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1. Introduction. The well known theorems of Dirichlet and Kronecker
in the theory of diophantine approximation have been generalized in many
directions. We mention here a result of Heath-Brown [6]. Let α be irrational.
Then there are infinitely many pairs n, m of square-free numbers such that

(1) |nα−m| < nε−2/3 .

Here and throughout ε is an arbitrarily small but positive real number. In
particular, writing ‖γ‖ for the distance of γ to the nearest integer we deduce
from (1) that ‖αn‖ < nε−2/3 has infinitely many square-free solutions.

In the present paper we investigate simultaneous approximations by
square-free numbers. For a given set of real numbers α1, . . . , αs we wish
to prove that ‖α1n‖, . . . , ‖αsn‖ are all small for infinitely many square-free
integers n. This is certainly not possible without a further hypothesis on
α1, . . . , αs. It is obviously necessary that whenever l1, . . . , ls are integers
such that

(2)
s∑

j=1

ljαj =
u

v
∈ Q, (u, v) = 1 ,

then v must be square-free. A set of real numbers satisfying this condition
will be called weakly compatible.

Theorem 1. Let α1, . . . , αs be a set of weakly compatible algebraic num-
bers such that 1, α1, . . . , αs span a linear space of dimension d ≥ 2 over Q.
Then for any A < 1/d(d− 1) there are infinitely many square-free numbers
n satisfying

(3) ‖αjn‖ < n−A (j = 1, . . . , s) .

Moreover , if d = 2, any A < 2/3 is admissible.
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A similar result with square-free numbers replaced by primes has been
established recently by Harman [5], improving on results of Balog and Fried-
lander [2]. In the case of primes, the range for A is shorter by a factor 2
(even worse when d = 2), and a stronger compatibility condition is required.
Balog and Friedlander called a set α1, . . . , αs of real numbers compatible if
(2) implies that v = 1.

The question arises whether weak compatibility is sufficient to prove a
result of the form (3). It is not difficult to see that

(4) lim inf
n→∞, µ2(n)=1

max
1≤j≤s

‖αjn‖ = 0

whenever α1, . . . , αs form a weakly compatible set. The next theorem, which
sharpens Theorem 2 of Harman [5], shows that (4) is best possible.

Theorem 2. Let f(n) be any function tending to zero as n tends to
infinity. Then there are uncountably many pairs of real numbers α, β such
that 1, α, β are linearly independent over Q, but

(5) max(‖αn‖, ‖βn‖) < f(n)

has at most finitely many square-free solutions n.

Next we state a more general version of Theorem 1.

Theorem 3. Let α1, . . . , αs be a weakly compatible set of real numbers
contained in a linear space of dimension d over Q spanned by 1, α1, . . . , αd−1.
Write

(6) r = sup
{

γ : lim inf
N→∞

Nγ min
0<| l |≤N

∥∥∥ d−1∑
j=1

αj lj

∥∥∥ = 0
}

.

Then for any A < ((d− 1)(r + 1))−1, there are infinitely many solutions to
(3) in square-free integers n.

By Schmidt’s theorem on linear forms with algebraic coefficients ([7],
Theorem 7C) Theorem 3 implies Theorem 1, at least when d ≥ 3. Subject
to a stronger hypothesis it is also possible to prove an inhomogeneous version
of Theorem 3, with the n restricted to arithmetic progressions.

Theorem 4. Let α1, . . . , αs be a set of real numbers such that 1, α1,
. . . , αs are linearly independent over Q, and define r as in Theorem 3 (note
that now d = s + 1). Let real numbers β1, . . . , βs be given. Suppose that g ,
G are integers with (g,G) square-free. Then for any A < (s(r + 1))−1 there
are infinitely many square-free integers n ≡ g mod G with

max ‖nαj + βj‖ < n−A .

These results should be compared with Theorems 3 and 4 of Harman [5].
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Our main task is proving Theorem 4. We begin with a lemma on ex-
ponential sums in §2 which is then used in §3 to establish Theorem 4. We
deduce Theorem 3 from Theorem 4 in §4, and then prove Theorem 1 in the
special case d = 2. Finally, we prove Theorem 2; our method closely follows
that of [5], Theorem 2.

