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Let Q(x) =
∑

i≤j cijxixj be a quadratic form in n variables with integral
coefficients. Write Q(x) = 1

2xAxt where A = [aij ] is a symmetric n × n
matrix with entries aii = 2cii and aij = cij for i < j. Set d = d(Q) =
det A. We say Q is primitive if the coefficients cij are relatively prime, and
nonsingular if d 6= 0. This paper addresses the following problem: Given a
positive integer m what is the smallest nonzero integer λ (in absolute value)
such that λm is represented over Z by Q, that is,
(1) Q(x) = λm

is solvable over Z. Grant [6] has shown that for positive definite forms in
n ≥ 4 variables there exists a constant c0(Q), depending on Q, such that for
any positive integer m (1) is solvable for some λ with 0 < λ < c0(Q). We
extend his result in our first theorem.

Theorem 1. (i) For any nonsingular quadratic form Q in n ≥ 3 variables
there exists a constant c1(Q), depending only on Q, such that for any positive
integer m, (1) is solvable for some λ with 0 < |λ| < c1(Q). (λ can be taken
positive or negative if Q is indefinite.)

(ii) If n = 2 the same result holds true provided that for any odd prime
p dividing m to an odd multiplicity either p | d or

(−d
p

)
= 1.

We note that when n = 2, the condition given in part (ii) of the theorem
is also a necessary condition, for if p is an odd prime dividing m to an odd
multiplicity and

(−d
p

)
= −1, then whenever Q(x) = λm is solvable it follows

that p |λ, and consequently |λ| ≥ p.

Corollary. Let Q(x) be a quadratic form in n ≥ 3 variables. Then
for any positive integer m the congruence Q(x) ≡ 0 (mod m) has a nonzero
solution x with max |xi| ≤ c(Q)m1/2, where c(Q) is a constant depending
only on Q. The same result holds when n = 2 for any value of m satisfying
the hypothesis of Theorem 1(ii).
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This Corollary generalizes the result of [6]. The Corollary is immediate
from Theorem 1 in case Q is a definite form, but requires Lemma 2 for
indefinite forms. Of course, the real interest is in obtaining the result of the
Corollary with c(Q) replaced by a constant depending only on n (for n ≥ 4).
There has been a lot of work in this direction; see Schinzel, Schlickewei and
Schmidt [11], Heath-Brown [7], [8], Sander [10], and Cochrane [4], [5].

We now seek the best possible value of λ. When m = 1 the problem
reduces to finding the minimum nonzero value of |Q(x)| as x runs through
Zn. It is well known (see e.g. [2, Lemma 3.1, p. 135]) that for n ≥ 1 there
exists a constant k(n), depending only on n, such that if Q(x) is nonsingular
then there exists an integral x with 0 < |Q(x)| ≤ k(n)|d|1/n. We are led to
ask the following

Question. For n ≥ 4 does there exist a constant c(n) depending only on
n such that if Q(x) is a nonsingular form in n variables and m is any positive
integer, then (1) is solvable for some nonzero λ with |λ| < c(n)|d|1/n?

It suffices to consider the case of primitive quadratic forms, for if Q =
aQ1 with Q1 primitive and x0 is such that Q1(x0) = λ0m with 0 < |λ0| <
c(n)|d(Q1)|1/n, then Q(x0) = (aλ0)m and 0 < |aλ0| < c(n)|d(Q)|1/n. This
observation also indicates that one can do no better than |d|1/n for imprim-
itive forms. However, for primitive forms we can do better.

Theorem 2. There exist constants c2(n), c3(Q) and c4(d) depending only
on n, Q and d respectively such that for any nonsingular primitive quadratic
form Q we have the following.

(i) If Q is indefinite and n ≥ 4 then, for any m > 0, (1) is solvable for
some λ with

(2) 0 < λ < c2(n)d1/(2(n−2))
0

where d0 is the odd part of |d|. (A value for c2(n) can be easily calculated
from the proof given here.)

(ii) If Q is definite, n = 4, m = m1m
2
2 with m1 square free and m1 ≥

c4(d), or Q is definite, n ≥ 5 and m ≥ c3(Q) then the same bound (2) holds
for m, with λ replaced by −λ for negative definite forms. (The constants
c3(Q) and c4(d) are those given in Lemmas 4 and 5 respectively.)

The upper bound d
1/(2(n−2))
0 in (2) is easily seen to be best possible.

