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0. Introduction. Let {xn} be a sequence of numbers, 0 ≤ xn ≤ 1. In
[3], H. Niederreiter introduced a measure of denseness of such a sequence as
follows: For each N ≥ 1, let

dN = sup
0≤x≤1

min
1≤n≤N

|x− xn|

and define
D({xn}) = lim sup

N→∞
NdN .

In particular, for irrational α, the dispersion constant D(α) is defined by
D({nα mod 1}). It is well known that, for irrational α, the Markov constant
M(α) is defined by

M(α)−1 = lim inf
n→∞

n‖nα‖ ,

where ‖x‖ denotes the distance from x to the nearest integer.
In [3], Niederreiter asks if M(α)<M(β) implies D(α)<D(β). V. Drobot

[1] has shown this to be false by producing a counterexample of two quadratic
irrationals, both with continued fraction expansion with period length nine.
In this paper, we classify some infinite families of pairs (α, β) of irrational
numbers that satisfy M(α) < M(β) and D(α) > D(β).

We first outline the method of V. Drobot [1] to compute D(α) for
quadratic irrationals α. If α is a real irrational number with continued
fraction expansion α = [a0; a1, a2, . . .], let

λi = [0; ai, ai−1, . . . , a1], Λi = [ai+1; ai+2, . . .], Mi = λi + Λi .

We define

ψi(x) = M−1
i [−x2 + (Λi − λi − 1)x+ Λi(1 + λi)] ,

xi = (Λi − λi − 1)/2 , ni is the integer closest to xi .

Then Drobot [1] has shown that D(α) = lim supi→∞ ψi(ni). In particular,
if α has a periodic continued fraction expansion, there are only finitely
many choices for i and taking the lim sup reduces to taking the maximum
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of the values ψi(ni) = Di of the quadratic polynomial ψi(x). In view of [3],
Theorem 6, p. 1197, it is no restriction to suppose that this expansion is
purely periodic and that a0 ≥ 1:

α = [a0; a1, . . . , ak−1], a0 ≥ 1 .

We extend the periodic sequence

c0; c1, c2, . . . = a0; a1, a2, . . . , ak−1, a0, a1, . . .

periodically in the other direction as well, that is,

. . . c−2, c−1, c0; c1, c2, . . . = . . . a0, a1, . . . , ak−1, a0; a1, . . . , ak−1, a0, a1, . . .

Then, with λi = [0; ci, ci−1, . . .], Λi = [ci+1; ci+2, . . .],

M i = λi + Λi ,

and similar definitions for ψi(x), xi and ni, one has (see [1], p. 93) D(α) =
max0≤i≤k−1 ψi(ni). In this paper, we only deal with the quadratic irrational
case, therefore we may, and do, omit the bar in the above notation without
causing any confusion.

We use this method to determine D(α) for α that has a purely periodic
continued fraction expansion. Let

α = (A+
√
D)/B ,

where

A = pk−1(α)− qk−2(α) , B = 2qk−1(α) ,
D = (pk−1(α) + qk−2(α))2 − 4(−1)k ;

here pn(α)/qn(α) is the nth convergent to [a0; a1, . . . , ak−1]. If we set Λi =
(a +

√
D)/b, then λi = (−a +

√
D)/b, so that Mi = 2

√
D/b and 2xi =

(2a− b)/b.
In particular, if ni = 0, then

MiDi = Λi + Λiλi = (a+
√
D)/b+ (D − a2)/b2 ,

so that

Di = M−1
i [a/b+ (D − a2)/b2] + 1/2(A)

= qk−1(Λi)[(pk−1(Λi) + qk−2(Λi))2 − 4(−1)k]−1/2

× [(pk−1(Λi)− qk−2(Λi))/(2qk−1(Λi))
+ (pk−1(Λi)qk−2(Λi)− (−1)k)/qk−1(Λi)2] + 1/2

= [(pk−1(Λi) + qk−2(Λi))2 − 4(−1)k]−1/2

× [(pk−1(Λi)− qk−2(Λi))/2 + pk−2(Λi)] + 1/2 .

