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On representing the multiple of a number
by a quadratic form

by

TobD COCHRANE (Manhattan, Kan.)

Let Q(x) = >, ¢ijwix; be a quadratic form in n variables with integral
coefficients. Write Q(x) = 3xAx" where A = [a;;] is a symmetric n x n
matrix with entries a;; = 2¢;; and a;; = ¢;; for ¢ < j. Set d = d(Q) =
det A. We say @ is primitive if the coeflicients ¢;; are relatively prime, and
nonsingular if d # 0. This paper addresses the following problem: Given a
positive integer m what is the smallest nonzero integer A (in absolute value)
such that Am is represented over Z by @, that is,

(1) Q(x) = Am

is solvable over Z. Grant [6] has shown that for positive definite forms in
n > 4 variables there exists a constant co(Q), depending on @, such that for
any positive integer m (1) is solvable for some A with 0 < A < ¢o(Q). We
extend his result in our first theorem.

THEOREM 1. (i) For any nonsingular quadratic form @Q inn > 3 variables
there exists a constant c1(Q), depending only on Q, such that for any positive
integer m, (1) is solvable for some A with 0 < |[A| < c1(Q). (A can be taken
positive or negative if @ is indefinite.)

(ii) If n = 2 the same result holds true provided that for any odd prime
p dividing m to an odd multiplicity either p|d or (_Td) =1.

We note that when n = 2, the condition given in part (ii) of the theorem
is also a necessary condition, for if p is an odd prime dividing m to an odd
multiplicity and (_Td) = —1, then whenever Q(x) = Am is solvable it follows
that p| A, and consequently |A| > p.

COROLLARY. Let Q(x) be a quadratic form in n > 3 variables. Then
for any positive integer m the congruence Q(x) =0 (mod m) has a nonzero
solution x with max |z;| < ¢(Q)m'/?, where c(Q) is a constant depending
only on Q. The same result holds when n = 2 for any value of m satisfying
the hypothesis of Theorem 1(ii).
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This Corollary generalizes the result of [6]. The Corollary is immediate
from Theorem 1 in case @) is a definite form, but requires Lemma 2 for
indefinite forms. Of course, the real interest is in obtaining the result of the
Corollary with ¢(Q) replaced by a constant depending only on n (for n > 4).
There has been a lot of work in this direction; see Schinzel, Schlickewei and
Schmidt [11], Heath-Brown [7], [8], Sander [10], and Cochrane [4], [5].

We now seek the best possible value of A. When m = 1 the problem
reduces to finding the minimum nonzero value of |Q(x)| as x runs through
Z™. Tt is well known (see e.g. [2, Lemma 3.1, p. 135]) that for n > 1 there
exists a constant k(n), depending only on n, such that if Q(x) is nonsingular
then there exists an integral x with 0 < |Q(x)| < k(n)|d|*/™. We are led to
ask the following

QUESTION. For n > 4 does there exist a constant ¢(n) depending only on
n such that if Q(x) is a nonsingular form in n variables and m is any positive
integer, then (1) is solvable for some nonzero A with |\ < ¢(n)|d|*/"?

It suffices to consider the case of primitive quadratic forms, for if Q) =
a@ with @ primitive and x¢ is such that Q1(x¢) = Agm with 0 < |Ag| <
c(n)|d(Q1)[*™, then Q(x¢) = (aXg)m and 0 < |aXg| < ¢(n)|d(Q)[*/™. This
observation also indicates that one can do no better than |d|*/" for imprim-
itive forms. However, for primitive forms we can do better.

THEOREM 2. There exist constants ca(n), c3(Q) and c4(d) depending only
onn, Q and d respectively such that for any nonsingular primitive quadratic
form @ we have the following.

(i) If Q is indefinite and n > 4 then, for any m > 0, (1) is solvable for
some A with

(2) 0<A< cz(n)d(l)/@(nﬁ))

where dy is the odd part of |d|. (A value for ca(n) can be easily calculated
from the proof given here.)

(ii) If Q is definite, n = 4, m = mim3 with my square free and my >
cq(d), or @Q is definite, n > 5 and m > c3(Q) then the same bound (2) holds
for m, with \ replaced by —\ for negative definite forms. (The constants
c3(Q) and c4(d) are those given in Lemmas 4 and 5 respectively.)