2. An exponential sum. In this section we suppose that N is a large
real number, D ≤ N1/2, and we write M = Nd−2 throughout. Moreover, G
is a fixed natural number. We shall be concerned with the exponential sum

(7) S = S(α, D) =
∑
d∼D

G∑
h=1

∣∣∣∣ ∑
m∼M

e

((
α +

h

G

)
d2m

)∣∣∣∣ .

Here the notation x ∼ X indicates the condition X < x ≤ 2X.

Lemma 1. Suppose 1 ≤ B ≤ N1/3−ε. Then either S ≤ NB−1 log2N ,
or there exists a natural number q such that

q ≤ Nε min(D2, B), ‖qα‖ ≤ BNε−1 .

P r o o f. Suppose that S ≥ NB−1 log2N . Then for some h with 1 ≤ h ≤
G we must have Sh ≥ G−1NB−1 log2N ; here Sh denotes the contribution
to (7) with a fixed h.

First suppose that D ≤ B1/2. We put X = G−1N1−εB−1. By Dirichlet’s
theorem, there is a natural number t and an integer b with t ≤ X and
|t(α + h/G)− b| ≤ X−1. Now, by a standard argument,

NB−1 log2N � Sh �
∑
d∼D

∥∥∥∥(
α +

h

G

)
d2

∥∥∥∥−1

.

If we had t > G−1D2Nε then 4D2t−2 < (2t)−1, and hence the right hand
side here would be bounded by

�
∑
d∼D

∥∥∥∥bd2

t

∥∥∥∥−1

� t log N � X log N .

This is a contradiction. Hence t ≤ G−1NεD2, and the lemma follows with
q = tG.

Now suppose that B1/2 < D ≤ GB, and pick t and b as before. By
Lemma 3.2 of Baker [1],

Sh �
∑
d∼D

min
(

M,

∥∥∥∥(
α +

h

G

)
d2

∥∥∥∥−1)

�
∑

u≤4D2

min
(

ND−2,

∥∥∥∥(
α +

h

G

)
u

∥∥∥∥−1)



54 R. C. Baker et al.

� (ND−2 + t)(D2t−1 + 1) log N .

We immediately deduce that t ≤ G−1NεB whenever Sh � NB−1 log2 N ,
and the proof is completed as before.

If D > GB we may use the trivial bound S ≤ GND−1 ≤ NB−1 to
complete the proof of the lemma.

3. Proof of Theorem 4. When s = 1 Theorem 4 can be proved
by a simple adjustment of the argument used to establish Theorem 2 of
Harman [4]. When s ≥ 2 we prove Theorem 4 by contradiction. Observe
that for (g,G) square-free the interval [N, 2N ] contains � N square-free
numbers n ≡ g mod G. Now put L = (2N)A and suppose that there are no
square-free solutions to

‖α1n‖ < L−1, . . . , ‖αsn‖ < L−1

with n ∼ N and n ≡ g mod G. Then, writing

φ(k) =
s∑

j=1

αjkj ,(8)

T (α) =
∑

n∼N, n≡g mod G

µ2(n)e(αn) ,(9)

a familiar argument shows that

(10)
∑

0<|k |≤LNε

|T (φ(k))| � N .

From the identity

µ2(n) =
∑
d2 |n

µ(d)

we deduce that

T (α) =
1
G

∑
n∼N

∑
d2|n

µ(d)e(αn)
G∑

h=1

e

(
h(n− g)

G

)

=
1
G

G∑
h=1

e

(
− hg

G

) ∑
d≤N1/2

µ(d)
∑

m∼Nd−2

e

((
α +

h

G

)
d2m

)
.

By a splitting up argument and (10) there is a D with 1 ≤ D ≤ N1/2 and

∑
d∼D

G∑
h=1

∑
0<|k |≤LNε

∣∣∣∣ ∑
m∼Nd−2

e

((
φ(k) +

h

G

)
md2

)∣∣∣∣ � N(log N)−1 .
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Using the notation from the previous section we can rewrite this as∑
0<|k |≤LNε

S(φ(k), D) � N(log N)−1 .

