

An example of a subalgebra of H^{∞} on the unit disk whose stable rank is not finite

b

RAYMOND MORTINI (Karlsruhe)

Abstract. We present an example of a subalgebra with infinite stable rank in the algebra of all bounded analytic functions in the unit disk.

1. Introduction. Let A be a commutative complex Banach algebra with identity. It is known that the notion of stable rank (introduced by H. Bass [1]) is closely related to the topology of the spectrum of A (see, e.g., Corach-Suárez [4-6] and Vaserstein [15]). In order to get more insight into the structure of spectra of uniform algebras $A \subseteq C(X)$, it is therefore of interest to explicitly determine the stable rank of A. This was done for various algebras of analytic functions with smooth boundary values by Jones-Marshall-Wolff [9], Corach-Suárez [4-6] and Rupp [11, 12]. In particular, it was shown in [6] that the stable rank of the polydisk algebra $A(\mathbb{D}^n)$ and the ball algebra $A(\mathbb{B}^n)$ is $\lfloor n/2 \rfloor + 1$. Moreover, Rupp [11, 12] was able to show that the stable rank of many classes of subalgebras of $A(\mathbb{B}^n)$ is less than n, in particular is finite. These algebras include, e.g., all subalgebras A of $A^1(\mathbb{D}^n)=\{f\in A(\mathbb{D}^n): f'\in A(\mathbb{D}^n)\}$ in which the weak Nullstellensatz holds, i.e., for which $(f_1, \ldots, f_n) = A$ if and only if the functions f_i have no common zero in $\overline{\mathbb{D}}^n$. In particular, bsr A=1 whenever $A\subseteq A^1(\mathbb{D})$ and Asatisfies the weak Nullstellensatz (see [11]).

Only recently has the stable rank of the algebra H^{∞} of all bounded analytic functions in the unit disk $\mathbb D$ been determined by Treil [14]: it is also one. This raises the following questions. What does the situation for subalgebras of H^{∞} look like? Are there any subalgebras A of H^{∞} which do not have stable rank one? Can bsr A be infinite? It is the aim of this note to answer these questions. First we give some definitions.

Let A be a commutative ring with identity element 1. An element $(a_1, \ldots, a_n) \in A^n$ is called *unimodular* if $\sum_{j=1}^n a_j A = A$. The set of

¹⁹⁹¹ Mathematics Subject Classification: 46J15, 19B10.

all unimodular elements of A^n is denoted by $U_n(A)$. We say that $a=(a_1,\ldots,a_{n+1})\in U_{n+1}(A)$ is reducible if there exist $(x_1,\ldots,x_n)\in A^n$ such that $(a_1+x_1a_{n+1},\ldots,a_n+x_na_{n+1})\in U_n(A)$. The (Bass) stable rank of A, denoted by bsr A, is the least integer $n\in\mathbb{N}$ for which every $a\in U_{n+1}(A)$ is reducible. If there is no such integer n, we say that A has infinite stable rank.

2. The infinite polydisk algebra. As mentioned in the introduction, the stable rank of the polydisk algebra

$$A(\mathbb{D}^n) = \{f \text{ continuous on the closed polydisk } \overline{\mathbb{D}}^n$$

and analytic in its interior}

is [n/2] + 1.

We show next that the stable rank of the infinite polydisk algebra [2] is not finite. This observation may be known, because, if we consider $A(\mathbb{D}^n)$ as a quotient algebra of $A(\mathbb{D}^{\infty})$, we obtain

(*)
$$\operatorname{bsr} A(\mathbb{D}^{\infty}) \ge \operatorname{bsr} A(\mathbb{D}^n) = [n/2] + 1$$

for all n. We want, however, to give a self-contained proof along the lines of [12].

PROPOSITION 1. Let $A = A(\mathbb{D}^{\infty})$ be the infinite polydisk algebra, i.e., the uniform closure of the algebra generated by the coordinate functions z_1, z_2, \ldots on the countably infinite polydisk $\overline{\mathbb{D}}^{\infty} = \overline{\mathbb{D}} \times \overline{\mathbb{D}} \times \ldots$ Then the stable rank of A is infinite.

Proof. Fix $n \in \mathbb{N}$. We claim that the element (z_1, \ldots, z_n, g) of A^{n+1} , where $g(z) = \prod_{j=1}^n (1 - z_j z_{n+j}), z = (z_1, z_2, \ldots) \in \overline{\mathbb{D}}^{\infty}$, is not reducible.