If ni = 1, then

MiDi = 2xi − 1 + Λi + Λiλi = 2(a− b)/b+ (a+
√
D)/b+ (D − a2)/b2 ,
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so that

Di = [(pk−1(Λi) + qk−2(Λi))2 − 4(−1)k]−1/2(B)
× [(pk−1(Λi)− qk−2(Λi))/2 + pk−2(Λi)
+ (pk−1(Λi)− qk−2(Λi)− 2qk−1(Λi))] + 1/2

= [(pk−1(Λi) + qk−2(Λi))2 − 4(−1)k]−1/2

× [3(pk−1(Λi)− qk−2(Λi))/2
+ pk−2(Λi)− 2qk−1(Λi)] + 1/2 .

Thus, if ni only takes the values 0 and 1 for i = 0, . . . , k − 1, then D(α)
is computed by taking the maximum of the relevant expressions given by
equations (A), (B).

For each k ≥ 1, let α(k) = [c0; c1, c1, . . . , c1], with k occurrences of c1 and
where c0 > c1. For each k ≥ 1, we set

α(k) = Λ(k) = [c0; c1, c1, . . . , c1] , λ(k) = [0; c1, c1, . . . , c1, c0]

with k occurrences of c1.
If Λ(k) = (ak +

√
dk)/bk, then λ(k) = (−ak +

√
dk)/bk, so that

(1) M (k) = Λ(k) + λ(k) = 2
√
dk/bk .

In particular, for a fixed k, the numerators and the denominators p(k)
l and

q
(k)
l of α(k) satisfy

(2)
p
(k)
−1 = 1, q

(k)
−1 = 0, p

(k)
0 = c0, q

(k)
0 = 1 ,

p
(k)
l = c1p

(k)
l−1 + p

(k)
l−2, q

(k)
l = c1q

(k)
l−1 + q

(k)
l−2 , 1 ≤ l ≤ k .

Since these are second order linear recurrence equations with constant coef-
ficients, it follows from well known facts (see [4], pp. 121–122, for instance)
that

(r2 − r1)p
(k)
l = c0(rl+1

2 − rl+1
1 ) + rl

2 − rl
1 ,

(r2 − r1)q
(k)
l = rl+1

2 − rl+1
1 , l = 0, 1, . . . , k ,

where r1 and r2 satisfy the equation r2 − c1r − 1 = 0.
Since ak = p

(k)
k − q

(k)
k−1, bk = 2q(k)

k , and dk = (p(k)
k + q

(k)
k−1)

2 + 4(−1)k, it
follows that

Mk(α(k)) = {(p(k)
k + q

(k)
k−1)

2 + 4(−1)k}1/2/q
(k)
k ,

so that

Mk(α(k))2 = c20 + 4(rk+1
2 − rk+1

1 )−2{c0(rk
2 − rk

1 )(rk+1
2 − rk+1

1 )(3)
+ (rk

2 − rk
1 )2 + (−1)k(r2 − r1)}

= c20 + 4(rk+1
2 − rk+1

1 )−2{c0(r2k+1
2 + r2k+1

1 + (−1)kc1)
+ (rk

2 − rk
1 )2 + (−1)k(c21 + 4)} .
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With the previous notation, we may now write α(k) = Λ(k) = Λk(α(k)) and
λ(k) = λk(α(k)). For an α of the special form α(k) = [c0; c1, . . . , c1], with k
occurrences of c1, we have M(α(k)) = max0≤i≤k−1Mi (see [2], formula (11),
p. 29). Since c0 > c1, we have

Mk(α(k)) = c0 + 2[0; c1, . . . , c1, c0] ≥ c1 + 1 + 2[0; c1, . . . , c1, c0]
> c1 + 2[0; c1, c0, c1, . . . , c1] = M1(α(k)) ≥Mi(α(k)) for i 6= k .

Thus,
M(α(k)) = Mk(α(k)) .

Using (3), it is easy to see that

M([c0]) = (c20 + 4)1/2, M([c0, c1]) = (c20 + 4c0/c1)1/2 ,

and
M([c0, c1, c1]) = (c20 + 4(c0c1 + 1)/(c21 + 1))1/2 .

We observe that for each k ≥ 1, Λ(k) − λ(k) = c0, so that n(k) = [c0/2],
where n(k) is defined to be the integer closest to (Λ(k) − λ(k) − 1)/2.

