On representing the multiple of a number by a quadratic form

by

TODD COCHRANE (Manhattan, Kan.)

Let $Q(\mathbf{x}) = \sum_{i \leq j} c_{ij} x_i x_j$ be a quadratic form in n variables with integral coefficients. Write $Q(\mathbf{x}) = \frac{1}{2} \mathbf{x} A \mathbf{x}^t$ where $A = [a_{ij}]$ is a symmetric $n \times n$ matrix with entries $a_{ii} = 2c_{ii}$ and $a_{ij} = c_{ij}$ for i < j. Set $d = d(Q) = \det A$. We say Q is primitive if the coefficients c_{ij} are relatively prime, and nonsingular if $d \neq 0$. This paper addresses the following problem: Given a positive integer m what is the smallest nonzero integer λ (in absolute value) such that λm is represented over \mathbb{Z} by Q, that is,

$$Q(\mathbf{x}) = \lambda m$$

is solvable over \mathbb{Z} . Grant [6] has shown that for positive definite forms in $n \geq 4$ variables there exists a constant $c_0(Q)$, depending on Q, such that for any positive integer m (1) is solvable for some λ with $0 < \lambda < c_0(Q)$. We extend his result in our first theorem.

THEOREM 1. (i) For any nonsingular quadratic form Q in $n \geq 3$ variables there exists a constant $c_1(Q)$, depending only on Q, such that for any positive integer m, (1) is solvable for some λ with $0 < |\lambda| < c_1(Q)$. (λ can be taken positive or negative if Q is indefinite.)

(ii) If n=2 the same result holds true provided that for any odd prime p dividing m to an odd multiplicity either $p \mid d$ or $\left(\frac{-d}{p}\right) = 1$.

We note that when n=2, the condition given in part (ii) of the theorem is also a necessary condition, for if p is an odd prime dividing m to an odd multiplicity and $\left(\frac{-d}{p}\right) = -1$, then whenever $Q(\mathbf{x}) = \lambda m$ is solvable it follows that $p \mid \lambda$, and consequently $|\lambda| \geq p$.

COROLLARY. Let $Q(\mathbf{x})$ be a quadratic form in $n \geq 3$ variables. Then for any positive integer m the congruence $Q(\mathbf{x}) \equiv 0 \pmod{m}$ has a nonzero solution \mathbf{x} with $\max |x_i| \leq c(Q)m^{1/2}$, where c(Q) is a constant depending only on Q. The same result holds when n = 2 for any value of m satisfying the hypothesis of Theorem 1(ii).

This Corollary generalizes the result of [6]. The Corollary is immediate from Theorem 1 in case Q is a definite form, but requires Lemma 2 for indefinite forms. Of course, the real interest is in obtaining the result of the Corollary with c(Q) replaced by a constant depending only on n (for $n \geq 4$). There has been a lot of work in this direction; see Schinzel, Schlickewei and Schmidt [11], Heath-Brown [7], [8], Sander [10], and Cochrane [4], [5].

We now seek the best possible value of λ . When m=1 the problem reduces to finding the minimum nonzero value of $|Q(\mathbf{x})|$ as \mathbf{x} runs through \mathbb{Z}^n . It is well known (see e.g. [2, Lemma 3.1, p. 135]) that for $n \geq 1$ there exists a constant k(n), depending only on n, such that if $Q(\mathbf{x})$ is nonsingular then there exists an integral \mathbf{x} with $0 < |Q(\mathbf{x})| \leq k(n)|d|^{1/n}$. We are led to ask the following

QUESTION. For $n \geq 4$ does there exist a constant c(n) depending only on n such that if $Q(\mathbf{x})$ is a nonsingular form in n variables and m is any positive integer, then (1) is solvable for some nonzero λ with $|\lambda| < c(n)|d|^{1/n}$?

It suffices to consider the case of primitive quadratic forms, for if $Q = aQ_1$ with Q_1 primitive and \mathbf{x}_0 is such that $Q_1(\mathbf{x}_0) = \lambda_0 m$ with $0 < |\lambda_0| < c(n)|d(Q_1)|^{1/n}$, then $Q(\mathbf{x}_0) = (a\lambda_0)m$ and $0 < |a\lambda_0| < c(n)|d(Q)|^{1/n}$. This observation also indicates that one can do no better than $|d|^{1/n}$ for imprimitive forms. However, for primitive forms we can do better.

THEOREM 2. There exist constants $c_2(n)$, $c_3(Q)$ and $c_4(d)$ depending only on n, Q and d respectively such that for any nonsingular primitive quadratic form Q we have the following.

(i) If Q is indefinite and $n \ge 4$ then, for any m > 0, (1) is solvable for some λ with

(2)
$$0 < \lambda < c_2(n)d_0^{1/(2(n-2))}$$

where d_0 is the odd part of |d|. (A value for $c_2(n)$ can be easily calculated from the proof given here.)

