An improved estimate concerning $3 n+1$ predecessor sets

\author{

Günther Wirsching (Eichstätt)

}
by

Introduction. Consider the following operator on the set of integers:

$$
T(n):= \begin{cases}\frac{1}{2} n & \text { if } n \text { is even } \tag{1}\\ \frac{1}{2}(3 n+1) & \text { if } n \text { is odd }\end{cases}
$$

Now choose a starting number $x \in \mathbb{N}$, and look at its $3 n+1$ trajectory $\left\{T^{k}(x): k \geq 0\right\}$, where $T^{k}=T \circ \ldots \circ T$ denotes the k-fold iterate of T for $k \geq 1$, and $T^{0}(x)=x$. The famous and unsolved $3 n+1$ conjecture says that any $3 n+1$ trajectory eventually hits 1 , for any starting number $x \in \mathbb{N}$.

There is an extensive literature on associated problems and generalizations of this conjecture (see [3] and [4]).

This paper proves an estimate on the functions

$$
\begin{equation*}
\vartheta_{a}(x):=|\{n \in \mathcal{P}(a): n \leq a x\}| \tag{2}
\end{equation*}
$$

where $\mathcal{P}(a)$ denotes the $3 n+1$ predecessor set of $a \in \mathbb{Z}$, that is,

$$
\mathcal{P}(a):=\left\{n \in \mathbb{Z}: T^{k}(n)=a \text { for some } k \geq 0\right\}
$$

The investigation of the set $\mathcal{P}(1)$ began with Crandall [1] who succeeded in proving

$$
\begin{equation*}
\vartheta_{1}(x) \geq x^{\beta} \quad \text { for some } \beta>0 \text { and large } x \tag{3}
\end{equation*}
$$

where the exponent has been computed to be $\beta \approx 0.057$. In 1987, Sander [5] improved Crandall's technique to show $\beta=\frac{1}{4}$ in (3). In 1989, Krasikov [2] introduced another technique to prove $\beta=\frac{3}{7}$. Here we extend Krasikov's method to obtain the estimate

$$
\begin{equation*}
\vartheta_{a}(x) \geq x^{0.48} \quad \text { for large } x, \text { if } a \text { is not divisible by } 3 . \tag{4}
\end{equation*}
$$

Starting out from the set of Krasikov's inequalities given here in (7) it might be possible to get a further improvement of this exponent.

The improvement of Krasikov's estimate. For a given positive integer v and a given positive real number x, consider the set

$$
G(v, x):=\left\{n \in \mathbb{N}: \begin{array}{l}
T^{k}(n)=v \text { for some } k \geq 0 \\
T^{i}(n) \leq x \text { for } 0 \leq i \leq k
\end{array}\right\}
$$

In his paper [2], Krasikov defines a function f by

$$
\begin{equation*}
f(v, x)=|G(v, x)| . \tag{5}
\end{equation*}
$$

Then he puts

$$
\Phi_{n}^{m}(y):=\inf \left\{f\left(v, 2^{y} v\right): v \text { is noncyclic and } v \equiv m \bmod 3^{n}\right\}
$$

(an integer v is called noncyclic if $T^{k}(v) \neq v$ for each $k \geq 1$), which gives immediately the equation

$$
\begin{equation*}
\Phi_{n-1}^{m}(y)=\min \left\{\Phi_{n}^{m}(y), \Phi_{n}^{m+3^{n-1}}(y), \Phi_{n}^{m+2 \cdot 3^{n-1}}(y)\right\}, \tag{6}
\end{equation*}
$$

and he proves the following set of inequalities:

$$
\begin{cases}\Phi_{n}^{m}(y) \geq \Phi_{n}^{4 m}(y-2)+\Phi_{n-1}^{(4 m-2) / 3}(y+\alpha-2) & \text { if } m \equiv 2 \bmod 9, \tag{7}\\ \Phi_{n}^{m}(y) \geq \Phi_{n}^{4 m}(y-2) & \text { if } m \equiv 5 \bmod 9 \\ \Phi_{n}^{m}(y) \geq \Phi_{n}^{4 m}(y-2)+\Phi_{n-1}^{(2 m-1) / 3}(y+\alpha-1) & \text { if } m \equiv 8 \bmod 9\end{cases}
$$