Another splitting up argument shows that there is a K � (LNε)s and a set
of points K ⊂ Zs with |K| = K, such that |k| ≤ LNε and

(11) S(φ(k), D) � NK−1(log N)−1

for all k ∈ K. Note that for s ≥ 2 we have Ls < N1/3−2sε. Moreover, the
left hand side of (11) is �ND−1 by a trivial estimate. This shows that
K � D(log N)−1. We use Lemma 1 to infer that for any k ∈ K there is a
natural number q = q(k) such that q � Nε min(D2,K) and

‖q(k)φ(k)‖ � Nε−1K .

Now qφ(k) = φ(qk). By a familiar divisor argument we deduce that there
are � KN−ε points n in the region |n| ≤ KLN2ε with

(12) ‖φ(n)‖ � Nε−1K .

By the pigeon hole principle we find an n satisfying (12) with

|n| � K1−1/sLN2ε .

By the definition of r in Theorems 3 and 4, we must have

‖φ(n)‖ � (K1−1/sLN2ε)−r−ε ,

so that by (12),

(13) (K1−1/sLN2ε)−r−ε � Nε−1K .

Recall that K � LsNsε. Now (13) produces a contradiction if ε is suffi-
ciently small.

4. Proof of Theorem 3. In view of Theorem 4 we may suppose that
s ≥ d. There are integers D ≥ 1, aij , ki such that

Dαi =
d−1∑
j=1

aijαj + ki, i = d, . . . , s .

Let td, . . . , ts be integers; then

(14) D(αdtd + . . . + αsts) =
d−1∑
j=1

αj

( s∑
i=d

aijti

)
+

s∑
i=d

tiki .

Because α1, . . . , αs are weakly compatible, it is clear from (14) that

(15) gcd
(
ph,

s∑
i=d

ai,1ti, . . . ,

s∑
i=d

ai,d−1ti

) ∣∣∣ p

s∑
i=d

tiki



56 R. C. Baker et al.

for any prime p having ph‖D. By Lemma 3 of Harman [5] we may in-
fer from (15) that there is a solution in integers b1, . . . , bd−1 to the set of
congruences

d−1∑
j=1

aijbj ≡ pki mod ph, i = d, . . . , s .

Now let g be an integer satisfying

(16) g ≡ p mod ph for all ph‖D .

By the Chinese remainder theorem there are integers b1, . . . , bd−1 satisfying

(17)
d−1∑
j=1

aijbj ≡ gki mod D, i = d, . . . , s .

From (16) we see that (g,D) is square-free. According to Theorem 4, there
are infinitely many square-free numbers n satisfying

(18)
∥∥∥∥nαj + bj

D

∥∥∥∥ < n−A−ε (1 ≤ j ≤ d− 1)

and

(19) n ≡ g mod D ,

providing A is as in Theorem 3 and ε is sufficiently small. We see at once
that

‖nαj‖ < Dn−A−ε < n−A (1 ≤ j ≤ d− 1)
for all large n satisfying (18) and (19). Now let d ≤ i ≤ s. From (17)–(19),
any such n satisfies

‖nαi‖ =
∥∥∥ d−1∑

j=1

naijαjD
−1 + nkiD

−1
∥∥∥

=
∥∥∥∥ d−1∑

j=1

aij

(
nαj + bj

D

)
+

1
D

(
nki −

d−1∑
j=1

aijbj

)∥∥∥∥
≤

d−1∑
j=1

|aij |
∥∥∥∥naj + bj

D

∥∥∥∥ < n−A .

This completes the proof of Theorem 3.

We can now sketch a proof of (4). If α1, . . . , αs are linearly independent
over Q then the exponential sum estimates in §§2–3 are readily modified
to show that T (φ(k)) = o(N) for any k ∈ Zs, k 6= 0. Thus the vectors
(α1n, . . . , αsn) with n ≡ g mod G, µ2(n) = 1, are uniformly distributed
in the s-dimensional unit cube, providing we have chosen g and G with
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(g,G) square-free. This establishes (4). The general case then follows by
the argument used to prove Theorem 3.