Lemma 1. For each k ≥ 1,

M(α(k))(4D(α(k))−M(α(k))− 2) =
{

0 if c0 is even,
1 if c0 is odd.

P r o o f. We recall that for α with a periodic continued fraction expan-
sion,

D(α) = max
i
ψi(ni) = max

i
[(λi +Λi)−1{−n2

i +(Λi−λi−1)ni +Λi(1+λi)}] .

Since ni is the integer closest to (Λi − λi − 1)/2, the expression for ψi(ni)
is an increasing function of Λi, so that D(α) = ψk(nk), where nk = n(k).
Also, since Mi = λi + Λi, we have

M(α(k))D(α(k))

= − (n(k))2 + (Λ(k) − λ(k) − 1)n(k) + Λ(k)(λ(k) + 1)

= − [c0/2]2 + (c0 − 1)[c0/2] + (dk − a2
k)/b2k + (ak +

√
dk)/bk

= − [c0/2]2 + (c0 − 1)[c0/2] + ak/bk − a2
k/b

2
k +M(α(k))/2

+ (M(α(k))/2)2 ,

so that

M(α(k)){4D(α(k))−M(α(k))− 2}
= 4{ak/bk − a2

k/b
2
k + (c0 − 1)[c0/2]− [c0/2]2}

= 4{c0/2− (c0/2)2 + (c0 − 1)[c0/2]− [c0/2]2}

=
{

0 if c0 is even,
1 if c0 is odd.
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1. A condition for M(α) < M(β) and D(α) > D(β). We recall a
result of Drobot [1]: M(α) ≤ 4D(α)− 2 ≤M(α) +M(α)−1 for any real α.
Thus, with each real α, we may associate a constant k(α) = k ∈ [0, 1] such
that 4D(α)− 2 = M(α) + kM(α)−1.

Thus, we may define

(4) k(α) = M(α)(4D(α)−M(α)− 2) .

Suppose that M(α) < M(β) but D(α) > D(β). Now,

D(α) > D(β) ⇔ 4D(α)− 2 > 4D(β)− 2

⇔M(α) + k(α)M(α)−1 > M(β) + k(β)M(β)−1 ,

for some k(α), k(β) ∈ [0, 1]. If we can find α such that k(α) = 1 and β such
that k(β) = 0, then this reduces to

(5) M(α) < M(β) < M(α) +M(α)−1

⇔M(α)2 < M(β)2 < M(α)2 +M(α)−2 + 2
(6) ⇔ 0 < M(β)2 −M(α)2 < M(α)−2 + 2 .

The existence of such α, β is guaranteed by Lemma 1, since k(α) =
M(α)(4D(α) − M(α) − 2), by (4). We shall use (5), (6) to determine
some families of such examples. Henceforth, we let α, β be such that
M(α) < M(β) and D(α) > D(β). If α, β are each of the form α(k), then
each of the constants k(α), k(β) is either 0 or 1.

Since k(α) = k(β) implies

4D(α)− 2 = M(α) + k(α)M(α)−1

= M(α) + k(β)M(α)−1 < M(β) + k(β)M(β)−1 = 4D(β)− 2 ,

we must choose k(α) = 1, k(β) = 0. By Lemma 1, this is equivalent to
choosing the largest partial quotient for α to be odd and the largest partial
quotient for β to be even.

2. Main results

Theorem 1. If α, β are both of the form [c0, c1], with c0 ≥ c1, then
M(α) < M(β) and D(α) > D(β) if and only if (α, β)∈{([3, 1], [4, 3]); ([5, 3],
[4, 1]); ([5, 4], [4, 1]); ([7, 3], [6, 1])}.

P r o o f. Let α = [c0, c1], β = [c′0, c
′
1], where c0 ≥ c1, c′0 ≥ c′1; we must

choose c0 to be odd and c′0 to be even.
If |c0−c′0| 6= 1, then |c0−c′0| ≥ 3. By the expression for M([c0, c1]) given

before Lemma 1, if c′0 ≤ c0 − 3,

M(β)−M(α) < (c′0 + 2)− c0 ≤ −1 ,
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whereas if c′0 ≥ c0 − 3,

M(β)−M(α) > c′0 − (c0 + 2) ≥ 1 .

This contradicts (5) since M(β)−M(α) < M(α)−1 < 1. Thus, |c0−c′0| = 1.