The upper bound dé/(z("_2)) in (2) is easily seen to be best possible.

Consider for example the form Q(x) = 22 +x3+m?(z3+...+22) where m is
a product of distinct odd primes p satisfying (%) = —1. Then any nonzero

solution of Q(x) = Am must satisfy m | A and hence |\| > m = dé/(2(n—2))_

This example also shows that the best one can hope for with n = 3 is
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A < |d|'/?. Theorem 2 establishes an affirmative answer to the question
above for indefinite forms in n > 4 variables. The question remains open for
definite forms in general but the following theorem lends further support to
an affirmative answer.

THEOREM 3. Let Q(x) be a positive definite form in an even number of

variables and m = m3my with mso positive and square free. Suppose that for

each odd prime divisor p of mq either p|d or (#) = 1. Then (1) is
solvable for some \ with

(3) 0<A< drm,

(Bn(1))2/m
where By, (1) is the volume of a ball of radius 1 in R™.

Lemmas. The idea for the proofs of Theorems 1 and 2 is quite simple.
We make use of classical results that imply that under appropriate conditions
(1) is solvable over Z if it is solvable over every local ring Z,; see Lemmas
1, 3, 4 and 5. Thus our problem reduces to finding a small value of A such
that (1) is solvable everywhere locally and this just amounts to having A
divisible by certain primes dividing d(Q) and satisfying certain quadratic
residuacity conditions for other primes dividing d(Q). Theorem 3 follows
from Lemma 6 and a standard argument from the geometry of numbers.

LEMMA 1 [13, Theorem 52]. Let g be a nonzero integer and Q be a
nonsingular quadratic form in n > 3 variables. Then there exists a nonzero
integer k = k(q, Q) with (k,q) = 1 such that if a € Z is such that k* | a, aQ
is indefinite or positive definite, and Q(x) = a (mod t) is solvable for all
nonzero t, then Q(x) = a is solvable over Z.

LEMMA 2 (Watson [15]). Let Q be a quadratic form that does not repre-
sent zero nontrivially over Z. Then for any integer a represented by Q) there
is a representation Q(x) = a with max |x;| < v(Q)|al'/?, where ¥(Q) is a
constant depending only on Q.

LEMMA 3 [2, Theorem 1.5, p. 131]. Let @Q be a nonsingular, indefinite
form in n > 4 variables and a # 0 € Z. If a is represented by Q over all Z,,
then a is represented by Q over Z. (Cassels’s book [2] deals with quadratic
forms with even coefficients c;;, for i # j, but the result extends to general
quadratic forms.)

LEMMA 4 (Tartakovskii [12]). For any positive definite quadratic form
in n > 5 variables there is a constant c3(Q) depending only on Q such that
for any integer a > c3(Q), if Q(x) = a (mod t) is solvable for all nonzero
t then Q(x) = a is solvable over Z.
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LEMMA 5 (Linnik, Malyshev [9]). There exists a constant c4(d) such that
for any positive definite quadratic form Q in n = 4 variables, with d = d(Q),
and any square free integer a > c4(d) such that Q(x) = a (mod t) is solvable
for all nonzero t, the equation Q(x) = a is solvable over Z.

LEMMA 6 (Cochrane [3]). Let F(x) be a form of any degree over Z
and m = pips...px be a product of distinct primes. Suppose that for
i=1,2,...,k the congruence F(x) =0 (mod p;) has a subspace of solutions
of dimension d;. Then there exists a lattice of solutions of the congruence
F(x) =0 (mod m) of volume Hle i

LEMMA 7. For any primitive quadratic form Q over Z inn > 2 variables
there exists an odd number ag such that for any a = ag (mod 8) the equation
Q(x) = a is solvable over Zs.

Proof. Since @ is primitive it represents some odd number ag over Z.
Now if @ = ag (mod 8) then a = agb? for some 2-adic integer b. Thus Q
represents a over the 2-adic integers.

Proof of Theorem 1(i). We may assume that @ is primitive and
that m is square free and relatively prime to 8d (see [6]). Since @ is primitive
it represents some integer A (over Z) relatively prime to 2d. Then for any
integer B with B = A (mod 8d), it follows that @ represents B over every
local ring Z,,.