5. Theorem 1 when d = 2. Theorem 1 follows from Theorem 3 when
d ≥ 3. When d = 2, however, Theorems 4 and 3 yield an admissible range
A < 1/2 only. We now show how to enlarge this range to A < 2/3. A
careful inspection of the work in the previous section shows that all what
is required is (18) with (19) when d = 2 and A < 2/3. We simplify the
notation from §4 to α1 = α, b1 = b. Hence it remains to prove:

Proposition. Suppose that b, g, D are fixed integers with (g,D) square-
free, and α irrational. Then there are infinitely many square-free numbers
n satisfying

(20)
∥∥∥∥nα + b

D

∥∥∥∥ < nε−2/3, n ≡ g mod D .

Note that (20) is equivalent to |nα + b + tD| < Dnε−2/3 for some t ∈ Z.
Hence it suffices to show that there are infinitely many pairs (m,n) ∈ Z2 with

(21) |nα−m| < nε−2/3, µ2(n) = 1, n ≡ g mod D, m ≡ b mod D .

This can be established by closely following the argument from §3 of Heath-
Brown [6]. We may suppose that α > 0. Let a/q be any convergent to α so
that |qα− a| < q−1. Let 0 < θ < 2/3 and define

N = q2/(1+θ), L = Nq−1(log q)−1 ,

S = {(l,m, n) ∈ Z3 : 1 ≤ l ≤ L, n ∼ N,n ≡ g mod D,

m ≡ b mod D, an− qm = l}.
For (l, m, n) ∈ S we have |nα−m| ≤ 8n−θ so that it suffices to bound

R =
∑

(l,m,n)∈S

µ2(n)

from below. Let z = log q and P be the product of all primes not exceed-
ing z. Then define

f(n) =
∑

d2|n, d|P

µ(d) .

As in Heath-Brown [6, (13)] we have

(22) R ≥ A−
∑
p>z

Cp

where
A =

∑
(l,m,n)∈S

f(n), Cp =
∑

(l,m,n)∈S,p2|n

1 .



58 R. C. Baker et al.

Note that the Cp defined in Heath-Brown [6] are no smaller than our Cp so
that we may quote the bound

(23)
∑
p>z

Cp �
NL

q log log q

from [6], p. 344. It now suffices to show that A � NLq−1.
We begin the evaluation of A by writing n = e2v and obtain

A =
∑
e|P

µ(e)#{(l,m, v) ∈ Z3 : 1 ≤ l ≤ L, v ∼ Ne−2,m ≡ b mod D,

e2v ≡ g mod D, ae2v − qm = l} .

Here we put m = b + m′D to see that

A =
∑
e|P

µ(e)#{(l,m′, n) : qb < l ≤ L + qb, v ∼ Ne−2,

e2v ≡ g mod D, ae2v − qDm′ = l}
=

∑
δ |D

∑
e|P

(e2,D)=δ

µ(e)Ae, say .

Note that e2v ≡ g mod D gives δ | g, otherwise Ae = 0. In particular,
δ | (D, g) which implies that δ is square-free whence δ | e. The congruence
reduces to

δ−1e2v ≡ gδ−1 mod Dδ−1 .

This fixes a certain congruence class, g′ mod Dδ−1 say, in which v must lie.
We write v = g′ + uDδ−1 and find that

Ae = #{(l, m, u) : qb < l ≤ L + qb, g′ + uDδ−1 ∼ Ne−2,

ae2(g′ + uDδ−1)− qDm = l}
= #{(l, u) : qb− ae2g′ < l ≤ L + qb− ae2g′,

Ne−2 − g′ < Dδ−1u ≤ 2Ne−2 − g′, ae2Dδ−1u ≡ l mod qD} .