(ii) If Q is definite, n=4, $m=m_1m_2^2$ with m_1 square free and $m_1 \ge c_4(d)$, or Q is definite, $n \ge 5$ and $m \ge c_3(Q)$ then the same bound (2) holds for m, with λ replaced by $-\lambda$ for negative definite forms. (The constants $c_3(Q)$ and $c_4(d)$ are those given in Lemmas 4 and 5 respectively.)

The upper bound $d_0^{1/(2(n-2))}$ in (2) is easily seen to be best possible. Consider for example the form $Q(\mathbf{x}) = x_1^2 + x_2^2 + m^2(x_3^2 + \ldots + x_n^2)$ where m is a product of distinct odd primes p satisfying $\left(\frac{-1}{p}\right) = -1$. Then any nonzero solution of $Q(\mathbf{x}) = \lambda m$ must satisfy $m \mid \lambda$ and hence $|\lambda| \geq m = d_0^{1/(2(n-2))}$. This example also shows that the best one can hope for with n = 3 is

 $\lambda \ll |d|^{1/2}$. Theorem 2 establishes an affirmative answer to the question above for indefinite forms in $n \geq 4$ variables. The question remains open for definite forms in general but the following theorem lends further support to an affirmative answer.

Theorem 3. Let $Q(\mathbf{x})$ be a positive definite form in an even number of variables and $m = m_1^2 m_2$ with m_2 positive and square free. Suppose that for each odd prime divisor p of m_2 either $p \mid d$ or $\left(\frac{(-1)^{n/2}d}{p}\right) = 1$. Then (1) is solvable for some λ with

(3)
$$0 < \lambda \le \frac{4}{(B_n(1))^{2/n}} d^{1/n},$$

where $B_n(1)$ is the volume of a ball of radius 1 in \mathbb{R}^n .

Lemmas. The idea for the proofs of Theorems 1 and 2 is quite simple. We make use of classical results that imply that under appropriate conditions (1) is solvable over \mathbb{Z} if it is solvable over every local ring \mathbb{Z}_p ; see Lemmas 1, 3, 4 and 5. Thus our problem reduces to finding a small value of λ such that (1) is solvable everywhere locally and this just amounts to having λ divisible by certain primes dividing d(Q) and satisfying certain quadratic residuacity conditions for other primes dividing d(Q). Theorem 3 follows from Lemma 6 and a standard argument from the geometry of numbers.

LEMMA 1 [13, Theorem 52]. Let q be a nonzero integer and Q be a nonsingular quadratic form in $n \geq 3$ variables. Then there exists a nonzero integer k = k(q,Q) with (k,q) = 1 such that if $a \in \mathbb{Z}$ is such that $k^2 \mid a$, aQ is indefinite or positive definite, and $Q(\mathbf{x}) \equiv a \pmod{t}$ is solvable for all nonzero t, then $Q(\mathbf{x}) = a$ is solvable over \mathbb{Z} .

LEMMA 2 (Watson [15]). Let Q be a quadratic form that does not represent zero nontrivially over \mathbb{Z} . Then for any integer a represented by Q there is a representation $Q(\mathbf{x}) = a$ with $\max |x_i| \leq \gamma(Q)|a|^{1/2}$, where $\gamma(Q)$ is a constant depending only on Q.

LEMMA 3 [2, Theorem 1.5, p. 131]. Let Q be a nonsingular, indefinite form in $n \geq 4$ variables and $a \neq 0 \in \mathbb{Z}$. If a is represented by Q over all \mathbb{Z}_p , then a is represented by Q over \mathbb{Z} . (Cassels's book [2] deals with quadratic forms with even coefficients c_{ij} , for $i \neq j$, but the result extends to general quadratic forms.)

LEMMA 4 (Tartakovskiĭ [12]). For any positive definite quadratic form in $n \geq 5$ variables there is a constant $c_3(Q)$ depending only on Q such that for any integer $a > c_3(Q)$, if $Q(\mathbf{x}) \equiv a \pmod{t}$ is solvable for all nonzero t then $Q(\mathbf{x}) = a$ is solvable over \mathbb{Z} .

LEMMA 5 (Linnik, Malyshev [9]). There exists a constant $c_4(d)$ such that for any positive definite quadratic form Q in n=4 variables, with d=d(Q), and any square free integer $a > c_4(d)$ such that $Q(\mathbf{x}) \equiv a \pmod{t}$ is solvable for all nonzero t, the equation $Q(\mathbf{x}) = a$ is solvable over \mathbb{Z} .

LEMMA 6 (Cochrane [3]). Let $F(\mathbf{x})$ be a form of any degree over \mathbb{Z} and $m = p_1 p_2 \dots p_k$ be a product of distinct primes. Suppose that for $i = 1, 2, \dots, k$ the congruence $F(\mathbf{x}) \equiv 0 \pmod{p_i}$ has a subspace of solutions of dimension d_i . Then there exists a lattice of solutions of the congruence $F(\mathbf{x}) \equiv 0 \pmod{m}$ of volume $\prod_{i=1}^k p_i^{n-d_i}$.