Consider for example the form Q(x) = x2
1+x2

2+m2(x2
3+. . .+x2

n) where m is
a product of distinct odd primes p satisfying

(−1
p

)
= −1. Then any nonzero

solution of Q(x) = λm must satisfy m |λ and hence |λ| ≥ m = d
1/(2(n−2))
0 .

This example also shows that the best one can hope for with n = 3 is
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λ � |d|1/2. Theorem 2 establishes an affirmative answer to the question
above for indefinite forms in n ≥ 4 variables. The question remains open for
definite forms in general but the following theorem lends further support to
an affirmative answer.

Theorem 3. Let Q(x) be a positive definite form in an even number of
variables and m = m2

1m2 with m2 positive and square free. Suppose that for
each odd prime divisor p of m2 either p | d or

( (−1)n/2d
p

)
= 1. Then (1) is

solvable for some λ with

(3) 0 < λ ≤ 4
(Bn(1))2/n

d1/n ,

where Bn(1) is the volume of a ball of radius 1 in Rn.

Lemmas. The idea for the proofs of Theorems 1 and 2 is quite simple.
We make use of classical results that imply that under appropriate conditions
(1) is solvable over Z if it is solvable over every local ring Zp; see Lemmas
1, 3, 4 and 5. Thus our problem reduces to finding a small value of λ such
that (1) is solvable everywhere locally and this just amounts to having λ
divisible by certain primes dividing d(Q) and satisfying certain quadratic
residuacity conditions for other primes dividing d(Q). Theorem 3 follows
from Lemma 6 and a standard argument from the geometry of numbers.

Lemma 1 [13, Theorem 52]. Let q be a nonzero integer and Q be a
nonsingular quadratic form in n ≥ 3 variables. Then there exists a nonzero
integer k = k(q, Q) with (k, q) = 1 such that if a ∈ Z is such that k2 | a, aQ
is indefinite or positive definite, and Q(x) ≡ a (mod t) is solvable for all
nonzero t, then Q(x) = a is solvable over Z.

Lemma 2 (Watson [15]). Let Q be a quadratic form that does not repre-
sent zero nontrivially over Z. Then for any integer a represented by Q there
is a representation Q(x) = a with max |xi| ≤ γ(Q)|a|1/2, where γ(Q) is a
constant depending only on Q.

Lemma 3 [2, Theorem 1.5, p. 131]. Let Q be a nonsingular , indefinite
form in n ≥ 4 variables and a 6= 0 ∈ Z. If a is represented by Q over all Zp,
then a is represented by Q over Z. (Cassels’s book [2] deals with quadratic
forms with even coefficients cij , for i 6= j, but the result extends to general
quadratic forms.)

Lemma 4 (Tartakovskĭı [12]). For any positive definite quadratic form
in n ≥ 5 variables there is a constant c3(Q) depending only on Q such that
for any integer a > c3(Q), if Q(x) ≡ a (mod t) is solvable for all nonzero
t then Q(x) = a is solvable over Z.
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Lemma 5 (Linnik, Malyshev [9]). There exists a constant c4(d) such that
for any positive definite quadratic form Q in n = 4 variables, with d = d(Q),
and any square free integer a > c4(d) such that Q(x) ≡ a (mod t) is solvable
for all nonzero t, the equation Q(x) = a is solvable over Z.

Lemma 6 (Cochrane [3]). Let F (x) be a form of any degree over Z
and m = p1p2 . . . pk be a product of distinct primes. Suppose that for
i = 1, 2, . . . , k the congruence F (x) ≡ 0 (mod pi) has a subspace of solutions
of dimension di. Then there exists a lattice of solutions of the congruence
F (x) ≡ 0 (mod m) of volume

∏k
i=1 pn−di

i .

Lemma 7. For any primitive quadratic form Q over Z in n ≥ 2 variables
there exists an odd number a0 such that for any a ≡ a0 (mod 8) the equation
Q(x) = a is solvable over Z2.

P r o o f. Since Q is primitive it represents some odd number a0 over Z.
Now if a ≡ a0 (mod 8) then a = a0b

2 for some 2-adic integer b. Thus Q
represents a over the 2-adic integers.

P r o o f o f T h e o r e m 1(i). We may assume that Q is primitive and
that m is square free and relatively prime to 8d (see [6]). Since Q is primitive
it represents some integer A (over Z) relatively prime to 2d. Then for any
integer B with B ≡ A (mod 8d), it follows that Q represents B over every
local ring Zp.