First we note that (z_1, \ldots, z_n, g) is unimodular. Assume that there exist $h_1, \ldots, h_n \in A$ such that

(1)
$$(z_1 + gh_1, \dots, z_n + gh_n)$$
 is unimodular in A^n .

Let $h = (h_1, \ldots, h_n)$. For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ we define

$$H(z) = \begin{cases} -h(z_1, \dots, z_n, \overline{z}_1, \dots, \overline{z}_n, 0, \dots) \prod_{j=1}^n (1 - |z_j|^2) \\ & \text{for } |z_j| \le 1 \ (j = 1, \dots, n), \\ 0 & \text{otherwise.} \end{cases}$$

Then H is a continuous map from \mathbb{C}^n into \mathbb{C}^n . Because $\max_{z\in\overline{\mathbb{D}}^n}|H(z)|=\sup_{z\in\mathbb{C}^n}|H(z)|$, it is easy to see that there exists a polydisk $\overline{D}^n\supseteq\overline{\mathbb{D}}^n$ such that H maps \overline{D}^n into \overline{D}^n . Since \overline{D}^n is compact and convex, by Brouwer's fixed point theorem there exists $\zeta\in\overline{D}^n$ such that $H(\zeta)=\zeta$. Since H=0 outside $\overline{\mathbb{D}}^n$, we see that $\zeta\in\overline{\mathbb{D}}^n$. Let $\zeta=(z_1,\ldots,z_n)$. Hence, for every

 $j \in \{1, \ldots, n\}$, we obtain

$$0 = z_j + h_j(z_1, \dots, z_n, \overline{z}_1, \dots, \overline{z}_n, 0, \dots) \prod_{j=1}^n (1 - |z_j|)^2$$

= $z_j + (h_j g)(z_1, \dots, z_n, \overline{z}_1, \dots, \overline{z}_n, 0, \dots),$

which contradicts (1). Note that the spectrum of A is the infinite polydisk $\overline{\mathbb{D}}^{\infty}$ itself [2].

3. The subalgebra B_n of H^{∞} . All proper subalgebras of H^{∞} for which the stable rank is presently known are subalgebras of the disk algebra $A(\mathbb{D})$. The results in this section will provide us with various classes of subalgebras B_n of H^{∞} for which either $A(\mathbb{D}) \subset B_n \subset H^{\infty}$ or $B_n \subset H^{\infty}$, $A(\mathbb{D}) \not\subset B_n$, and for which the stable rank is $n \ (n \in \mathbb{N} \cup \{\infty\})$.

For our construction we need to work with interpolating Blaschke products. These are the Blaschke products

$$b(z) = \prod_{n=1}^{\infty} \frac{\overline{a}_n}{|a_n|} \cdot \frac{a_n - z}{1 - \overline{a}_n z}$$

whose zero sequence (a_n) is an interpolating sequence for H^{∞} . Recall that (z_n) is an interpolating sequence if for every bounded sequence (w_n) of complex numbers there exists a function $f \in H^{\infty}$ such that $f(z_n) = w_n$ for every n. Reducibility of unimodular vectors whose last component is an interpolating Blaschke product is in fact rather easy to prove as the following lemma shows.

LEMMA 2. Let $f_1, \ldots, f_n \in H^{\infty}$ and let b be an interpolating Blaschke product. Suppose that $f = (f_1, \ldots, f_n, b)$ is a unimodular element in $(H^{\infty})^{n+1}$. Then f is reducible. Moreover, there exist $g_j, h_j \in H^{\infty}$ such that $\sum_{j=1}^n e^{h_j} (f_j + g_j b) = 1$.

Proof. By assumption we have $\sum_{j=1}^{n} |f_j(z_k)| \ge \delta > 0$, where $\{z_k : k \in \mathbb{N}\}$ denotes the zero set of b in \mathbb{D} . Let $\alpha_j^{(k)} = -i \arg f_j(z_k)$ whenever $f_j(z_k) \ne 0$ and $\alpha_j^{(k)} = 0$ otherwise $(\arg f_j(z_k) \in (-\pi, \pi])$.