LEMMA 7. For any primitive quadratic form Q over \mathbb{Z} in $n \geq 2$ variables there exists an odd number a_0 such that for any $a \equiv a_0 \pmod{8}$ the equation $Q(\mathbf{x}) = a$ is solvable over \mathbb{Z}_2 .

Proof. Since Q is primitive it represents some odd number a_0 over \mathbb{Z} . Now if $a \equiv a_0 \pmod 8$ then $a = a_0b^2$ for some 2-adic integer b. Thus Q represents a over the 2-adic integers.

Proof of Theorem 1(i). We may assume that Q is primitive and that m is square free and relatively prime to 8d (see [6]). Since Q is primitive it represents some integer A (over \mathbb{Z}) relatively prime to 2d. Then for any integer B with $B \equiv A \pmod{8d}$, it follows that Q represents B over every local ring \mathbb{Z}_p .

Let k = k(q, Q) be as given in Lemma 1 with q = 8d. In particular, (k, 8d) = 1. Let β be such that $\beta k^2 m \equiv A \pmod{8d}$. Select β so that $0 < \beta < 8|d|$ if Q is indefinite or positive definite and $-8|d| < \beta < 0$ if Q is negative definite. Set $\lambda = \beta k^2$. Then λmQ is indefinite or positive definite, $k^2 \mid \lambda$, and $Q(\mathbf{x}) \equiv \lambda m \pmod{p^i}$ is solvable for all prime powers p^i . Thus, by Lemma 1, $Q(\mathbf{x}) = \lambda m$ is solvable over \mathbb{Z} , and $|\lambda| \leq 8|d|k^2$.

Proof of Theorem 1(ii). Again we may assume that m is an odd square free integer. For each prime $p \mid m$ the congruence $Q(\mathbf{x}) \equiv 0 \pmod{p}$ has a nonzero solution (mod p) (since $p \mid d$ or $\left(\frac{-d}{p}\right) = 1$), and thus by Lemma 6 the congruence $Q(\mathbf{x}) \equiv 0 \pmod{m}$ has a lattice of solutions of volume m. Then by Minkowski's theorem there is a nonzero solution \mathbf{x} of the congruence $Q(\mathbf{x}) \equiv 0 \pmod{m}$ with $\max |x_i| < m^{1/2}$. For this \mathbf{x} we have $Q(\mathbf{x}) = \lambda m$ with $|\lambda| < |c_{11}| + |c_{12}| + |c_{22}|$. If $\lambda = 0$ then $Q(\mathbf{x})$ represents 0 over \mathbb{Z} and we may assume without loss of generality that $Q(\mathbf{x}) = x_2(c_{12}x_1 + c_{22}x_2)$, with $c_{12} \neq 0$. In this case set $x_2 = m$, choose x_1 so that $0 < |c_{12}x_1 + c_{22}m| \le |c_{12}|$ and set $\lambda' = c_{12}x_1 + c_{22}m$. Then $Q(\mathbf{x}) = \lambda' m$ with $0 < |\lambda'| \le |c_{12}|$.

Proof of Corollary. If Q represents 0 nontrivially over \mathbb{Z} the result is trivial, indeed one obtains a solution of $Q(\mathbf{x}) \equiv 0 \pmod{m}$ with $\max |x_i| \leq c(Q)$. Suppose now that Q does not represent 0 nontrivially.

In particular, Q is nonsingular. Let λ , m be such that $0 < |\lambda| < c_1(Q)$ and (1) is solvable. Then by Lemma 2 there exists an $\mathbf{x} \in \mathbb{Z}^n$ such that $Q(\mathbf{x}) = \lambda m$, with $0 < \max |x_i| \le \gamma(Q)(\lambda m)^{1/2}$. Thus $Q(\mathbf{x}) \equiv 0 \pmod{m}$ and $0 < \max |x_i| \le \gamma(Q)c_1(Q)^{1/2}m^{1/2}$. (If Q is definite one can be more precise and obtain $0 < \max |x_i| \le |\lambda/\beta|^{1/2}m^{1/2}$ where $|\beta|$ is the minimum modulus of the eigenvalues of Q.)

