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Banach spaces and bilipschitz maps
by

J. VAISALA (Helsinki)

Absgtract. We show that a normed space E is a Banach space if and only if there is
no bilipschitz map of £ onto B\ {0}.

1. Inmtroduction. A map f: X — Y between metric spaces X and Y is
bilipschitz if there is a number M > 1 such that

e — yl/M < () - F()] < Mz —y|

for all &,y € X. We also say that f is M-bilipschitz. The inverse f~* :
fX - X of an M-Dbilipschitz map is alsc Af-bilipschitz. A bilipschitz map
preserves Cauchy sequences and maps complete sets onto complete sets. In
particular, if ¥ and 5’ are Banach spaces and if f : F — FE is bilipschitz,
then fE is closed in £'. Hence f cannot map a Banach space E onto an open
proper subset of £. The purpose of this note is to show that this property
characterizey the Banach spaces in the class of all normed vector spaces. We
formulate the result below; for some variations see Remark 6.

2. TuroreM. A normed space E (real or complex) is a Banach space if
and only if there is no bilipschitz map of E onto E \ {0}.

3. Notation. The nonm of a vector « € E is written as || We let B(z,r)
and B(z,r) denote the open and the closed ball in E, respectively, With
center ¢ and radius r. The boundary sphere 8B (i, r) is written as S{z,r)

The proof of Theorem 2 will be based on the following elemen‘rary con-
ghruction:

4. LuMMA. Let a,b € E, ond let v > 2| ~ b! Then there is ¢ homeo-
morphism b B — B such that

(1} h(a) = b,

(2) hiz) =z if |z ~a| 27,

(3) h is M-bilipschitz with M =1+ 2|a — b|/r
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Proof. Geometrically, h|B(a, r) is the cone of the identity map of S{a, r)
with a and b as the coning points. This means that for y € S(a,r), h maps
the line segment [a, y] affinely onto [b,y]. The map h|B(a,r) has the explicit
expression

Wzy=z+ (1—|e—a|/r)b—a).
For |z — a| > r we set h(z) = 2. Elementary estimates give
(1~ |a—bl/r)z —yl < |h{z) — Ay} < (1+[a—bl/r)e ~y|
for z,9 € Bla,r). Since 1/(1 —¢) < 1+ 2¢ for 0 < ¢ € 1/2, it follows that
h|B(a,r) is M-bilipschitz with M as in (3). This and the convexity of E
imply that A is M-bilipschitz in E.

5. Proof of Theorem 2. As explained in the introduction, a bilip-
schitz image of a Banach space E is always complete, and hence it cannot
be I\ {0}. Conversely, assume that ¥ is a noncomplete normed space.
We shall prove the stronger result that given M > 1, there is a surjective
M -bilipschitz map f : E'\ {0} — E such that f(z} = = for |z| = 1. This
map will be constructed as the limit of a sequence h; : £ — E.

Choose a sequence of numbers ¢, tg,. .. such that 0 < #; < 1 and such
that the infinite product of all numbers M; = 1 -+ ¢; is at most M. Let
ai,az,... be a nonconvergent Cauchy sequence in E. Passing to a subse-
quence, we may assume that |aj1 — a;| < 277 for all j. Replacing a; by
a; — a; we can further agsume that ¢, = 0. Writing

B = B(a.j, 21_j)

we obtain a decreasing sequence of balls B(0,1) = By D By D ... Applying
Lemma 4 we find homeomorphisms %; : ¥ — F such that

(1) hj(a;) = a4,

(2) h,j(m =zrifz 51-‘ Bj,

(3) h; is M;-bilipschitz.
Let g; :+ E — FE be the composite homeomorphism hjo..
9;(0) = a;41, g;(z) = z outside By, and gj s M-bilipschitz.