Case 1: c′0 = c0 + 1. In this case, (6) reduces to

(7) 0 < 2c0 + 1 + 4((c0 + 1)/c′1 − c0/c1) < 2 + (c20 + 4c0/c1)−1 .

If c1 ≥ 2, then

2c0 + 1 + 4((c0 + 1)/c′1 − c0/c1) ≥ 2c0 + 1 + 4((c0 + 1)/(c0 + 1)− c0/2)

= 5 > 2 + (c20 + 4c0/c1)−1 .

Thus, c1 = 1 and (7) reduces to

(8) 0 < −2c0 + 1 + 4(c0 + 1)/c′1 < 2 + (c20 + 4c0)−1 .

If c′1 = 1 or 2 in (8), there is a contradiction. If c′1 = 3, the first inequality in
(8) is only satisfied when 1 ≤ c0 ≤ 3. If c0 = 1, then c′0 = 2, in contradiction
with c′1 = 3 > 2. Since c0 is odd, the only example is obtained with c0 = 3.
If c′1 ≥ 4, we are in conflict with the first inequality of (8), and this case
furnishes no further examples.

Thus, the only example in this case is (α, β) = ([3, 1], [4, 3]).

Case 2: c′0 = c0 − 1. In this case, (6) reduces to

(9) 0 < −2c0 + 1 + 4((c0 − 1)/c′1 − c0/c1) < 2 + (c20 + 4c0/c1)−1 .

If c′1 ≥ 2, then

−2c0 + 1 + 4((c0 + 1)/c′1 − c0/c1) ≤ −2c0 + 1 + 4((c0 − 1)/2− c0/c1)
= −1− 4c0/c1 < 0 .

Thus, c′1 = 1 and (9) reduces to

0 < 2c0 − 3− 4c0/c1 < 2 + (c20 + 4c0)−1 .

If c1 ≤ 2, then 2c0−3−4c0/c1 ≤ −3. If c1 ≥ 5, then 2c0−3−4c0/c1 ≥ 6c0/5−
3 ≥ 3, since c0 ≥ c1 ≥ 5. If c1 = 3, then 0 < 2c0/3 − 3 < 2 + (c20 + 4c0)−1,
so that c0 = 5 or 7. If c1 = 4, then 0 < c0 − 3 < 2 + (c20 + 4c0)−1, so that
c0 = 5.

Thus, the three examples in this case are (α, β) = ([5, 3], [4, 1]), ([5, 4],
[4, 1]) and ([7, 3], [6, 1]). This completes the proof.
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Table 1 (Theorem 1)

ξ M(ξ) D(ξ)

[3, 1 ] = (3 +
√

21)/2
√

21 ≈ 4.58258 (5.5/
√

21) + 1/2 ≈ 1.70020

[4, 3 ] = (6 +
√

48)/3
√

192/3 ≈ 4.61880 (16/
√

192) + 1/2 ≈ 1.65470

[5, 3 ] = (15 +
√

285)/6
√

285/3 ≈ 5.62731 (24.5/
√

285) + 1/2 ≈ 1.95125

[4, 1 ] = 2 +
√

8
√

32 ≈ 5.65685 (8/
√

32) + 1/2 ≈ 1.91421

[5, 4 ] = (5 +
√

30)/2
√

480/4 ≈ 5.47723 (31/
√

480) + 1/2 ≈ 1.91495

[4, 1 ] = 2 +
√

8
√

32 ≈ 5.65685 (8/
√

32) + 1/2 ≈ 1.91421

[7, 3 ] = (21 +
√

525)/6
√

525/3 ≈ 7.63763 (44.5/
√

525) + 1/2 ≈ 2.44214

[6, 1 ] = 3 +
√

15
√

60 ≈ 7.74597 (15/
√

60) + 1/2 ≈ 2.43649

Theorem 2. If each of α, β is of the form [c0, c1 ] or [c0, c1, c1 ], c0 ≥
c1, with α, β of different forms, then M(α) < M(β) and D(α) > D(β)
if and only if (α, β) ∈ {([3, 1], [4, 3, 3]); ([5, 1], [6, 2, 2]); ([7, 1], [8, 2, 2]);
([5, 3, 3], [4, 1]); ([11, 2, 2], [10, 1]); ([13, 2, 2], [12, 1])}.