Because $\{z_k\}$ is an interpolating sequence, there exists $k_j \in H^{\infty}$ such that $k_j(z_k) = \alpha_j^{(k)}$ (k = 1, 2, ...; j = 1, ..., n). Hence $w_k = (\sum_{j=1}^n e^{k_j} f_j)(z_k) = \sum_{j=1}^n |f_j(z_k)| \ge \delta > 0$ (k = 1, 2, ...). Let $F = \sum_{j=1}^n e^{k_j} f_j$. Since $\log w_k$ is a bounded sequence, again there exists a function $K \in H^{\infty}$ such that $K(z_k) = \log w_k$ (k = 1, 2, ...). Therefore $(F - e^K)(z_k) = 0$, and hence $F = e^K - gb$ for some $g \in H^{\infty}$. This yields $\sum_{j=1}^n e^{k_j - K} (f_j + g_j b) = 1$, where $g_j = (g/n)e^{-k_j}$.

Remark. The case n=1 appears in [10], where it is also shown that, in general, the left factors of the summands above cannot be taken to be exponentials.

We are now able to construct for every $n \in \mathbb{N} \cup \{\infty\}$ subalgebras B_n of H^{∞} whose stable rank is n.

To this end let $M(H^{\infty})$ denote the spectrum of H^{∞} , that is, the space of nonzero multiplicative linear functionals on H^{∞} endowed with the weak-* topology. Because H^{∞} is a uniform algebra, we can identify functions f in H^{∞} with their Gelfand transforms $\widehat{f}:M(H^{\infty})\to\mathbb{C}$ defined by $\widehat{f}(m)=m(f)$ (see [8, §186). Let b be an interpolating Blaschke product and let $Z(b)=\{m\in M(H^{\infty}):m(b)=0\}$. By [8, p. 379] we know that Z(b) equals the (weak-*) closure $\{z_k\}$ of the zero set of b in \mathbb{D} . Hence Y=Z(b) is homeomorphic to the Stone-Čech compactification $\beta\mathbb{N}$ of \mathbb{N} . Moreover, we see that the restriction of H^{∞} to Y, denoted by $H^{\infty}|_{Y}$, equals C(Y), the space of all complex-valued continuous functions on Y.

We now have the following result.

THEOREM 3. Let $Y \subseteq M(H^{\infty})$ be as above and let $A \subseteq C(Y)$ be a uniform algebra whose stable rank is $n \ (n \in \mathbb{N} \cup \{\infty\})$. Then $B = \{f \in H^{\infty} : f|_{Y} \in A\}$ is a uniform algebra with the same stable rank.

Proof. Step 1. The first assertion clearly follows from the fact that B inherits the norm of H^{∞} and $H^{\infty}|_{Y}=C(Y)$. Let ϱ denote the restriction mapping from H^{∞} onto C(Y). Suppose that $n\in\mathbb{N}$ and let $(f_{1},\ldots,f_{n},f)\in U_{n+1}(B)$. Obviously, we have $(\varrho(f_{1}),\ldots,\varrho(f_{n}),\varrho(f))\in U_{n+1}(A)$. Because bsr A=n, there exist $a_{j}\in A$ $(j=1,\ldots,n)$ such that $(\varrho(f_{1})+a_{1}\varrho(f),\ldots, \varrho(f_{n})+a_{n}\varrho(f))\in U_{n}(A)$, i.e., $\sum_{j=1}^{n}A_{j}(\varrho(f_{j})+a_{j}\varrho(f))=1$ for some $A_{j}\in A$. Let $g_{j},G_{j}\in H^{\infty}$ be so that $\varrho(g_{j})=g_{j}|_{Y}=a_{j}$ and $\varrho(G_{j})=G_{j}|_{Y}=A_{j}$ $(j=1,\ldots,n)$. Hence there exists $h\in H^{\infty}$ such that

(1)
$$\sum_{j=1}^{n} G_j(f_j + g_j f) = 1 + hb.$$

In general, h is not identically zero, and we cannot conclude that $(f_1 + g_1 f, \ldots, f_n + g_n f) \in U_n(B)$. However, as we shall show, there do exist functions $y_j \in H^{\infty}$ such that

$$(2) (f_1 + (g_1 + y_1 b)f, \dots, f_n + (g_n + y_n b)f) \in U_n(B).$$

Note that $\varrho(g_j + y_j b) = \varrho(g_j) = a_j$ and that $(f_1 + g_1 f, \dots, f_n + g_n f, f_b) \in U_{n+1}(H^{\infty})$.