Proof of Theorem 2. Let Q be a nonsingular primitive quadratic form of determinant d and m be a positive integer. We may assume that m is odd and square free (for in general, if $m = m_1^2 2^e m_0$ with m_0 odd, square free, and e = 0 or 1, and λ is such that (2) holds and $Q(\mathbf{x}) = \lambda m_0$ for some $\mathbf{x} \in \mathbb{Z}^n$, then $Q(m_1 2^e \mathbf{x}) = 2^e \lambda m$). Now for any odd prime p, Q is equivalent over \mathbb{Z}_p to one of the following types of forms:

- (i) $\alpha_1 x_1^2 + \alpha_2 x_2^2 + \alpha_3 x_3^2 + Q'(x_4, \dots, x_n)$,
- (ii) $\alpha_1 x_1^2 + \alpha_2 x_2^2 + p \alpha_3 x_3^2 + p \alpha_4 x_4^2 + p Q'(x_5, \dots, x_n), p^{n-2} \mid d$,
- (iii) $\alpha_1 x_1^2 + \alpha_2 x_2^2 + p \alpha_3 x_3^2 + p^2 Q'(x_4, \dots, x_n), p^{2n-5} \mid d$,
- (iv) $\alpha_1 x_1^2 + \alpha_2 x_2^2 + p^2 \alpha_3 x_3^2 + p^2 Q'(x_4, \dots, x_n), p^{2(n-2)} \mid d$,
- (v) $\alpha_1 x_1^{\frac{1}{2}} + \alpha_2 x_2^{\frac{1}{2}} + p^3 Q'(x_3, \dots, x_n), p^{3(n-2)} \mid d$,
- (vi) $\alpha_1 x_1^2 + p \alpha_2 x_2^2 + p Q'(x_3, \dots, x_n), p^{n-1} \mid d$,
- (vii) $\alpha_1 x_1^2 + p^2 \alpha_2 x_2^2 + p^2 Q'(x_3, \dots, x_n), p^{2(n-1)} \mid d$,
- (viii) $\alpha_1 x_1^2 + p^j Q'(x_2, \dots, x_n), j \ge 3, p^{3(n-1)} | d,$

where α_1 , α_2 , α_3 are integers not divisible by p, and Q' is a quadratic form with integer coefficients. Next to each form we have put a power of p dividing d (not necessarily the largest power). Write

$$d = 2^e d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8$$
,

where d_k consists of primes p such that Q is of type (k), $1 \le k \le 8$, and

$$m = m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8 m_9$$
,

where $m_i | d_i, 1 \le i \le 8$, and $(m_9, d) = 1$.

Our goal is to obtain a small value of λ such that $Q(\mathbf{x}) = \lambda m$ is solvable over \mathbb{Z}_p for all p. By considering appropriate examples it is clear that λ must be divisible by $m_4m_5m_7m_8$ in order to succeed in general, thus we consider instead the equation

$$Q(\mathbf{x}) = \lambda m_4 m_5 m_7 m_8 m = \lambda M,$$

say, where $M = m_4 m_5 m_7 m_8 m$. We consider in turn solving (4) over \mathbb{Z}_p for the various odd primes p. For simplicity we shall assume that Q equals one of the eight canonical types given above (for a given prime p) and say that (4) is solvable if it is solvable over \mathbb{Z}_p .

- (i) If $p \nmid d$ or $p \mid d_1$ (so that Q is of type (i)), then (4) is solvable for any λ .
- (ii) If $p \mid d_2$ and $p \nmid m_2$ then (4) is solvable for any $\lambda \not\equiv 0 \pmod{p}$ (just put $x_3 = \ldots = x_n = 0$). If $p \mid m_2$, then we set $x_1 = x_2 = 0$, and consider $\alpha_3 x_3^2 + \alpha_4 x_4^2 = \lambda M/p$, which again is solvable for any $\lambda \not\equiv 0 \pmod{p}$.
- (iii) If $p \mid d_3$ and $p \nmid m_3$ then (4) is solvable for $\lambda \not\equiv 0 \pmod{p}$. If $p \mid m_3$, we set $x_1 = x_2 = 0$ and are left with $\alpha_3 x_3^2 = \lambda M/p$, which is solvable provided $\left(\frac{\lambda}{p}\right) = \left(\frac{\alpha_3 M/p}{p}\right)$.
- (iv) If $p \mid d_4$ and $p \nmid m_4$ then (4) is solvable for $\lambda \not\equiv 0 \pmod{p}$. If $p \mid m_4$ then we set $x_1 = py_1$, $x_2 = py_2$ and consider $\alpha_1 y_1^2 + \alpha_2 y_2^2 + \alpha_3 x_3^2 = \lambda M/p^2$, which is solvable for any λ .
 - (v) If $p \mid d_5$ then as in (iv), (4) is solvable for any $\lambda \not\equiv 0 \pmod{p}$.
- (vi) If $p \mid d_6$ and $p \nmid m_6$ then (4) is solvable provided $\left(\frac{\lambda}{p}\right) = \left(\frac{\alpha_1 M}{p}\right)$. If $p \mid m_6$ then (4) is solvable provided $\left(\frac{\lambda}{p}\right) = \left(\frac{\alpha_2 M/p}{p}\right)$.
- (vii) If $p \mid d_7$ and $p \nmid m_7$ then (4) is solvable provided $\left(\frac{\lambda}{p}\right) = \left(\frac{\alpha_1 M}{p}\right)$. If $p \mid m_7$ then we set $x_1 = py_1$ and consider $\alpha_1 y_1^2 + \alpha_2 x_2^2 = \lambda M/p^2$, which is solvable for $\lambda \not\equiv 0 \pmod{p}$.
- (viii) If $p \mid d_8$ and $p \nmid m_8$ then (4) is solvable provided $\left(\frac{\lambda}{p}\right) = \left(\frac{\alpha_1 M}{p}\right)$. If $p \mid m_8$, then setting $x_1 = py_1$ we see that (4) is solvable provided $\left(\frac{\lambda}{p}\right) = \left(\frac{\alpha_1 M/p^2}{p}\right)$.