Let k = k(q,Q) be as given in Lemma 1 with ¢ = 8d. In particular,
(k,8d) = 1. Let 3 be such that Sk*>m = A (mod 8d). Select 3 so that
0 < B < 8|d| if @ is indefinite or positive definite and —8|d| < f < 0 if Q is
negative definite. Set A = 3k2. Then Am( is indefinite or positive definite,
k?| X, and Q(x) = Am (mod p*) is solvable for all prime powers p‘. Thus,
by Lemma 1, Q(x) = Am is solvable over Z, and |\| < 8|d|k?.

Proof of Theorem 1(ii). Again we may assume that m is an odd
square free integer. For each prime p|m the congruence Q(x) =0 (mod p)
has a nonzero solution (mod p) (since p|d or (_?d) = 1), and thus by
Lemma 6 the congruence Q(x) = 0 (mod m) has a lattice of solutions of
volume m. Then by Minkowski’s theorem there is a nonzero solution x
of the congruence Q(x) = 0 (mod m) with max |z;| < m!/2. For this x
we have Q(x) = Am with |A| < |c11| + |c12] + |e22|. If A = 0 then Q(x)
represents 0 over Z and we may assume without loss of generality that
Q(x) = xa(c1271 + co2x2), with ¢12 # 0. In this case set xo = m, choose
x1 so that 0 < |c1aw1 + coom| < |c12| and set N = c1aw1 + caam. Then
Q(x) = NMm with 0 < |N| < |eq2].

Proof of Corollary. If Q represents 0 nontrivially over Z the re-
sult is trivial, indeed one obtains a solution of Q(x) = 0 (mod m) with
max |z;| < ¢(Q). Suppose now that @ does not represent 0 nontrivially.
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In particular, @ is nonsingular. Let A, m be such that 0 < || < ¢1(Q)
and (1) is solvable. Then by Lemma 2 there exists an x € Z" such that
Q(x) = Mm, with 0 < max |z;| < y(Q)(Am)'/2. Thus Q(x) = 0 (mod m)
and 0 < max |z;| < ¥(Q)c1(Q)Y?m! /2. (If Q is definite one can be more
precise and obtain 0 < max |z;| < |A\/B|Y/?m'/? where |3] is the minimum
modulus of the eigenvalues of @.)

Proof of Theorem 2. Let @) be a nonsingular primitive quadratic
form of determinant d and m be a positive integer. We may assume that m
is odd and square free (for in general, if m = m?2°mg with mg odd, square
free, and e = 0 or 1, and A is such that (2) holds and Q(x) = Amy for some
x € Z", then Q(m12°x) = 2°Am). Now for any odd prime p, @ is equivalent
over Zj, to one of the following types of forms:

(i) 04133% + 042965 + sz + Q' (x4, ... ),
(ii) Oz1a:1 + a2m2 +pa3x3 + poya? +pQ (@5, .. a0), p"~2|d,
(iii) a1331 + 042302 +pa3x3 _|_p2Q (T4,...,7p), p2n—5 d,
(iv) a1331 + a2$2 + pPazrd —i—p2Q (z4,...,2), PP 2 |d,
(v) a1331 + a3 + p3Q (23, .., 20), P 3(n 2) |d,
( 1) alxl +pa2$2 -i-pQ (1‘3, .. xn), pn_l | d,
( 1) 041.231 p Q2T +p2Ql(.7}3, . ,xn), pz(”—l) | d,
(viil) aqz? + P Q' (x2, ..., x,), j > 3, pP»~ V) | d,
where a1, as, ag are integers not divisible by p, and @’ is a quadratic

form with integer coefficients. Next to each form we have put a power of p
dividing d (not necessarily the largest power). Write

d = 2°dydydsdydsdedrds
where dj, consists of primes p such that @ is of type (k), 1 < k < 8, and
m = 1Mmi1maimsmaqmsmmeimrzimsginmg ,

where m; |d;, 1 <1i <8, and (mg,d) = 1.

Our goal is to obtain a small value of A such that Q(x) = Am is solvable
over Z, for all p. By considering appropriate examples it is clear that A
must be divisible by mymsmrsmg in order to succeed in general, thus we
consider instead the equation

(4) Q(x) = Amgmsmemgm = AM,

say, where M = mymsmymgm. We consider in turn solving (4) over Z, for
the various odd primes p. For simplicity we shall assume that ) equals one
of the eight canonical types given above (for a given prime p) and say that
(4) is solvable if it is solvable over Z,,.
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(i) If ptd or p|dy (so that @ is of type (i)), then (4) is solvable for
any A.