with the constant $\alpha=\log _{2} 3=1.5849^{+}$. Note that (5) implies $\Phi_{n}^{m}(y)=0$ for $y<0$, and that $\Phi_{n}^{m}(y)$ is a nondecreasing function of y. In addition, we have $\Phi_{n}^{m}(0) \geq 1$ by the fact that $v \in G(v, v)$ gives $f\left(v, 2^{0} v\right) \geq 1$ for each integer $v>0$.

Since $G(a, a x) \subset\{n \in \mathcal{P}(a): n \leq x\}$, there is an obvious inequality between the functions ϑ_{a} defined in (2) and the Φ_{n}^{m}, provided a is noncyclic:

$$
\begin{equation*}
\vartheta_{a}(x) \geq \Phi_{n}^{m}\left(\log _{2} x\right) \quad \text { if } a \equiv m \bmod 3^{n} . \tag{8}
\end{equation*}
$$

Krasikov uses the set (7) of inequalities for $n=2$ to prove $\beta=\frac{3}{7}$ in the estimate (3), but he does not deal with $n \geq 3$. The following lemma provides the key to extract information out of (7) for the case $n=3$.

Lemma 1.

$$
\Phi_{2}^{2}(y) \geq \sum_{k=0}^{\infty} \Phi_{2}^{8}(y-2+k(\alpha-4)) .
$$

Proof. An immediate consequence of (7) is

$$
\begin{equation*}
\Phi_{2}^{2}(y) \geq \Phi_{2}^{8}(y-2)+\Phi_{1}^{2}(y+\alpha-2) . \tag{9}
\end{equation*}
$$

Moreover, we have, like Krasikov in his proof of Theorem 1 in [2],

$$
\begin{equation*}
\Phi_{1}^{2}(y)=\min \left\{\Phi_{2}^{2}(y), \Phi_{2}^{5}(y), \Phi_{2}^{8}(y)\right\} \geq \Phi_{2}^{2}(y-2) \tag{10}
\end{equation*}
$$

since $\Phi_{2}^{5}(y) \geq \Phi_{2}^{2}(y-2)$ by (7), and $\Phi_{2}^{8}(y) \geq 1+\Phi_{1}^{2}(y+\alpha-1)>\Phi_{1}^{2}(y)$, if $y \geq 2$. If $y<2$ then (10) is obvious. (9) and (10) combine to give inductively

$$
\Phi_{2}^{2}(y) \geq \sum_{k=0}^{n} \Phi_{2}^{8}(y-2+k(\alpha-4))+\Phi_{2}^{2}((y-2+n(\alpha-4))+\alpha-2)
$$

In what follows, the transcendental function

$$
\begin{equation*}
g(\lambda):=\lambda^{-12}+\lambda^{\alpha-7}+\lambda^{\alpha-6}+\frac{\lambda^{\alpha-16}+\lambda^{\alpha-5}}{1-\lambda^{\alpha-4}} \tag{11}
\end{equation*}
$$

will play an essential rôle. $g(\lambda)$ is a decreasing function of λ on the positive real axis, so there is a unique $\lambda_{1}>1$ with $g\left(\lambda_{1}\right)=1$. This number λ_{1} will be responsible for the exponent $\beta=0.48<\log _{2} \lambda_{1}$ in the estimate (4).

Proposition 2. Let the real number $\lambda_{0}>1$ be given such that $g\left(\lambda_{0}\right)>1$. Then $\Phi_{2}^{8}(y) \geq \lambda_{0}^{y}$ if y is sufficiently large.