In summary, we see that (4) is solvable for all primes p (including p=2) if λ is such that

$$\lambda M \equiv a_0 \pmod{8},$$

(6)
$$\left(\frac{\lambda}{p}\right) = (-1)^{e_p} \quad \text{for } p \mid d_3 d_6 d_7 d_8, \ p \nmid m_7,$$

and

(7)
$$p \nmid \lambda \quad \text{for } p \mid d_2 d_4 d_5 m_7, \ p \nmid m_4$$

where a_0 is the value given in Lemma 6, and the values e_p are as indicated above. Set

$$P = \prod_{\substack{p \mid d_3d_6d_7d_8\\p \nmid m_7}} p \quad \text{(a product over distinct primes)}\,.$$

By standard arguments one can obtain a solution of (5), (6) and (7) with $\lambda \ll \sqrt{P}$, but lacking a convenient reference we have included an appendix to suit our particular needs. By Lemma 2 of the appendix there is a value of λ satisfying (5), (6) and (7) with

(8)
$$0 < \lambda < \frac{32}{3} \pi^2 \sqrt{P} \prod_{p \mid P} \frac{1 + 2/\sqrt{p}}{1 - 1/p} \prod_{\substack{p \mid d_2 d_4 d_5 m_7 \\ n \nmid m_s}} \frac{2 - 1/p}{1 - 1/p}.$$

Now, by the divisibility conditions given next to the canonical forms (i) to (viii) above we have

$$\prod_{p \mid d_2} p^{n-2} \prod_{p \mid d_3} p^{2n-5} \prod_{p \mid d_4} p^{2n-4} \prod_{p \mid d_5} p^{3n-6} \prod_{p \mid d_6} p^{n-1} \prod_{p \mid d_7} p^{2n-2} \prod_{p \mid d_8} p^{3n-3} \mid d_0,$$

where d_0 is the odd part of d, and so

$$\begin{split} & \prod_{p \mid d_2} p^{1/2} \prod_{p \mid d_3} p^{(2n-5)/(2n-4)} \prod_{p \mid d_4} p \prod_{p \mid d_5} p^{3/2} \\ & \times \prod_{p \mid d_6} p^{(n-1)/(2n-4)} \prod_{p \mid d_7} p^{(n-1)/(n-2)} \prod_{p \mid d_8} p^{(3n-3)/(2n-4)} \leq d_0^{1/(2(n-2))} \,. \end{split}$$

Thus, by (4) and (8), the equation $Q(\mathbf{x}) = \lambda m$ is solvable over \mathbb{Z}_p , for all primes p, for some λ with

$$0 < \lambda < \frac{32}{3}\pi^{2}m_{4}m_{5}m_{7}m_{8} \prod_{\substack{p \mid d_{3}d_{6}d_{7}d_{8} \\ p \nmid m_{7}}} p^{1/2} \frac{1 + 2/\sqrt{p}}{1 - 1/p} \prod_{\substack{p \mid d_{2}d_{4}d_{5}m_{7} \\ p \nmid m_{4}}} \frac{2 - 1/p}{1 - 1/p}$$

$$\leq \frac{32}{3}\pi^{2} \prod_{\substack{p \mid d_{2}}} \frac{2 - 1/p}{1 - 1/p} \prod_{\substack{p \mid d_{3}}} p^{1/2} \frac{1 + 2/\sqrt{p}}{1 - 1/p} \prod_{\substack{p \mid d_{4}}} p \prod_{\substack{p \mid d_{5}}} p^{2 - 1/p} \frac{2 - 1/p}{1 - 1/p}$$

$$\times \prod_{\substack{p \mid d_{6}}} p^{1/2} \frac{1 + 2/\sqrt{p}}{1 - 1/p} \prod_{\substack{p \mid d_{7}}} p^{2 - 1/p} \prod_{\substack{p \mid d_{8}}} p^{3/2} \frac{1 + 2/\sqrt{p}}{1 - 1/p}$$

$$\leq c_{2}(n) d_{0}^{1/(2(n-2))},$$

where $c_2(n)$ is an easily calculable constant depending only on n. Theorem 2 now follows from Lemmas 3, 4 and 5.

