and from (3.9) we get $\sup \varrho(X,\{0\}) = [0,\infty)$, which completes the proof.

Let \mathcal{K} be the space of all real-valued continuous functions defined on the open half-line $(0,\infty)$ with the topology of uniform convergence on every compact subset of $(0,\infty)$. It is clear that \mathcal{K} is metrizable. In what follows

for the sake of brevity we shall use the notation

(3.12)
$$\Phi(0,z) = 0, \quad \Phi(a,z) = L(X, U_a f, z),$$

$$\Phi(\infty,z) = (1 + f(0)\varrho(X, \{0\}))^{-1}$$

where $a, z \in (0, \infty)$. It is easy to verify, by (3.3) and (3.4), that the mapping $\varphi(a) = \varPhi(a, \cdot)$ from the compactified half-line $[0, \infty]$ into \mathcal{K} is continuous. Put $\mathcal{K}_{\varPhi} = \varphi([0, \infty])$. It is clear that \mathcal{K}_{\varPhi} is compact and connected, i.e. \mathcal{K}_{\varPhi} is a continuum.

LEMMA 3.1. For every continuum C contained in \mathcal{K}_{Φ} the inverse image $\varphi^{-1}(C)$ is also a continuum.

Proof. Since $[0, \infty]$ is compact, we infer, by Theorem 3.1.12 in [2], that the mapping φ is closed. Consequently, the fibres $\varphi^{-1}(\Phi(a,\cdot))$ are compact. Put $a^- = \min \varphi^{-1}(\Phi(a,\cdot))$ and $a^+ = \max \varphi^{-1}(\Phi(a,\cdot))$. Suppose that $b \in [a^-, a^+]$. Since the function $a \to \Phi(a, \cdot)$ is nondecreasing, we have

$$\Phi(a,\cdot) = \Phi(a^-,\cdot) \le \Phi(b,\cdot) \le \Phi(a^+,\cdot) = \Phi(a,\cdot),$$

which yields $\Phi(b,\cdot) = \Phi(a,\cdot)$ and, consequently, $b \in \varphi^{-1}(\Phi(a,\cdot))$. Thus $\varphi^{-1}(\Phi(a,\cdot)) = [a^-, a^+]$, which shows that all fibres $\varphi^{-1}(\Phi(a,\cdot))$ are connected. Now our assertion is a direct consequence of Theorem 6.1.28 in [2].

A set M of probability measures is said to be closed under convolution powers if $\mu^{*n} \in M$ for every $n \geq 2$ whenever $\mu \in M$.

PROPOSITION 3.2. Suppose that $f \in \mathcal{F}_+$ and $\Lambda(X, f)$ is closed under convolution powers. Then either $\Lambda(X, f)$ consists of gamma distributions or the process X is deterministic.

Proof. Given n > 2 we put for $a \in [0, \infty]$

(3.13)
$$\varphi_n(a) = \varphi(a)^n = \Phi(a, \cdot)^n.$$

Obviously φ_n is a continuous nondecreasing mapping from $[0,\infty]$ into \mathcal{K} . Since $\Lambda(X,f)$ is closed under convolution powers, we have $\varphi_n((0,\infty)) \subset \mathcal{K}_{\Phi}$, which, by the compactness of \mathcal{K}_{Φ} , yields

$$(3.14) \varphi_n([0,\infty]) \subset \mathcal{K}_{\Phi}.$$

Moreover, $\varphi_n([0,\infty])$ is a continuum and, by Lemma 3.1, the inverse image $\varphi^{-1}(\varphi_n([0,\infty]))$ is also a continuum. Since, by (3.12), $\varphi_n(0) = 0 = \varphi(0)$, we conclude that

(3.15)
$$\varphi^{-1}(\varphi_n([0,\infty])) = [0, v_n]$$

where $v_n \in (0, \infty]$. As $\varphi_n(\cdot)$ is nondecreasing, we have $\varphi(v_n) = \varphi_n(\infty)$, which, by (3.12), yields

(3.16)
$$\Phi(v_n, z) = (1 + f(0)\varrho(X, \{0\})z)^{-n}.$$

Hence

$$(3.17) v_n = \infty if \varrho(X, \{0\}) = 0,$$

(3.18)
$$v_n < \infty \text{ if } \varrho(X, \{0\}) > 0.$$

First consider the case $\varrho(X,\{0\})=0$. By (3.15) and (3.17) there exists a number $b_n\in(0,\infty)$ such that $\varphi_n(b_n)=\varphi(1)$. Thus

$$\Phi(b_n, z) = \Phi(1, z)^{1/n} \quad (n = 2, 3, ...)$$

for $z \in [0, \infty)$. Differentiating both sides with respect to z and taking into account the formulae

$$\left. \frac{d}{dz} \Phi(a,z) \right|_{z=0} = -EI(X,U_a f), \quad \left. \frac{d^2}{dx^2} \Phi(a,z) \right|_{z=0} = EI^2(X,U_a f)$$

we get

$$EI(X, U_{b_n}f) = \frac{1}{n}EI(X, f),$$

$$EI^2(X, U_{b_n}f) = \frac{1}{n}EI^2(X, f) + \frac{1}{n}\left(\frac{1}{n} - 1\right)(EI(X, f))^2.$$