Let k = k(q, Q) be as given in Lemma 1 with q = 8d. In particular,
(k, 8d) = 1. Let β be such that βk2m ≡ A (mod 8d). Select β so that
0 < β < 8|d| if Q is indefinite or positive definite and −8|d| < β < 0 if Q is
negative definite. Set λ = βk2. Then λmQ is indefinite or positive definite,
k2 |λ, and Q(x) ≡ λm (mod pi) is solvable for all prime powers pi. Thus,
by Lemma 1, Q(x) = λm is solvable over Z, and |λ| ≤ 8|d|k2.

P r o o f o f T h e o r e m 1(ii). Again we may assume that m is an odd
square free integer. For each prime p |m the congruence Q(x) ≡ 0 (mod p)
has a nonzero solution (mod p) (since p | d or

(−d
p

)
= 1), and thus by

Lemma 6 the congruence Q(x) ≡ 0 (mod m) has a lattice of solutions of
volume m. Then by Minkowski’s theorem there is a nonzero solution x
of the congruence Q(x) ≡ 0 (mod m) with max |xi| < m1/2. For this x
we have Q(x) = λm with |λ| < |c11| + |c12| + |c22|. If λ = 0 then Q(x)
represents 0 over Z and we may assume without loss of generality that
Q(x) = x2(c12x1 + c22x2), with c12 6= 0. In this case set x2 = m, choose
x1 so that 0 < |c12x1 + c22m| ≤ |c12| and set λ′ = c12x1 + c22m. Then
Q(x) = λ′m with 0 < |λ′| ≤ |c12|.

P r o o f o f C o r o l l a r y. If Q represents 0 nontrivially over Z the re-
sult is trivial, indeed one obtains a solution of Q(x) ≡ 0 (mod m) with
max |xi| ≤ c(Q). Suppose now that Q does not represent 0 nontrivially.
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In particular, Q is nonsingular. Let λ, m be such that 0 < |λ| < c1(Q)
and (1) is solvable. Then by Lemma 2 there exists an x ∈ Zn such that
Q(x) = λm, with 0 < max |xi| ≤ γ(Q)(λm)1/2. Thus Q(x) ≡ 0 (mod m)
and 0 < max |xi| ≤ γ(Q)c1(Q)1/2m1/2. (If Q is definite one can be more
precise and obtain 0 < max |xi| ≤ |λ/β|1/2m1/2 where |β| is the minimum
modulus of the eigenvalues of Q.)

P r o o f o f T h e o r e m 2. Let Q be a nonsingular primitive quadratic
form of determinant d and m be a positive integer. We may assume that m
is odd and square free (for in general, if m = m2

12
em0 with m0 odd, square

free, and e = 0 or 1, and λ is such that (2) holds and Q(x) = λm0 for some
x ∈ Zn, then Q(m12ex) = 2eλm). Now for any odd prime p, Q is equivalent
over Zp to one of the following types of forms:

(i) α1x
2
1 + α2x

2
2 + α3x

2
3 + Q′(x4, . . . , xn),

(ii) α1x
2
1 + α2x

2
2 + pα3x

2
3 + pα4x

2
4 + pQ′(x5, . . . , xn), pn−2 | d,

(iii) α1x
2
1 + α2x

2
2 + pα3x

2
3 + p2Q′(x4, . . . , xn), p2n−5 | d,

(iv) α1x
2
1 + α2x

2
2 + p2α3x

2
3 + p2Q′(x4, . . . , xn), p2(n−2) | d,

(v) α1x
2
1 + α2x

2
2 + p3Q′(x3, . . . , xn), p3(n−2) | d,

(vi) α1x
2
1 + pα2x

2
2 + pQ′(x3, . . . , xn), pn−1 | d,

(vii) α1x
2
1 + p2α2x

2
2 + p2Q′(x3, . . . , xn), p2(n−1) | d,

(viii) α1x
2
1 + pjQ′(x2, . . . , xn), j ≥ 3, p3(n−1) | d,

where α1, α2, α3 are integers not divisible by p, and Q′ is a quadratic
form with integer coefficients. Next to each form we have put a power of p
dividing d (not necessarily the largest power). Write

d = 2ed1d2d3d4d5d6d7d8 ,

where dk consists of primes p such that Q is of type (k), 1 ≤ k ≤ 8, and

m = m1m2m3m4m5m6m7m8m9 ,

where mi | di, 1 ≤ i ≤ 8, and (m9, d) = 1.
Our goal is to obtain a small value of λ such that Q(x) = λm is solvable

over Zp for all p. By considering appropriate examples it is clear that λ
must be divisible by m4m5m7m8 in order to succeed in general, thus we
consider instead the equation

(4) Q(x) = λm4m5m7m8m = λM,

say, where M = m4m5m7m8m. We consider in turn solving (4) over Zp for
the various odd primes p. For simplicity we shall assume that Q equals one
of the eight canonical types given above (for a given prime p) and say that
(4) is solvable if it is solvable over Zp.
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(i) If p - d or p | d1 (so that Q is of type (i)), then (4) is solvable for
any λ.