Proof of Theorem 3. Suppose first that m_2 is odd. Then for any prime divisor p of m_2 there exists a subspace of solutions of the congruence $Q(\mathbf{x}) \equiv 0 \pmod{p}$ of dimension n/2; see [3, Lemma 3]. Thus, by Lemma 6 there exists a lattice \mathcal{L} of solutions of the congruence $Q(\mathbf{x}) \equiv 0 \pmod{m_2}$ of volume $m_2^{n/2}$. Let \mathcal{R} be the convex region in \mathbb{R}^n defined by $Q(\mathbf{x}) \leq r^2$. Then the volume of \mathcal{R} is $2^{n/2}r^nB_n(1)/\sqrt{d}$ where $B_n(1)$ is the volume of an n-ball of radius 1. By Minkowski's theorem \mathcal{R} contains a nonzero point \mathbf{x} of \mathcal{L} if $r^2 \geq 2d^{1/n}m_2/B_n(1)^{2/n}$. Thus $Q(\mathbf{x}) = \lambda m_2$ with $0 < \lambda < 2d^{1/n}/B_n(1)^{2/n}$, and $Q(m_1\mathbf{x}) = \lambda m$. If m_2 is even, say $m_2 = 2m_3$, and \mathbf{x} satisfies $Q(\mathbf{x}) = \lambda m_3$ with λ as above, then $Q(2\mathbf{x}) = (2\lambda)m_2$ and $Q(2m_1\mathbf{x}) = (2\lambda)m$, with 2λ satisfying (3).

Note. If the odd square free part of m is relatively prime to d then the value $d_0^{1/(2(n-2))}$ in (2) can be replaced by

$$d_0^{1/(2(n-1))} \prod_{p \mid d_0} \frac{1 + 2/\sqrt{p}}{1 - 1/p}.$$

In particular, taking m to be one we conclude that for any indefinite, primitive nonsingular quadratic form Q in $n \geq 4$ variables there exists an $\mathbf{x} \in \mathbb{Z}^n$ such that

$$0 < Q(\mathbf{x}) < c_4(n) d_0^{1/(2(n-1))} \prod_{p \mid d_0} \frac{1 + 2/\sqrt{p}}{1 - 1/p}.$$

Watson [14] had shown earlier that for such forms in $n \geq 3$ variables an **x** exists with

$$0 < Q(\mathbf{x}) < c(\varepsilon)|d|^{1/(2(n-1))+\varepsilon}$$
.

Appendix

Lemma 1. Let n be any integer and m be a square free product of odd primes. Then

$$\left| \sum_{\substack{x=0 \ (x,8m)=1}}^{8m-1} e^{2\pi i n x^2/(8m)} \right| \le 4 \prod_{\substack{p \mid m \ p \nmid n}} (1+\sqrt{p}) \prod_{\substack{p \mid m \ p \mid n}} (p-1).$$

Proof. Say $m = p_1 p_2 \dots p_k$ and set

$$x = x_1 \frac{8m}{p_1} + x_2 \frac{8m}{p_2} + \ldots + x_k \frac{8m}{p_k} + x_{k+1}m$$

where x_i runs through $1, 2, \ldots, p_i - 1$ for $1 \le i \le k$ and x_{k+1} runs through 1, 3, 5, 7. Then

$$\left| \sum_{\substack{x=0 \ (x,8m)=1}}^{8m-1} e^{2\pi i n x^2/(8m)} \right|$$

$$= \left| \sum_{x_1} \dots \sum_{x_{k+1}} \exp\left(\frac{2\pi i n}{8m} \left(x_1^2 \frac{64m^2}{p_1^2} + \dots + x_k^2 \frac{64m^2}{p_k^2} + x_{k+1}^2 m^2\right)\right) \right|$$

$$\leq 4 \prod_{i=1}^k \left| \sum_{x_i} \exp\left(\frac{2\pi i n (8m/p_i) x_i^2}{p_i}\right) \right| \leq 4 \prod_{x_i \in \mathbb{Z}} (p_i - 1) \prod_{x_i \in \mathbb{Z}} (1 + \sqrt{p_i}).$$

LEMMA 2. Let $D = 8d_1d_2$ where d_1 , d_2 are square free products of odd primes with $(d_1, d_2) = 1$. Let c be any integer with (c, D) = 1. Then there

exists $a \lambda \in \mathbb{Z}$ with $(\lambda, D) = 1$ and

(1)
$$0 < \lambda \le \frac{32}{3} \pi^2 \sqrt{d_1} \prod_{p \mid d_1} \frac{1 + 2/\sqrt{p}}{1 - 1/p} \prod_{p \mid d_2} \frac{2 - 1/p}{1 - 1/p}$$

such that $cz^2 \equiv \lambda \pmod{8d_1}$ for some z with $(z, 8d_1) = 1$.