The proof of Theorem 2 is similar to that of Theorem 1, and may be
found in [5]. Tables similar to Table 1 that verify the results of the various
theorems have been omitted.

We observe that M(α(k)) = c0 + 2[0, c(k)
1 , c0] if c0 > c1. It follows that

{M(α(2k))}k≥0 is an increasing sequence, that {M(α(2k+1))}k≥0 is a decreas-
ing sequence, and that M(α(2m+1)) > M(α(2n)) for any choice of m,n ≥ 0.
Furthermore,

lim
n→∞

M(α(n)) = c0 + 2[0, c1] = (c0 − c1) +
√
c21 + 4 .

Theorem 3. For any n ≥ 2, (α, β) ∈ {([3, 1], [4, 3(n) ]); ([5, 1], [6, 2(n) ]);
([7, 1], [8, 2(n) ]); ([5, 3(n) ], [4, 1]); ([11, 2(n) ], [10, 1]); ([13, 2(n) ], [12, 1])}
satisfy the conditions M(α) < M(β), D(α) > D(β).

P r o o f. In view of the observations made above, we need to determine

only M([c0, c
(3)
1 ]). The result then follows from the inequalities M([c0, c

(2)
1 ])

< M([c0, c
(n)
1 ]) < M([c0, c

(3)
1 ]) for every n ≥ 4, and from Theorem 2,

Lemma 1 and (6). This completes the proof.

ξ1 ξ
(n)
2 {M(ξ1)}2 {M(ξ

(2)
2 )}2 {M(ξ

(3)
2 )}2 {limn→∞M(ξ

(n)
2 )}2

[3, 1 ] [4, 3(n)] 21.0 21.2 21.21 21.21110 . . .

[5, 1 ] [6, 2(n)] 45.0 46.4 46.6 46.62741 . . .

[7, 1 ] [8, 2(n)] 77.0 77.6 78.0 77.94112 . . .

[4, 1 ] [5, 3(n)] 32.0 31.4 31.42 31.42220 . . .

[10, 1 ] [11, 2(n)] 140.0 139.4 140.0 139.91168 . . .

[12, 1 ] [13, 2(n)] 192.0 190.6 191.3 191.22539 . . .
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Theorem 4. If each of α, β is of the form [c0, c1, c1], c0 ≥ c1, then

M(α) < M(β) ⇒ D(α) < D(β) .

P r o o f. If α = [c0, c1, c1], c0 ≥ c1 and β = [c′0, c
′
1, c

′
1], c

′
0 ≥ c′1, then c0 is

odd and c′0 is even. If c′0 ≥ c0 + 1, then

M(β)2 −M(α)2 = c′20 −c20 + 4{(c′0c′1+1)/(c′21 +1)− (c0c1+1)/(c21+1)}
≥ 2c0 + 1 + 4{1− (c0 + 1)/2} = 3 ,

in contradiction to (6).
If c′0 ≤ c0 − 1, then

M(β)2 −M(α)2 = c′20 −c20 + 4{(c′0c′1 + 1)/(c′21 +1)−(c0c1 + 1)/(c21 + 1)}
≤ −2c0 + 1 + 4{(c′0 + 1)/2− 1}
≤ −2c0 + 1 + 4(c0/2− 1) = −3 ,

so that M(β) < M(α). This completes the proof.

V. Drobot [1] observed that k(ξ) = M(ξ)(4D(ξ)−M(ξ)−2) = 0 or 1 de-
pending on whether A is even or odd for ξ = [1m(1), A, 1m(2), A, 1m(3), A, . . .],
where A > 3 and {mj}j≥1 is a non-decreasing sequence of integers tending
to infinity. Thus, by the results of Section 1, in order to obtain a counter-
example, A must be chosen to be odd if α = ξ and even if β = ξ.

Since {mj}j≥1 is a non-decreasing sequence of integers tending to infinity,
M(ξ) is computed by taking the limit superior of a sequence with leading
partial quotient A. In fact,

(10) M(ξ)
= lim sup

i→∞
([A, 1m(i), A, 1m(i+1), . . .] + [0, 1m(i−1), A, 1m(i−2), . . . , A, 1m(1)])

= A+ 2[0, 1]

= A+ (
√

5− 1), for any A ≥ 1 .