(ii) If p | d2 and p - m2 then (4) is solvable for any λ 6≡ 0 (mod p) (just
put x3 = . . . = xn = 0). If p |m2, then we set x1 = x2 = 0, and consider
α3x

2
3 + α4x

2
4 = λM/p, which again is solvable for any λ 6≡ 0 (mod p).

(iii) If p | d3 and p - m3 then (4) is solvable for λ 6≡ 0 (mod p). If p |m3,
we set x1 = x2 = 0 and are left with α3x

2
3 = λM/p, which is solvable

provided
(

λ
p

)
=

(α3M/p
p

)
.

(iv) If p | d4 and p - m4 then (4) is solvable for λ 6≡ 0 (mod p). If p |m4

then we set x1 = py1, x2 = py2 and consider α1y
2
1 + α2y

2
2 + α3x

2
3 = λM/p2,

which is solvable for any λ.
(v) If p | d5 then as in (iv), (4) is solvable for any λ 6≡ 0 (mod p).
(vi) If p | d6 and p - m6 then (4) is solvable provided

(
λ
p

)
=

(
α1M

p

)
. If

p |m6 then (4) is solvable provided
(

λ
p

)
=

(α2M/p
p

)
.

(vii) If p | d7 and p - m7 then (4) is solvable provided
(

λ
p

)
=

(
α1M

p

)
. If

p |m7 then we set x1 = py1 and consider α1y
2
1 + α2x

2
2 = λM/p2, which is

solvable for λ 6≡ 0 (mod p).
(viii) If p | d8 and p - m8 then (4) is solvable provided

(
λ
p

)
=

(
α1M

p

)
. If

p |m8, then setting x1 = py1 we see that (4) is solvable provided
(

λ
p

)
=(α1M/p2

p

)
.

In summary, we see that (4) is solvable for all primes p (including p = 2)
if λ is such that

λM ≡ a0 (mod 8) ,(5) (
λ

p

)
= (−1)ep for p | d3d6d7d8, p - m7 ,(6)

and

(7) p - λ for p | d2d4d5m7, p - m4

where a0 is the value given in Lemma 6, and the values ep are as indicated
above. Set

P =
∏

p | d3d6d7d8
p - m7

p (a product over distinct primes) .

By standard arguments one can obtain a solution of (5), (6) and (7) with
λ �

√
P , but lacking a convenient reference we have included an appendix

to suit our particular needs. By Lemma 2 of the appendix there is a value
of λ satisfying (5), (6) and (7) with
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(8) 0 < λ <
32
3

π2
√

P
∏
p |P

1 + 2/
√

p

1− 1/p

∏
p | d2d4d5m7

p - m4

2− 1/p

1− 1/p
.

Now, by the divisibility conditions given next to the canonical forms (i)
to (viii) above we have∏
p | d2

pn−2
∏
p | d3

p2n−5
∏
p | d4

p2n−4
∏
p | d5

p3n−6
∏
p | d6

pn−1
∏
p | d7

p2n−2
∏
p | d8

p3n−3
∣∣∣ d0,

where d0 is the odd part of d, and so∏
p | d2

p1/2
∏
p | d3

p(2n−5)/(2n−4)
∏
p | d4

p
∏
p | d5

p3/2

×
∏
p | d6

p(n−1)/(2n−4)
∏
p | d7

p(n−1)/(n−2)
∏
p | d8

p(3n−3)/(2n−4) ≤ d
1/(2(n−2))
0 .

Thus, by (4) and (8), the equation Q(x) = λm is solvable over Zp, for all
primes p, for some λ with

0 < λ <
32
3

π2m4m5m7m8

∏
p | d3d6d7d8

p - m7

p1/2 1 + 2/
√

p

1− 1/p

∏
p | d2d4d5m7

p - m4

2− 1/p

1− 1/p

≤ 32
3

π2
∏
p | d2

2− 1/p

1− 1/p

∏
p | d3

p1/2 1 + 2/
√

p

1− 1/p

∏
p | d4

p
∏
p | d5

p
2− 1/p

1− 1/p

×
∏
p | d6

p1/2 1 + 2/
√

p

1− 1/p

∏
p | d7

p
2− 1/p

1− 1/p

∏
p | d8

p3/2 1 + 2/
√

p

1− 1/p

≤ c2(n)d1/(2(n−2))
0 ,

where c2(n) is an easily calculable constant depending only on n. Theorem
2 now follows from Lemmas 3, 4 and 5.