Proof. Write $x=8d_1w+kd_2z^2$ where k is any integer satisfying $d_2k\equiv c\pmod{8d_1}$, w is such that $(w,d_2)=1$ and z is such that $(z,8d_1)=1$. Then $x\equiv cz^2\pmod{8d_1}$ and (x,D)=1. Thus our goal is to find w, z such that x is small \pmod{D} . Let $I=\{0,1,2,\ldots,M-1\}$ where $M\in\mathbb{Z},\ M< D$, let χ_I be the characteristic function of $I\pmod{D}$ and $\alpha=\chi_I*\chi_I$. Then α has a Fourier expansion

$$\alpha(x) = \sum_{y=-4d_1d_2+1}^{4d_1d_2} a(y)e_D(xy), \quad \text{where } e_D(\) = e^{2\pi i(\)/D},$$

and for $y \neq 0$,

$$|a(y)| = \frac{1}{D} \frac{\sin^2(\pi M y/D)}{\sin^2(\pi y/D)}.$$

In particular, for $|y| \le 4d_1d_2$ we have

$$|a(y)| \le M^2/D$$

and

(3)
$$|a(y)| \le D/(4y^2)$$
 for $y \ne 0$.

Our goal is to show the following sum is positive for M sufficiently large:

$$\sum_{\substack{w=1\\ (w,d_2)=1}}^{d_2} \sum_{\substack{z=1\\ (z,8d_1)=1}}^{8d_1} \alpha(8d_1w + kd_2z^2)$$

$$= \sum_{\substack{w=1\\ (w,d_2)=1}}^{d_2} \sum_{\substack{z=1\\ (z,8d_1)=1}}^{8d_1} \sum_{y} a(y)e_D((8d_1w + kd_2z^2)y)$$

$$= a(0)\phi(8d_1d_2) + \sum_{y\neq 0} a(y) \sum_{w} \sum_{z} e_D(8d_1yw)e_D(kd_2yz^2)$$

$$= a(0)\phi(8d_1d_2) + \text{Error}, \quad \text{say.}$$

To estimate the error term we first observe that if $\delta_2 = (d_2, y)$ then

$$\begin{split} \sum_{\substack{w=1\\ (w,d_2)=1}}^{d_2} e_{d_2}(yw) &= \sum_{\delta \mid \delta_2} \mu\bigg(\frac{d_2}{\delta}\bigg) \delta = \mu\bigg(\frac{d_2}{\delta_2}\bigg) \sum_{\delta \mid \delta_2} \mu\bigg(\frac{\delta_2}{\delta}\bigg) \delta \\ &= \mu\bigg(\frac{d_2}{\delta}\bigg) \phi(\delta_2) \,. \end{split}$$

Thus by Lemma 1 we have

$$\begin{aligned} |\text{Error}| &\leq \sum_{\delta_{1} \mid 8d_{1}} \sum_{\delta_{2} \mid d_{2}} \sum_{\substack{y \neq 0 \\ (y,8d_{1}) = \delta_{1} \\ (y,d_{2}) = \delta_{2}}} |a(y)| \Big| \sum_{w} e_{d_{2}}(yw) \Big| \Big| \sum_{z} e_{8d_{1}}(kyz^{2}) \Big| \\ &\leq 4 \sum_{\delta_{1} \mid 8d_{1}} \sum_{\delta_{2} \mid d_{2}} \phi(\delta_{2}) \prod_{\substack{p \mid d_{1} \\ p \mid \delta_{1}}} (p-1) \prod_{\substack{p \mid d_{1} \\ p \nmid \delta_{1}}} (1+\sqrt{p}) \sum_{\substack{y \neq 0 \\ (y,8d_{1}) = \delta_{1} \\ (y,d_{2}) = \delta_{2}}} |a(y)| \,. \end{aligned}$$

Set

$$y = \delta_1 \delta_2 \gamma$$
 with $\gamma = -\left[\frac{4d_1d_2}{\delta_1\delta_2}\right] + 1, \dots, \left[\frac{4d_1d_2}{\delta_1\delta_2}\right], \ \gamma \neq 0.$

We split the sum over y into two pieces. Suppose first that $\delta_1 \delta_2 \leq 2d_1 d_2/M$. Then, using (2) and (3) we have

$$\sum_{\gamma} |a(\delta_1 \delta_2 \gamma)| = \sum_{|\gamma| \le \left[\frac{4d_1 d_2}{\delta_1 \delta_2 M}\right]} \frac{M^2}{D} + \sum_{|\gamma| \ge \left[\frac{4d_1 d_2}{\delta_1 \delta_2 M}\right] + 1} \frac{D}{4(\delta_1 \delta_2)^2 \gamma^2}.$$

Now

$$\sum_{\gamma=N+1}^{\infty} \frac{1}{\gamma^2} \le \int_{N}^{\infty} \frac{1}{x^2} dx = \frac{1}{N} \quad \text{for } N \ge 1,$$

and

$$\left\lceil \frac{4d_1d_2}{\delta_1\delta_2M} \right\rceil \geq \frac{4d_1d_2}{\delta_1\delta_2M} - 1 \geq \frac{2d_1d_2}{\delta_1\delta_2M} \quad \text{ for } \delta_1\delta_2 < \frac{2d_1d_2}{M}$$