Applying Corollary 2.1 we get

$$EI^{2}(X, U_{b_{n}}f) \leq 2(EI(X, U_{b_{n}}f))^{2} = \frac{2}{n^{2}}(EI(X, f))^{2}.$$

Consequently,

$$EI^{2}(X,f) + \left(\frac{1}{n} - 1\right)(EI(X,f))^{2} \le \frac{2}{n}(EI(X,f))^{2}$$
.

Letting $n \to \infty$ we obtain $EI^2(X, f) - (EI(X, f))^2 \le 0$, which shows that the variance of the random variable I(X, f) is 0. Thus I(X, f) = EI(X, f) with probability 1. Since f(0) > 0, we infer that EI(X, f) > 0. Now applying Theorem 2.2 we conclude that X is deterministic.

Now consider the case $\varrho(X, \{0\}) > 0$. By (3.18) we have $v_n < \infty$. Moreover, by (3.16), $v_{k+n} \leq v_n$ for $k \geq 1$. Consequently, by (3.15), there exists a positive number $c_{k,n}$ such that $\Phi(v_{k+n}, \cdot) = \Phi(c_{k,n}, \cdot)^n$, which, by (3.16), yields

(3.19)
$$\Phi(c_{k,n}, z) = (1 + f(0)\varrho(X, \{0\})z)^{-1 - k/n}$$

for $n = 2, 3, \ldots, k = 1, 2, \ldots$ and $z \in (0, \infty)$. Setting

$$\psi(a) = (1 + f(0)\varrho(X, \{0\})z)^{-1-1/a}$$

for $a \in [0, \infty]$ and $z \in (0, \infty)$ we get a continuous mapping from $[0, \infty]$ into \mathcal{K} . Since, by (3.19), $\psi(k/n) = \Phi(c_{k,n}, \cdot) \in \mathcal{K}_{\Phi}$ we conclude, by the compactness of \mathcal{K}_{Φ} , that $\psi([0, \infty]) \subset \mathcal{K}_{\Phi}$. Since $\psi(0) = 0 = \varphi(0)$ and $\psi(\infty) = \varphi(\infty)$,

we have, by Lemma 3.1, $\varphi^{-1}(\psi([0,\infty])) = [0,\infty]$. Consequently, for any $a \in (0,\infty)$ there exists a number $b \in (0,\infty]$ such that

$$\Phi(a,z) = (1 + f(0)\varrho(X,\{0\})z)^{-1-1/b},$$

which shows that the random variable I(aX, f) has a gamma distribution. The proposition is thus proved.

As an immediate consequence of Propositions 3.1 and 3.2 we get the following result.

THEOREM 3.1. Let $f \in \mathcal{F}_+$. The following statements are equivalent:

- (i) the process X is f-stable,
- (ii) the set $\Lambda(X, f)$ is closed under convolution powers,
- (iii) either $\Lambda(X, f)$ consists of gamma distributions or X is deterministic.

THEOREM 3.2. Suppose that $f \in \mathcal{F}_+$ and f(c) = 0 for some $c \in (0, \infty)$. Then f-stable processes are deterministic.

Proof. Suppose that X is a nondeterministic f-stable process. Then, by Theorem 3.1 and Proposition 3.1, $\varrho(X,\{0\}) > 0$ and

$$\Lambda(X,f) = \{ \gamma(f(0)^{-1}\varrho(X,\{0\})^{-1}, w, \cdot) : w \in (1,\infty) \} .$$

Consequently, for every $a \in (0, \infty)$ there exists a number $w(a) \in (1, \infty)$ such that

(3.20)
$$L(X, U_a f, z) = (1 + f(0)\varrho(X, \{0\})z)^{-w(a)}.$$

Since f is nonincreasing, we have f(u) = 0 for $u \ge c$. Hence

(3.21)
$$L(X, T_y U_a f, z) = 1$$
 for $y \in [a^{-1}c, \infty)$ and $z \in [0, \infty)$.

We may assume that $X \in \text{Poiss}(q, Q)$ for some Q and $q^{-1} = \varrho(X, \{0\})$. Using Lemma 2.3 and formula (3.20) we obtain

$$(1 + f(0)\varrho(X, \{0\})z)^{1-w(a)} = \int_{0}^{\infty} L(X, T_y U_a f, z) Q(dy)$$

for $z \in [0, \infty)$, which, by (3.21), yields

$$(1 + f(0)\varrho(X, \{0\})z)^{1-w(a)} \ge Q([a^{-1}c, \infty))$$

Letting $z \to \infty$ we get $Q([a^{-1}c, \infty)) = 0$, which, by the arbitrariness of a, implies $Q((0, \infty)) = 0$. But this is impossible because Q is a probability measure concentrated on the half-line $(0, \infty)$. The theorem is thus proved.