We now write ∆ = (ae2Dδ−1, qD); then ∆ | l. We set l = ∆k and deduce
that

Ae = #
{

(k, u) : (qb− ae2g′)∆−1 < k ≤ (L + qb− ae2g′)∆−1,

δ

D
(Ne−2 − g′) < u ≤ δ

D
(2Ne−2 − g′),

ae2D

δ∆
u ≡ k mod

qD

∆

}
=

(
L

∆
+ O(1)

)(
δ

D
N

∆

qDe2
+ O(1)

)
=

LNδ

qe2D2
+ O

(
L +

N

q

)
.
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The number of e |P is O(qε). We conclude that

(24) A =
LN

qD2

∑
δ | (D,g)

∑
e |P

(e2,D)=δ

µ(e)
δ

e2
+ O(Lqε + Nqε−1) .

The error term is o(LNq−1) as q tends to infinity. Recall that the summation
conditions imply that δ | e. Write e = δd; then∑

δ | (D,g)

∑
e |P

(e2,D)=δ

µ(e)
δ

e2
=

∑
δ | (D,g)

µ(δ)
δ

∑
d |Pδ−1

(d2δ,Dδ−1)=1

µ(d)
d2

.

The summation condition gives (d, δ) = 1. The previous line now becomes∑
δ | (D,g)

(δ,Dδ−1)=1

µ(δ)
δ

∑
d |Pδ−1

(d,Dδ−1)=1

µ(d)
d2

=
∏

π | (D,g)

π2 - D

(
1− 1

π

) ∏
p≤z
p - D

(
1− 1

p2

)
.

Here p and π denote primes. As z →∞ this product converges to a positive
number c = c(g,D). The Proposition follows from (22)–(24).

6. Proof of Theorem 2. We use standard notation and results on con-
tinued fractions. For definitions and proofs we refer to Hardy and Wright [3],
Chapter 10. We shall determine uncountably many sequences (aj), (bj) of
natural numbers such that (5) can have at most a finite number of solutions
if α, β are given by

α = [1, a1, a2, . . .], β = [1, b1, b2, . . .] .

We write
[1, a1, . . . , at] =

pt

qt
, [1, b1, . . . , bt] =

rt

st
.

Then we have

(25)
∣∣∣∣α− pt

qt

∣∣∣∣ <
1

qtqt+1
,

∣∣∣∣β − rt

st

∣∣∣∣ <
1

stst+1

and

(26)
q0 = s0 = 1, q1 = a1, s1 = b1,

qt = atqt−1 + qt−2, st = btst−1 + st−2 (t ≥ 2) .

As in [5] it suffices to prove the theorem for functions f which are non-
increasing and satisfy f(n) < 1/2 for all n.

Let (εj) be an arbitrary sequence of zeros and ones. Let a1 be the
smallest integer with a1 ≥ 2, f(a1) < 1/4. For j ≥ 1 let bj be the least
integer with

bj ≥ 2qj + εj , f(bj − εj) < (4qj)−1 ,
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and, for j ≥ 2,

(27) bjsj−1 ≡ −sj−2 mod p2
j .

Here pj is the least prime exceeding sj−1.
For j ≥ 2, let aj be the smallest integer satisfying the conditions

(28) aj ≥ 2sj−1, f(aj) < (4sj−1)−1, ajqj−1 ≡ −qj−2 mod P 2
j .

Here Pj is the least prime exceeding qj−1.
For j ≥ 2 this gives, by (26), sj > 2qjsj−1 and qj > qj−1sj−1, and in

particular, sj ≥ 2qj and qj ≥ 2s−1j.
Now let n be a square-free number with sj/2 < n ≤ qj+1/2 for some

j ≥ 2. By (28) and (26) we have qj - n. Hence, by (25),

‖nα‖ ≥
∥∥∥∥npj

qj

∥∥∥∥−n

∣∣∣∣α− pj

qj

∣∣∣∣ ≥ 1
qj
− n

qjqj+1
≥ 1

2qj
> f(bj) ≥ f(sj/2) ≥ f(n) .

A similar argument shows that ‖nβ‖ > f(n) whenever n is square-free and
lies in the range qj/2 < n ≤ sj/2 for some j ≥ 3. This shows that any
square-free solution to (5) has n ≤ q3/2. Of course, different choices of (εj)
produce different numbers (α, β). As on p. 412 of Harman [5] it can be
shown that 1, α, β are linearly independent over the rationals.
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