To this end we first use Treil's result [14] that bsr $H^{\infty} = 1 \leq n$ in order to conclude that there exist $y_j \in H^{\infty}$ such that

(3)
$$((f_1 + g_1 f) + y_1 f b, \dots, (f_n + g_n f) + y_n f b) \in U_n(H^{\infty}).$$

Let $K = h + \sum_{j=1}^{n} y_j G_j f$. By (3) there exist $x_j \in H^{\infty}$ such that

$$\sum_{j=1}^{n} x_j [(f_j + g_j f) + y_j f b] = -K.$$

A simple calculation finally yields

$$\sum_{j=1}^{n} (G_j + x_j b)(f_j + (g_j + y_j b)f) = 1.$$

This gives assertion (2). Hence bsr $B \leq n$.

Step 2. Let $a=(a_1,\ldots,a_n)$ be a unimodular element in A^n which is not reducible. Choose $f_1,\ldots,f_n\in B$ such that $\varrho(f_j)=f_j|_Y=a_j\ (j=1,\ldots,n)$. Hence there exist $h_j\in B,\ h\in H^\infty$ such that

(4)
$$\sum_{j=1}^{n} h_j f_j = 1 + hb.$$

In general, $(f_1, \ldots, f_n) \notin U_n(B)$. However, by the same reasoning as before, there exist $y_j \in H^{\infty}$ such that

$$(5) (f_1 + y_1 b, \dots, f_n + y_n b) \in U_n(B)$$

(just put $f \equiv 1$, $g_i \equiv 0$) (1).

Let $F_j = f_j + y_j b$. Assuming that $\operatorname{bsr} B < n$, there exist $k_j \in B$ $(j = 1, \ldots, n-1)$ such that $(F_1 + k_1 F_n, \ldots, F_{n-1} + k_{n-1} F_n) \in U_{n-1}(B)$. Because $\rho(F_j) = a_j$, we obtain

$$(a_1 + \varrho(k_1)a_n, \dots, a_{n-1} + \varrho(k_{n-1})a_n) \in U_{n-1}(A)$$
.

But this contradicts the choice of the vector a. Thus we have proven that bsr B = n.

If $\operatorname{bsr} A = \infty$, then the preceding arguments applied to an arbitrary natural number n show that $\operatorname{bsr} B = \infty$.

The algebra $A \subseteq C(Y)$ in the previous theorem will now be realized as an isometric, isomorphic image of some polydisk algebra $A(\mathbb{D}^n)$ $(n = 1, 2, ..., \infty)$. The idea of this construction appears in [13]. For the reader's convenience we shall reproduce it here.

In fact, let $X = T^n$, where T is the torus $\{z \in \mathbb{C} : |z| = 1\}$ $(n = 1, 2, ..., \infty)$. Enumerate a dense subset $x_1, x_2, ...$ of X and fix a bijection α between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$. Let π_1 denote the projection of $\mathbb{N} \times \mathbb{N}$ onto the first coordinate. Put $\tau(n) = x_{(\pi_1 \circ \alpha)(n)}$. Then τ extends to a continuous map, called again τ , of $\beta \mathbb{N}$ onto X [8, p. 186]. Note that τ actually maps $\beta \mathbb{N} \setminus \mathbb{N}$

⁽¹⁾ The careful reader may have noticed that in this case it is sufficient to use Lemma 2 instead of Treil's result in order to prove relation (5).

(2911)

onto X. Identifying Y with $\beta\mathbb{N}$, it is now easy to see that $\tau^*f=f\circ\tau$ defines an isometric algebra isomorphism of C(X) onto C(Y).

Finally, we note that $A(\mathbb{D}^n)$ is isometrically isomorphic to $A(\mathbb{D}^n)|_{X}$, because T^n is the Shilov boundary of these algebras (see [7] and [2]).

Now let $A_n = \tau^* A(\mathbb{D}^n)$. Then A_n is a uniform subalgebra of C(Y). Let

$$B_n = \{ f \in H^{\infty} : f|_Y \in A_n \} \quad (n = 1, 2, ..., \infty) .$$

THEOREM 4. The stable rank of the algebra B_n is [n/2] + 1 for $n \in \mathbb{N}$ and infinite for B_{∞} .

Proof. Recall that $B_n = \{ f \in H^{\infty} : f|_Y \in \tau^*A(\mathbb{D}^n) \}$. Because the stable rank is invariant under algebra isomorphisms, Corach–Suárez's result yields that bsr $\tau^*A(\mathbb{D}^n) = [n/2] + 1$ $(n \in \mathbb{N})$. Hence, by Theorem 3, bsr $B_n = [n/2] + 1$.