Proof. If we fix arbitrary numbers $\lambda>1$ and $\widetilde{y}>0$, the facts that Φ_{2}^{8} is nondecreasing and $\Phi_{2}^{8}(0) \geq 1$ imply that there is a constant $c=c(\lambda, \widetilde{y})>0$ such that

$$
\begin{equation*}
\Phi_{2}^{8}(y) \geq c \lambda^{y} \quad \text { for } 0 \leq y \leq \widetilde{y} \tag{12}
\end{equation*}
$$

Now the idea is to show-using Krasikov's inequalities (7)—that the condition $g(\lambda)>1$ suffices to prolong the inequality (12) to all $y \geq 0$. Having done this prolongation, the claim follows by decreasing λ slightly to get rid of the constant c, while restricting the range to all sufficiently large y.

The system (7) reads for $n=3$:

$$
\left\{\begin{align*}
\Phi_{3}^{2}(y) & \geq \Phi_{3}^{8}(y-2)+\Phi_{2}^{2}(y+\alpha-2), \tag{13}\\
\Phi_{3}^{5}(y) & \geq \Phi_{3}^{20}(y-2), \\
\Phi_{3}^{8}(y) & \geq \Phi_{3}^{5}(y-2)+\Phi_{2}^{5}(y+\alpha-1), \\
\Phi_{3}^{11}(y) & \geq \Phi_{3}^{17}(y-2)+\Phi_{2}^{5}(y+\alpha-2), \\
\Phi_{3}^{14}(y) & \geq \Phi_{3}^{2}(y-2), \\
\Phi_{3}^{17}(y) & \geq \Phi_{3}^{14}(y-2)+\Phi_{2}^{2}(y+\alpha-1), \\
\Phi_{3}^{20}(y) & \geq \Phi_{3}^{26}(y-2)+\Phi_{2}^{8}(y+\alpha-2), \\
\Phi_{3}^{23}(y) & \geq \Phi_{3}^{11}(y-2), \\
\Phi_{3}^{26}(y) & \geq \Phi_{3}^{23}(y-2)+\Phi_{2}^{8}(y+\alpha-1) .
\end{align*}\right.
$$

Since the functions Φ_{n}^{m} are nondecreasing, and because $\alpha>1$ and $\Phi_{2}^{8}(0) \geq 1$, the last line of (13) implies $\Phi_{3}^{26}(y) \geq 1+\Phi_{2}^{8}(y+\alpha-1)>\Phi_{2}^{8}(y)$, provided $y \geq 2$. Hence we conclude by (6)

$$
\begin{equation*}
\Phi_{2}^{8}(y)=\min \left\{\Phi_{3}^{8}(y), \Phi_{3}^{17}(y)\right\} \quad \text { for } y \geq 2 \tag{14}
\end{equation*}
$$

Starting with the third line of system (13) and running through this system, one arrives at the inequality

$$
\begin{aligned}
\Phi_{3}^{8}(y) \geq & \Phi_{3}^{17}(y-12)+\Phi_{2}^{5}(y+\alpha-1)+\Phi_{2}^{8}(y+\alpha-6) \\
& +\Phi_{2}^{8}(y+\alpha-7)+\Phi_{2}^{5}(y+\alpha-12)
\end{aligned}
$$

By (7) and Lemma 1, one infers $\Phi_{2}^{5}(y) \geq \Phi_{2}^{2}(y-2) \geq \sum_{k=0}^{n} \Phi_{2}^{8}(y-4+k(\alpha-4))$ for any given integer $n \geq 0$. If we put

$$
\begin{align*}
G_{n}(y):= & \Phi_{2}^{8}(y-12)+\Phi_{2}^{8}(y+\alpha-6)+\Phi_{2}^{8}(y+\alpha-7) \tag{15}\\
& +\sum_{k=0}^{n}\left(\Phi_{2}^{8}(y+\alpha-16+k(\alpha-4))\right. \\
& \left.+\Phi_{2}^{8}(y+\alpha-5+k(\alpha-4))\right)
\end{align*}
$$

we come - using (14) - to the inequality

$$
\begin{equation*}
\Phi_{3}^{8}(y) \geq G_{n}(y) \quad \text { for any } n \in \mathbb{N} \tag{16}
\end{equation*}
$$