Thus,

$$\sum_{\gamma} |a(\delta_1 \delta_2 \gamma)| \leq 2 \frac{M^2}{D} \cdot \frac{4d_1 d_2}{\delta_1 \delta_2 M} + 2 \frac{D}{4(\delta_1 \delta_2)^2} \cdot \frac{\delta_1 \delta_2 M}{2d_1 d_2} = \frac{3M}{\delta_1 \delta_2}.$$

Suppose now that $\delta_1 \delta_2 \geq 2d_1 d_2/M$. Then

$$\sum_{\gamma} |a(\delta_1 \delta_2 \gamma)| < \frac{2d_1 d_2}{(\delta_1 \delta_2)^2} \sum_{|\gamma| > 1} \frac{1}{\gamma^2} \le \frac{M}{\delta_1 \delta_2} \frac{\pi^2}{3}.$$

Thus for any choice of δ_1 , δ_2 we have

$$\sum_{\substack{y \neq 0 \\ (y,8d_1) = \delta_1 \\ (y,d_2) = \delta_2}} |a(y)| < \frac{\pi^2}{3} \, \frac{M}{\delta_1 \delta_2} \,,$$

and so,

$$|\text{Error}| < \frac{4}{3}\pi^{2}M \left[\sum_{\delta_{1} \mid 8d_{1}} \frac{1}{\delta_{1}} \prod_{\substack{p \mid d_{1} \\ p \mid \delta_{1}}} (p-1) \prod_{\substack{p \mid d_{1} \\ p \nmid \delta_{1}}} (1+\sqrt{p}) \right] \left(\sum_{\delta_{2} \mid d_{2}} \frac{\phi(\delta_{2})}{\delta_{2}} \right)$$

$$< \frac{4}{3}\pi^{2}M2 \prod_{p \mid d_{1}} (2+\sqrt{p}) \prod_{p \mid d_{2}} \left(2 - \frac{1}{p} \right).$$

Now, the sum of interest is positive provided that

$$M^2 \cdot \frac{1}{2} \prod_{p \mid d_1 d_2} \left(1 - \frac{1}{p} \right) > |\text{Error}|.$$

It suffices to take

$$M \ge \frac{16}{3}\pi^2 \prod_{p|d_1} \frac{2+\sqrt{p}}{1-1/p} \prod_{p|d_2} \frac{2-1/p}{1-1/p},$$

whence (1) is obtained.

References

- [1] Z. I. Borevich and I. R. Shafarevich, *Number Theory*, Academic Press, New York 1966.
- [2] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, New York 1978.
- T. Cochrane, Small solutions of congruences over algebraic number fields, Illinois J. Math. 31 (1987), 618–625.
- [4] —, Small zeros of quadratic congruences modulo pq, Mathematika 37 (1990), 261–272.
- [5] —, Small zeros of quadratic forms modulo p, III, J. Number Theory 37 (1) (1991), 92–99.
- [6] D. Grant, Small solutions to a given quadratic form with a variable modulus, to be published.
- [7] D. R. Heath-Brown, Small solutions of quadratic congruences, Glasgow Math. J. 27 (1985), 87–93.
- [8] —, Small solutions of quadratic congruences, II, Mathematika 38 (1991), 264–284.
- [9] Yu. V. Linnik and A. V. Malyshev, An elementary proof of the Kloosterman– Tartakovskiĭ theorem on the representations of numbers by positive quadratic forms, in: Proc. Fourth All-Union Math. Congr., Leningrad 1961, Vol. II, Nauka, Leningrad 1964, 116–117.

- [10] J. W. Sander, A reciprocity formula for quadratic forms, Monatsh. Math. 104 (1987), 125-132.
- [11] A. Schinzel, H. P. Schlickewei and W. M. Schmidt, Small solutions of quadratic congruences and small fractional parts of quadratic forms, Acta Arith. 37 (1980), 241–248.
- [12] W. A. Tartakowsky [V. A. Tartakovskiĭ], La détermination de la totalité des nombres représentables par une forme quadratique à plus de quatre variables, C. R. Acad. Sci. Paris 186 (1928), 1337–1340, 1401–1403, 1684–1687. Errata to second paper: 187 (1928), 155.
- [13] G. L. Watson, Integral Quadratic Forms, Cambridge University Press, London 1960.
- [14] —, The minimum of an indefinite quadratic form with integral coefficients, J. London Math. Soc. 32 (1957), 503–507.
- [15] —, Bounded representations of integers by quadratic forms, Mathematika 4 (1957), 17–24.

DEPARTMENT OF MATHEMATICS KANSAS STATE UNIVERSITY MANHATTAN, KANSAS 66506-2602 U.S.A.

 $\hbox{E-mail: COCHRANE@KSUVM.BITNET}$

Received on 23.11.1990 and in revised form on 16.6.1992

(2098)