Theorem 5. If each of α, β is of the form [1m(1), A, 1m(2), A, 1m(3),
A, . . .], where A > 3 and {mj}j≥1 is a non-decreasing sequence of integers
tending to infinity , then

M(α) < M(β) ⇒ D(α) < D(β) .

P r o o f. By (10), M(α) 6= M(β) ⇒M(β)−M(α) ≥ 1 > M(α)−1, which
contradicts (5). This completes the proof.

Theorem 6. If υ = [c0, c1], where c0 ≥ c1, ξ = [1m(1), A, 1m(2), A, 1m(3),
A, . . .], A > 3 and {mj}j≥1 is a non-decreasing sequence of integers tending
to infinity , and (υ, ξ) satisfies the inequality (M(υ)−M(ξ))(D(υ)−D(ξ)) <
0, then (c0, c1) ∈ {(c0, 9), 9 ≤ c0 ≤ 69, c0 odd ; (c0, 10), 11 ≤ c0 ≤ 25, c0
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odd ; (c0, 11), 11 ≤ c0 ≤ 17, c0 odd ; (c0, 8), 8 ≤ c0 ≤ 72, c0 even; (c0, 7),
8 ≤ c0 ≤ 20, c0 even; (c0, 6), 6 ≤ c0 ≤ 10, c0 even; (13, 12); (6, 5)}, and
A = c0 − 1.

The proof of Theorem 6 is similar to that of Theorem 1, and may be
found in [5].

Theorem 7. If υ = [c0, c1, c1], where c0 ≥ c1, ξ = [1m(1), A, 1m(2), A, . . .],
A > 3, {mj}j≥1 is a non-decreasing sequence of integers tending to infinity ,
and (υ, ξ) satisfies the inequality (M(υ) −M(ξ))(D(υ) − D(ξ)) < 0, then
(c0, c1) ∈ {(c0, 9), 9 ≤ c0 ≤ 59, c0 odd ; (c0, 10), 11 ≤ c0 ≤ 25, c0 odd ;
(c0, 11), 11 ≤ c0 ≤ 17, c0 odd ; (c0, 8), 8 ≤ c0 ≤ 98, c0 even; (c0, 7),
8 ≤ c0 ≤ 22, c0 even; (c0, 6), 6 ≤ c0 ≤ 10, c0 even; (13, 12); (6, 5)}, and
A = c0 − 1.

The proof of Theorem 7 is similar to that of Theorem 1, and is omitted.

We recall that M(α(k)) = c0+2[0, c(k)
1 , c0] if c0 > c1, that {M(α(2k))}k≥0

is an increasing sequence, that {M(α(2k+1))}k≥0 is a decreasing sequence,
and that M(α(2m+1)) > M(α(2n)) for any choice of m, n ≥ 0. Furthermore,

lim
n→∞

M(α(n)) = c0 + 2[0, c1] = c0 − c1 +
√
c21 + 4 .

Theorem 8. If υ = [c0, c
(n)
1 ], where c0 ≥ c1, n ≥ 1, and ξ = [1m(1), A,

1m(2), A, 1m(3), A, . . .], A > 3 and {mj}j≥1 is a non-decreasing sequence
of integers tending to infinity , and (υ, ξ) satisfies the inequality (M(υ) −
M(ξ))(D(υ) − D(ξ)) < 0, then (c0, c1) ∈ {(c0, 9), 9 ≤ c0 ≤ 59, c0 odd ;
(c0, 10), 11 ≤ c0 ≤ 25, c0 odd ; (c0, 11), 11 ≤ c0 ≤ 17, c0 odd ; (c0, 8),
8 ≤ c0 ≤ 98, c0 even; (c0, 7), 8 ≤ c0 ≤ 22, c0 even; (c0, 6), 6 ≤ c0 ≤ 10, c0
even; (13, 12); (6, 5)}, and A = c0 − 1.

P r o o f. In view of the observations made above, the theorem follows

from the inequalities M([c0, c
(2)
1 ]) < M([c0, c

(n)
1 ]) < M([c0, c

(1)
1 ]) for every

n ≥ 3, and from Theorems 6 and 7.