An inspection of (15) shows that $G_{n}(y)$ needs the values of $\Phi_{2}^{8}(x)$ only at points in the range

$$
y-12-(n+1)(\alpha-4) \leq x \leq y-(5-\alpha)
$$

Fixing an arbitrary $n \geq 0$ and a sufficiently large \widetilde{y}, and calculating a constant $c(\lambda, \widetilde{y})$ according to (12), we have
(17) $G_{n}(y) \geq c(\lambda, \widetilde{y}) \lambda^{y} g_{n}(\lambda) \quad$ if $12+(n+1)(4-\alpha) \leq y \leq \widetilde{y}+(5-\alpha)$,
where

$$
g_{n}(\lambda):=\lambda^{-12}+\lambda^{\alpha-7}+\lambda^{\alpha-6}+\sum_{k=0}^{n}\left(\lambda^{\alpha-16+k(\alpha-4)}+\lambda^{\alpha-5+k(\alpha-4)}\right) .
$$

Analogously, chasing through the system (13) starting at the sixth line and using (14) gives

$$
\Phi_{3}^{17}(y) \geq \Phi_{2}^{8}(y-6)+\Phi_{2}^{2}(y+\alpha-6)+\Phi_{2}^{2}(y+\alpha-1)
$$

As before, put

$$
\begin{aligned}
H_{n}(y):= & \Phi_{2}^{8}(y-6) \\
& +\sum_{k=0}^{n}\left(\Phi_{2}^{8}(y+\alpha-8+k(\alpha-4))+\Phi_{2}^{8}(y+\alpha-3+k(\alpha-4))\right),
\end{aligned}
$$

to get the inequality

$$
\begin{equation*}
\Phi_{3}^{17}(y) \geq H_{n}(y) \quad \text { for any } n \in \mathbb{N} \tag{18}
\end{equation*}
$$

Again we see that $H_{n}(y)$ needs the values of $\Phi_{2}^{8}(x)$ only at points in the range

$$
y-4-(n+1)(\alpha-4) \leq x \leq y-(3-\alpha)
$$

and we have
(19) $\quad H_{n}(y) \geq c(\lambda, \widetilde{y}) \lambda^{y} h_{n}(\lambda) \quad$ if $4+(n+1)(4-\alpha) \leq y \leq \widetilde{y}+(3-\alpha)$,
with the abbreviation

$$
h_{n}(\lambda):=\lambda^{-6}+\sum_{k=0}^{n}\left(\lambda^{\alpha-8+k(\alpha-4)}+\lambda^{\alpha-3+k(\alpha-4)}\right) .
$$

Now the limiting functions
(20) $g(\lambda)=\lim _{n \rightarrow \infty} g_{n}(\lambda)$ and $\quad h(\lambda):=\lim _{n \rightarrow \infty} h_{n}(\lambda)=\lambda^{-6}+\frac{\lambda^{\alpha-8}+\lambda^{\alpha-3}}{1-\lambda^{\alpha-4}}$
are clearly decreasing in the range $\lambda>1$. Hence, there are unique numbers $\lambda_{1}, \lambda_{2}>1$ with $g\left(\lambda_{1}\right)=h\left(\lambda_{2}\right)=1$. A simple numerical calculation shows that $\lambda_{2}>\lambda_{1}$.

Given a number $\lambda_{0}>1$ satisfying $g\left(\lambda_{0}\right)>1$ as in the assumption of Proposition 2, we know that $\lambda_{0}<\lambda_{1}$. Choose λ^{\prime} with $\lambda_{0}<\lambda^{\prime}<\lambda_{1}$ and n^{\prime} with the property

$$
\begin{equation*}
g_{n}\left(\lambda^{\prime}\right) \geq 1 \quad \text { and } \quad h_{n}\left(\lambda^{\prime}\right) \geq 1 \quad \text { for } n \geq n^{\prime} \tag{21}
\end{equation*}
$$

which is possible by (20). Moreover, put

$$
y_{0}:=12+\left(n^{\prime}+1\right)(4-\alpha) .
$$

By the definition of $c\left(\lambda^{\prime}, y_{0}\right)$ above (12), we have

$$
\begin{equation*}
\Phi_{2}^{8}(y) \geq c\left(\lambda^{\prime}, y_{0}\right)\left(\lambda^{\prime}\right)^{y} \quad \text { for } 0 \leq y \leq y_{0} \tag{22}
\end{equation*}
$$