In what follows h(x) will denote the exponential function e^{-x} . Obviously, $h \in \mathcal{F}_+$. We shall give a complete description of all h-stable processes. We begin with a uniqueness lemma.

LEMMA 3.2. If the random variables I(X,h) and I(Y,h) are identically distributed, then $X \sim Y$.

238

Proof. By Lemma 2.1 we have

$$EI^{n}(X,h) = n! \prod_{j=1}^{n} \int_{0}^{\infty} e^{-ju} \varrho(X,du) \quad (n = 1, 2, \ldots).$$

Hence for I(X, h) and I(Y, h) identically distributed,

$$\int_{0}^{\infty} e^{-nu} \varrho(X, du) = \int_{0}^{\infty} e^{-nu} \varrho(Y, du) \quad (n = 1, 2, \ldots),$$

which yields $\varrho(X,\cdot) = \varrho(Y,\cdot)$ ([3], Chapter XIII, 1). Thus $X \sim Y$.

THEOREM 3.3. A process X is h-stable if and only if either X is deterministic or $X \in \text{Poiss}(q, P_s)$ for some positive q and s.

Proof. The sufficiency follows from Examples 3.1 and 3.2. To prove the necessity suppose that X is a nondeterministic h-stable process. By Theorem 3.1 and Proposition 3.1 the random variable I(X,h) has gamma distribution with parameters $(\varrho(X,\{0\})^{-1},w)$ for some w>1. Put $q=\varrho(X,\{0\})^{-1}$ and s=w-1. It was shown in Example 3.2 that for $Y\in \operatorname{Poiss}(q,P_s)$ the random variable I(Y,h) has gamma distribution with parameters $(\varrho(X,\{0\})^{-1},w)$. Hence and from Lemma 3.2 it follows that $X\sim Y$, which yields $X\in\operatorname{Poiss}(q,P_s)$. This completes the proof.

References

- [1] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, Berlin 1975.
- [2] R. Engelking, General Topology, PWN, Warszawa 1977.
- [3] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York 1971.
- [4] I. I. Gikhman and A. V. Skorokhod, Theory of Random Processes, Vol. II, Nauka, Moscow 1973 (in Russian).
- [5] Yu. V. Linnik and I. V. Ostrovskii, Decompositions of Random Variables and Vectors, Nauka, Moscow 1972 (in Russian).

INSTITUTE OF MATHEMATICS WROCŁAW UNIVERSITY PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND

Received September 11, 1991 (2836)

Maximal functions related to subelliptic operators invariant under an action of a nilpotent Lie group

bу

EWA DAMÉK (Wrocław)

Abstract. On the domain $\Omega_a = \{(x, b) : x \in N, b \in \mathbb{R}^+, b > a\}$, where N is a simply connected nilpotent Lie group and $a \geq 0$, certain N-invariant second order subelliptic operators L are considered. Every bounded L-harmonic function F is the Poisson integral

$$F(x,b) = f * \check{\mu}_a^b(x)$$

for an $f \in L^{\infty}(N)$. The main theorem of the paper asserts that under some assumptions the maximal functions

$$M_1 f(x) = \sup_{b > a+1} |f * \check{\mu}_a^b(x)|, \qquad M_2 f(x) = \sup_{a < b \le a+1} |f * \check{\mu}_a^b(x)|$$

are of weak type (1,1). Some results about moments of the harmonic measures $\check{\mu}_a^b$ are also included.

1. Introduction. The aim of this paper is to study some maximal functions naturally associated with differential operators invariant under an action of a nilpotent Lie group N and defined on $N \times \mathbb{R}^+$. Suppose that for every $a \in \mathbb{R}^+$ we have left-invariant vector fields $Y_1(a), \ldots, Y_k(a), Y(a)$, depending smoothly on a, such that $Y_1(a), \ldots, Y_k(a)$ generate $\mathfrak n$ as a Lie algebra and for every $a, Y_1(a), \ldots, Y_k(a)$ belong to the same linear subspace $\mathfrak v$ of $\mathfrak n$. We consider the operator

(1.1)
$$Lf(x,a) = \left(\sum_{i=1}^{k} Y_i(a)^2 + Y(a) + \alpha \partial_a^2 - \kappa \partial_a\right) f(x,a)$$

on the domain

$$\Omega_{a_0} = \{(x, a) : x \in N, a > a_0\}, \quad a_0 \ge 0,$$

and so we go a step further than in [DH], where operators invariant with respect to a solvable group structure on $N \times \mathbb{R}^+$ have been considered.

¹⁹⁹¹ Mathematics Subject Classification: 22E30, 43A85, 58G20.