Suppose that z € E with |z| = 2% M. Then gk () = gt | 2 27F, which
means that gy(z) ¢ Byya. It follows that g;(x) = gi(x) for all § > k. Hence
the sequence g;(«) converges to gy(z). Consequently, the limit

#o) = Jim g;(2)

.o hy. Then

exists for all = € E'\ {0}. Since each g; is M-Dilipschitz, so is f : E\{0} ~ £.
Moreover, f(z) = =z for |z| > 1.

It remains to show that f is a map onto E. Let y € E. Since the sequence
(a;) bas no convergent subsequence, there is a number s > 0 and a positive
integer n such that |a; —y| > s for § > n. Choose k > n with 2*~F < 3,
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and write @ = g; ' (y). Theny & By, and hence g5(x) =y for all 4 > k. This
implies that f(z) = y and completes the proof of Theorem 2.

6. Remark. There are plenty of variations of Theorem 2. As noted in
the proof, the map E — F'\ {0} can be chosen to be M-bilipschitz with an
arbitrary M > 1 and to be the identity outside the unit ball. In the other
direction, we may replace the class of bilipschitz maps by any larger class
of maps which preserve the completeness of a set. For example, we can take
the continuous maps satisfying only the inequality

(6.1) |f (&) ~ fw)l 2 |z -yl /M.
Replacing f by M f we see that this inequality can also be replaced by
(6.2) |f(z) = F)l = |» —yl.

Another choice is the class of quasisymmetric maps (see [1, 2.24]). These
observations are summarized as follows:

Let ¢ and j be integers with 1 <4< 5 and 1 < j < 3. Then the following
statement is true: ‘

A normed space F is not a Banach space if and only if F can be mapped
by some continuous map satisfying the condition A; onto some set F C E
satisfying the condition B;. Here A; and B; are given by the following lists:

Ay, [ is M-bilipschitz with a given M > 1, and f(z) =z for |z > 1,
Ay, f is bilipschitz,

Ag. (6.1),

Ay. (6.2},

Ag. f is quasisymmetric;

By, Fig open and F £ B,

By. F' is not closed.

7. Remark. Restricting the map f: E\ {0} — £ of the proof of The-
orem 2, we obtain a bilipschitz homeomorphism fy : By \ {0} — By, By =
B(0,1). In the terminology of [3], f1 is not guasihyperbolic or even solid.
Hence Theorem 4.8 of [3] is not true in noncomplete normed spaces. It seems
to the author that the theory of free gquasiconformality in Banach spaces,
initiated in [3], has no useful extension to arbitrary normed spaces.
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On linear operators having supercyclic vectors
Iy

GERD HERZOG (Karlsruhe)

Abstract, We show that for a real separable Banach space X there are operators in
B{X) having supercyclic vectors if and only if dim X <2 or dim X = oo.

1. Introduction. Let (X,]| - ||) be a real (or complex) Banach space
and B(X) the set of linear continuous mappings from X into itsell. Let
T B(X). Avectorz € X scalled (a) cyclic, (b) supercyelic, (¢) hypercyclic
if the orbit

Orb(T,z) 1= {T"z :n & Ny}
satisfies

(a) span(Orb(T 7)) = X,

(bY {Ay 1y € Orb(T,2), A € R(C)} = X,

(c) Orb{T,z) = X
(see [5]).

As far as we know 1t is still an open problem whether there is an opera-
tor with liypercyclic vectors in every separable infinite-dimensional Banach
space, and it is well known that there are none in finite dimensions (see [8]).
In this paper we will characterize those separable Banach spaces which have
aperators with snpercyclic vectors. Of course, a Banach space having such
opetators is separable. The main result is:

TuroriM 1. Let (X, || ]) be.a real separuble Banach space. Then there
cxist operators in B(X) having supereyclic vectors if and only of
dim X €{0,1,2} or dimX = co.
To prove Theorem 1 we will use methods of the theory of universal
functions developed by K.-G. GroBe-Erdmann [4].
For further properties of the operator classes defined above compare,
e.g., [1], [2], 5], (6] and [8].
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