P r o o f o f T h e o r e m 3. Suppose first that m2 is odd. Then for any
prime divisor p of m2 there exists a subspace of solutions of the congruence
Q(x) ≡ 0 (mod p) of dimension n/2; see [3, Lemma 3]. Thus, by Lemma 6
there exists a lattice L of solutions of the congruence Q(x) ≡ 0 (mod m2) of
volume m

n/2
2 . Let R be the convex region in Rn defined by Q(x) ≤ r2. Then

the volume of R is 2n/2rnBn(1)/
√

d where Bn(1) is the volume of an n-ball
of radius 1. By Minkowski’s theorem R contains a nonzero point x of L if
r2 ≥ 2d1/nm2/Bn(1)2/n. Thus Q(x) = λm2 with 0 < λ < 2d1/n/Bn(1)2/n,
and Q(m1x) = λm. If m2 is even, say m2 = 2m3, and x satisfies Q(x) =
λm3 with λ as above, then Q(2x) = (2λ)m2 and Q(2m1x) = (2λ)m, with
2λ satisfying (3).
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N o t e. If the odd square free part of m is relatively prime to d then the
value d

1/(2(n−2))
0 in (2) can be replaced by

d
1/(2(n−1))
0

∏
p | d0

1 + 2/
√

p

1− 1/p
.

In particular, taking m to be one we conclude that for any indefinite, primi-
tive nonsingular quadratic form Q in n ≥ 4 variables there exists an x ∈ Zn

such that

0 < Q(x) < c4(n)d1/(2(n−1))
0

∏
p | d0

1 + 2/
√

p

1− 1/p
.

Watson [14] had shown earlier that for such forms in n ≥ 3 variables an x
exists with

0 < Q(x) < c(ε)|d|1/(2(n−1))+ε .

Appendix

Lemma 1. Let n be any integer and m be a square free product of odd
primes. Then∣∣∣ 8m−1∑

x=0
(x,8m)=1

e2πinx2/(8m)
∣∣∣ ≤ 4

∏
p |m
p - n

(1 +
√

p)
∏
p |m
p |n

(p− 1) .

P r o o f. Say m = p1p2 . . . pk and set

x = x1
8m

p1
+ x2

8m

p2
+ . . . + xk

8m

pk
+ xk+1m

where xi runs through 1, 2, . . . , pi − 1 for 1 ≤ i ≤ k and xk+1 runs through
1, 3, 5, 7. Then∣∣∣ 8m−1∑

x=0
(x,8m)=1

e2πinx2/(8m)
∣∣∣

=
∣∣∣∣ ∑

x1

. . .
∑
xk+1

exp
(

2πin

8m

(
x2

1

64m2

p2
1

+ . . . + x2
k

64m2

p2
k

+ x2
k+1m

2

))∣∣∣∣
≤ 4

k∏
i=1

∣∣∣∣ ∑
xi

exp
(

2πin(8m/pi)x2
i

pi

)∣∣∣∣ ≤ 4
∏
pi |n

(pi − 1)
∏
pi - n

(1 +
√

pi) .

Lemma 2. Let D = 8d1d2 where d1, d2 are square free products of odd
primes with (d1, d2) = 1. Let c be any integer with (c,D) = 1. Then there
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exists a λ ∈ Z with (λ, D) = 1 and

(1) 0 < λ ≤ 32
3

π2
√

d1

∏
p | d1

1 + 2/
√

p

1− 1/p

∏
p | d2

2− 1/p

1− 1/p

such that cz2 ≡ λ (mod 8d1) for some z with (z, 8d1) = 1.

P r o o f. Write x = 8d1w+kd2z
2 where k is any integer satisfying d2k ≡ c

(mod 8d1), w is such that (w, d2) = 1 and z is such that (z, 8d1) = 1. Then
x ≡ cz2 (mod 8d1) and (x,D) = 1. Thus our goal is to find w, z such that
x is small (mod D). Let I = {0, 1, 2, . . . ,M − 1} where M ∈ Z, M < D,
let χI be the characteristic function of I (mod D) and α = χI ∗ χI . Then
α has a Fourier expansion

α(x) =
4d1d2∑

y=−4d1d2+1

a(y)eD(xy), where eD( ) = e2πi( )/D ,

and for y 6= 0,

|a(y)| = 1
D

sin2(πMy/D)
sin2(πy/D)

.