Now we consider the algebra

$$B_{\infty} = \{ f \in H^{\infty} : f|_{Y} \in \tau^{*} A(\mathbb{D}^{\infty}) \}.$$

Fix $n \in \mathbb{N}$. Choose, according to Proposition 1, a vector $(g_1, \ldots, g_n) \in U_n(A(\mathbb{D}^{\infty}))$ which is not reducible. Let $a = (\tau^*g_1, \ldots, \tau^*g_n)$. Then $a \in U_n(\tau^*A(\mathbb{D}^{\infty}))$, and a is not reducible.

By the proof of Step 2 in Theorem 3 we obtain a vector $f = (F_1, \ldots, F_n)$ $\in U_n(B_{\infty})$ which is not reducible in B_{∞} . This shows that bsr $B_{\infty} \geq n$. Since n can be chosen arbitrarily, bsr $B_{\infty} = \infty$.

Remarks. 1. Using the footnote, we see that our proof for $n = \infty$ is independent of Treil's result.

2. In general, the algebras B_n do not contain the disk algebra. In fact, let Y be the weak-* closure of the interpolating sequence $z_n = 1 - 2^{-n}$, $n \in \mathbb{N}$, in $M(H^{\infty})$. Then the Gelfand transform \widehat{z} of z is constantly one on $\{z_n\} \setminus \{z_n\}$, which is homeomorphic to $\beta \mathbb{N} \setminus \mathbb{N}$. Now assume that $z \in B_n$. Because τ maps $\beta \mathbb{N} \setminus \mathbb{N}$ onto $X = T^n$ and X is the Shilov boundary of $A(\mathbb{D}^n)$, we see that $\widehat{z}(z_n) \equiv 1$, which is of course absurd.

However, if we modify a bit the definition of the algebras B_n by setting

$$\widetilde{B}_n = \{ f \in H^{\infty} : f|_{Y^*} \in \tau^* A(\mathbb{D}^n) \},$$

where $Y^* = \overline{\{z_n\}} \setminus \{z_n\}$ $(z_n = 1 - 2^{-n})$, then $A(\mathbb{D}) \subseteq \widetilde{B}_n$ $(n = 1, 2, ..., \infty)$. Also in this case, bsr $\widetilde{B}_n = [n/2] + 1$ (just replace the interpolating Blaschke product b by a suitable function $\widetilde{b} \in H^{\infty}$ vanishing on Y^*).

S. Scheinberg [13] showed that for none of these algebras \widetilde{B}_n $(n \geq 2)$ does the corona theorem hold; i.e., the unit disk is not dense in the spectrum of \widetilde{B}_n . It is at present an open problem whether there exist natural subalgebras A of H^{∞} whose stable rank is not one, but for which \mathbb{D} is dense in M(A).

Acknowledgement. The author wants to thank V. Tolokonnikov for many informative discussions and the referee for providing the short argument (*) in the proof of Proposition 1.

References

- [1] H. Bass, K-theory and stable algebra, IHES Publ. Math. 22 (1964), 5-60.
- B. J. Cole and T. W. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. 53 (1986), 112-142.
- [3] G. Corach and A. R. Larotonda, Stable range in Banach algebras, J. Pure Appl. Algebra 32 (1984), 289-300.
- [4] G. Corach and F. Suárez, Extension problems and stable rank in commutative Banach algebras, Topology Appl. 21 (1985), 1-8.
- [5] —, Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), 627–639.
- [6] —, Dense morphisms in commutative Banach algebras, Trans. Amer. Math. Soc. 304 (1987), 537-547.
- [7] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
- [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York 1981.
- [9] P. Jones, D. Marshall and T. H. Wolff, Stable rank of the disc algebra, Proc. Amer. Math. Soc. 96 (1986), 603-604.
- [10] L. Laroco, Stable rank and approximation theorems in H^{∞} , Trans. Amer. Math. Soc. 327 (1991), 815-832.
- [11] R. Rupp, Stable rank of subalgebras of the disk algebra, Proc. Amer. Math. Soc. 108 (1990), 137-142.
- [12] ---, Stable rank of subalgebras of the ball algebra, ibid. 109 (1990), 781-786.
- [13] S. Scheinberg, Cluster sets and corona theorems, in: Lecture Notes in Math. 604, Springer 1977, 103-106.
- [14] S. Treil, The stable rank of the algebra H^{∞} is one, preprint.
- [15] L. N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Funct. Anal. Appl. 5 (1971), 102-110.

MATHEMATISCHES INSTITUT I UNIVERSITÄT KARLSRUHE POSTFACH 6980 D-7500 KARLSRUHE 1, GERMANY

> Received February 26, 1992 Revised version June 15, 1992