Theorem 9. For each fixed value of n ≥ 3, there exists α, β of the form

[c0, c
(n)
1 ], where c0 > c1, such that (M(α)−M(β))(D(α)−D(β)) < 0.

The proof of Theorem 9 is similar to that of Theorem 1, but the com-
putation is more intricate and has been omitted here. It may be noted that

we must choose α, β of the form [c0 + 1, c(n)
1 ], [c0, 1(n)], where c0 ≥ c1 and

the largest partial quotient for α is odd.
We observe that if α = α(n), β = β(n) are chosen as in Theorem 9 and if

(M(α)−M(β))(D(α)−D(β)) < 0 for all n ≥ N , then this inequality must
also hold for α = limn→∞ α(n), β = limn→∞ β(n). This reduces to the choice

α = limn→∞[c0, 1(n)], β = limn→∞[c0 + 1, c(n)
1 ], where c0 ≥ c1, c0 odd.
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Thus, M(α) = c0−1+
√

5 and M(β) = c0−c1 +1+
√
c21 + 4, so that c0 ≥ 5

since c0 = 3 gives M(β)2 −M(α)2 ≥ (2 +
√

8)2 − (2 +
√

5)2 > 2 +M(α)−2.
A simple computation yields 5 ≤ c1 ≤ 8, and for each such c1, the upper
limits for c0 are 5, 9, 21, and 97, respectively.

If, on the other hand, we choose α = limn→∞[c0 + 1, c(n)
1 ], β =

limn→∞[c0, 1(n)], c1 ≤ c0, c0 even, a simple computation yields 9 ≤ c1 ≤ 12,
and for each such c1, the upper limits for c0 are 58, 24, 16, and 12, respec-
tively.

In particular, since M([7, 1(4)])2 = 67.4 ≤ M([7, 1(n)])2 ≤ 69 =
M([7, 1(3)])2 for each n ≥ 3, and M([8, 6(4)])2 < 69.298220641≤M([8, 6(n)])2

≤ 69.298245614 < M([8, 6(3)])2 for each n ≥ 3, there exists α(n), β(n) for
each n ≥ 3 such that (M(α(n))−M(β(n)))(D(α(n))−D(β(n))) < 0.

We end this paper with a table of values of Markov and dispersion con-
stants of the first sixteen numbers in the Markov spectrum. This list, pro-
vided by the referee, contains the first sixteen Markov numbers un, the corre-
sponding real irrational number αn, ∆n := 9u2

n−4, M(αn), and D(αn), and
yields another twenty seven counterexamples and suggests the abundance
of such.

Table 2. Smallest Markov constants with corresponding dispersion constants

n un ∆n αn M(αn) D(αn)

1 1 5 [0, 1 ] 2.2360679 . . . 1.1708203 . . .

2 2 32 [0, 2 ] 2.8284271 . . . 1.2071067 . . .

3 5 221 [0, 22, 12 ] 2.9732137 . . . 1.2735737 . . .

4 13 1517 [0, 22, 14 ] 2.9960526 . . . 1.2830816 . . .

5 29 7565 [0, 24, 12 ] 2.9992071 . . . 1.2760671 . . .

6 34 10400 [0, 22, 16 ] 2.9994232 . . . 1.2844645 . . .

7 89 71285 [0, 22, 18 ] 2.9999158 . . . 1.2846662 . . .

8 169 257045 [0, 26, 12 ] 2.9999766 . . . 1.2761401 . . .

9 194 338720 [0, 22, 12, 22, 14 ] 2.9999822 . . . 1.2835097 . . .

10 233 488597 [0, 22, 110 ] 2.9999877 . . . 1.2846956 . . .

11 433 1687397 [0, 22, 12, 24, 12 ] 2.9999964 . . . 1.2763673 . . .

12 610 3348896 [0, 22, 112 ] 2.9999982 . . . 1.2846999 . . .

13 985 8732021 [0, 28, 12 ] 2.9999993 . . . 1.2761423 . . .

14 1325 15800621 [0, 22, 14, 22, 16 ] 2.9999996 . . . 1.2845284 . . .

15 1597 22953677 [0, 22, 114 ] 2.9999997 . . . 1.2847005 . . .

16 2897 75533477 [0, 22, 12, 22, 12, 22, 14 ] 2.9999999 . . . 1.2835116 . . .
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