Combine (14), (16), and (18) to get

$$
\Phi_{2}^{8}(y)=\min \left\{\Phi_{3}^{8}(y), \Phi_{3}^{17}(y)\right\} \geq \min \left\{G_{n^{\prime}}(y), H_{n^{\prime}}(y)\right\}
$$

This gives using (17) and (19)

$$
\begin{aligned}
\Phi_{2}^{8}(y) & \geq c\left(\lambda^{\prime}, y_{0}\right)\left(\lambda^{\prime}\right)^{y} \min \left\{g_{n^{\prime}}\left(\lambda^{\prime}\right), h_{n^{\prime}}\left(\lambda^{\prime}\right)\right\} \quad \text { for } y_{0} \leq y \leq y_{0}+(3-\alpha) \\
& \geq c\left(\lambda^{\prime}, y_{0}\right)\left(\lambda^{\prime}\right)^{y}
\end{aligned}
$$

where the last inequality is due to (21). Using in addition inequality (22), the claim $\Phi_{2}^{8}(y) \geq c\left(\lambda^{\prime}, y_{0}\right)\left(\lambda^{\prime}\right)^{y}$ can be proved inductively on the intervals $0 \leq y \leq y_{0}+k(3-\alpha)$, which completes the proof of Proposition 2 .

Theorem 3. For any integer $a>0$ which is not divisible by 3 , we have

$$
\vartheta_{a}(x) \geq x^{0.48} \quad \text { if } x \text { is sufficiently large. }
$$

Proof. If $a \equiv 8 \bmod 3^{2}$, the result follows from (8) and Proposition 2:

$$
\vartheta_{a}(x) \geq \Phi_{2}^{8}\left(\log _{2} x\right) \geq x^{\log _{2} \lambda_{0}} \quad \text { if } x \text { is sufficiently large }
$$

where λ_{0} satisfies $g\left(\lambda_{0}\right)>1$. The number λ_{1} with $g\left(\lambda_{1}\right)=1$ and its $\log _{2}$ are approximately (with an error $<10^{-3}$) given by $\lambda_{1} \approx 1.397$ and $\log _{2} \lambda_{1} \approx$ 0.482 , whence the result.

If, more generally, we have only $a \not \equiv 0 \bmod 3$, it is easy to see that there is a noncyclic predecessor $b \in \mathcal{P}(a)$ satisfying $b \equiv 8 \bmod 3^{2}$. But this means $T^{k}(b)=a$ for some k, whence

$$
\vartheta_{a}(x) \geq \vartheta_{b}\left(\frac{a x}{b}\right) \geq\left(\frac{a}{b}\right)^{\beta} x^{\beta} \quad \text { if } x \text { is sufficiently large }
$$

Applying the remarks following (12) to this inequality completes the proof.

References

[1] R. E. Crandall, On the " $3 x+1$ " problem, Math. Comp. 32 (1978), 1281-1292.
[2] I. Krasikov, How many numbers satisfy the $3 x+1$ conjecture?, Internat. J. Math. Math. Sci. 12(4) (1989), 791-796.
[3] J. C. Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-21.
[4] H. Müller, Das ‘ $3 n+1$ ' Problem, Mitt. Math. Ges. Hamburg 12 (1991), 231-251.
[5] J. W. Sander, On the $(3 N+1)$-conjecture, Acta Arith. 55 (1990), 241-248.

MATHEMATISCH-GEOGRAPHISCHE FAKULTÄT
KATHOLISCHE UNIVERSITÄT EICHSTÄTT
OSTENSTRASSE $26-28$
W-8078 EICHSTÄTT
F.R.G.