In particular, for |y| ≤ 4d1d2 we have

(2) |a(y)| ≤ M2/D

and

(3) |a(y)| ≤ D/(4y2) for y 6= 0 .

Our goal is to show the following sum is positive for M sufficiently large:

d2∑
w=1

(w,d2)=1

8d1∑
z=1

(z,8d1)=1

α(8d1w + kd2z
2)

=
d2∑

w=1
(w,d2)=1

8d1∑
z=1

(z,8d1)=1

∑
y

a(y)eD((8d1w + kd2z
2)y)

= a(0)φ(8d1d2) +
∑
y 6=0

a(y)
∑
w

∑
z

eD(8d1yw)eD(kd2yz2)

= a(0)φ(8d1d2) + Error, say.

To estimate the error term we first observe that if δ2 = (d2, y) then
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d2∑
w=1

(w,d2)=1

ed2(yw) =
∑
δ | δ2

µ

(
d2

δ

)
δ = µ

(
d2

δ2

) ∑
δ | δ2

µ

(
δ2

δ

)
δ

= µ

(
d2

δ

)
φ(δ2) .

Thus by Lemma 1 we have

|Error| ≤
∑

δ1 | 8d1

∑
δ2 | d2

∑
y 6=0

(y,8d1)=δ1
(y,d2)=δ2

|a(y)|
∣∣∣ ∑

w

ed2(yw)
∣∣∣∣∣∣ ∑

z

e8d1(kyz2)
∣∣∣

≤ 4
∑

δ1 | 8d1

∑
δ2 | d2

φ(δ2)
∏
p | d1
p | δ1

(p− 1)
∏
p | d1
p - δ1

(1 +
√

p)
∑
y 6=0

(y,8d1)=δ1
(y,d2)=δ2

|a(y)| .

Set

y = δ1δ2γ with γ = −
[
4d1d2

δ1δ2

]
+ 1, . . . ,

[
4d1d2

δ1δ2

]
, γ 6= 0 .

We split the sum over y into two pieces. Suppose first that δ1δ2 ≤ 2d1d2/M .
Then, using (2) and (3) we have∑

γ

|a(δ1δ2γ)| =
∑

|γ|≤
[

4d1d2
δ1δ2M

] M2

D
+

∑
|γ|≥

[
4d1d2
δ1δ2M

]
+1

D

4(δ1δ2)2γ2
.

Now
∞∑

γ=N+1

1
γ2

≤
∞∫

N

1
x2

dx =
1
N

for N ≥ 1 ,

and [
4d1d2

δ1δ2M

]
≥ 4d1d2

δ1δ2M
− 1 ≥ 2d1d2

δ1δ2M
for δ1δ2 <

2d1d2

M
.

Thus, ∑
γ

|a(δ1δ2γ)| ≤ 2
M2

D
· 4d1d2

δ1δ2M
+ 2

D

4(δ1δ2)2
· δ1δ2M

2d1d2
=

3M

δ1δ2
.

Suppose now that δ1δ2 ≥ 2d1d2/M . Then∑
γ

|a(δ1δ2γ)| < 2d1d2

(δ1δ2)2
∑
|γ|≥1

1
γ2

≤ M

δ1δ2

π2

3
.
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Thus for any choice of δ1, δ2 we have∑
y 6=0

(y,8d1)=δ1
(y,d2)=δ2

|a(y)| < π2

3
M

δ1δ2
,

and so,

|Error| < 4
3
π2M

[ ∑
δ1 | 8d1

1
δ1

∏
p | d1
p | δ1

(p− 1)
∏
p | d1
p - δ1

(1 +
√

p)
]( ∑

δ2 | d2

φ(δ2)
δ2

)

<
4
3
π2M2

∏
p | d1

(2 +
√

p)
∏
p | d2

(
2− 1

p

)
.

Now, the sum of interest is positive provided that

M2 · 1
2

∏
p | d1d2

(
1− 1

p

)
> |Error| .

It suffices to take

M ≥ 16
3

π2
∏
p | d1

2 +
√

p

1− 1/p

∏
p | d2

2− 1/p

1− 1/p
,

whence (1) is obtained.
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