(ii) If p|d2 and pfmso then (4) is solvable for any A # 0 (mod p) (just
put 3 = ... =z, = 0). If p|mq, then we set ;1 = x5 = 0, and consider
373 + a4x3 = MM /p, which again is solvable for any A # 0 (mod p).

(iii) If p|ds and p{ms then (4) is solvable for A # 0 (mod p). If p|mag,
we set £1 = 2 = 0 and are left with asz3 = AM/p, which is solvable
provided (%) = (O‘BTW).

(iv) If p|ds and ptmy then (4) is solvable for A # 0 (mod p). If p|my
then we set 1 = py1, x2 = py2 and consider aly% + agyg + a3x§ = )\M/pz,
which is solvable for any .

(v) If p|ds then as in (iv), (4) is solvable for any A # 0 (mod p).

(vi) If p|ds and pfmg then (4) is solvable provided (%) = (%) If
p|mg then (4) is solvable provided (%) = (O‘QTW).

(vii) If p|d7 and pfmy; then (4) is solvable provided (%) = (%) If
p|m7 then we set 1 = py; and consider a1y? + asz3 = AM/p?, which is
solvable for A # 0 (mod p).

(viii) If p|ds and ptmsg then (4) is solvable provided (%) = (M) If

P
p|msg, then setting z1 = py; we see that (4) is solvable provided (%) =
g

o).

In summary, we see that (4) is solvable for all primes p (including p = 2)
if A\ is such that

(5) AM = ap (mod 8),

©) (3) = v o plddadnds, ptonr,
and

(7) ptA  for p|dadsdsmy, ptmy

where ag is the value given in Lemma 6, and the values e, are as indicated
above. Set

P= H p (a product over distinct primes) .
p|dsdedrds
ptmz
By standard arguments one can obtain a solution of (5), (6) and (7) with
A < /P, but lacking a convenient reference we have included an appendix

to suit our particular needs. By Lemma 2 of the appendix there is a value
of X satisfying (5), (6) and (7) with
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®  0<a<Teyp[[LEENVE o 2o

1-1 1-1
| P /p p|dadsdsmy /p

pimy

Now, by the divisibility conditions given next to the canonical forms (i)
to (viii) above we have

H P2 H P25 H P2t H P36 H ol H P22 H P33 ‘ do,
pldz plds plda plds p|de pld7 p|ds

where dy is the odd part of d, and so

H P2 H p(2n=5)/(2n—4) H » H Rk

plda2 plds plds plds
% H p(nfl)/(2n74) H p(nfl)/(an) H p(3n73)/(2n74) < dé/(Q(”_Q)).
plds pldy plds

Thus, by (4) and (8), the equation Q(x) = Am is solvable over Z,, for all
primes p, for some A with

p1/21+2/\/15 H 2—1/}7

32,
0< A< Eﬂ' MyM5M7TMS H

1-1 1-1

p|dsdedrds /p p|dadsdsmy /p
ptmsy pimy

H2—1/pH 1/21+2/\fH H 2-1/p

ola, L /P 1=1/p S5 g 1-1/p

><1—[11)1/21*2/\[1—1 1/101—[ 3/21+2/\/Z3

1-1 1 1-1
ol do /p it /p /p
< ¢5(n)dV/ D)

where c(n) is an easily calculable constant depending only on n. Theorem
2 now follows from Lemmas 3, 4 and 5.

Proof of Theorem 3. Suppose first that msy is odd. Then for any
prime divisor p of mqy there exists a subspace of solutions of the congruence
Q(x) =0 (mod p) of dimension n/2; see [3, Lemma 3]. Thus, by Lemma 6
there exists a lattice £ of solutions of the congruence Q(x) =0 (mod ms) of
volume mg/ ?. Let R be the convex region in R” defined by Q(x) < r2. Then
the volume of R is 2"/27" B,,(1)/v/d where B, (1) is the volume of an n-ball
of radius 1. By Minkowski’s theorem R contains a nonzero point x of L if
r2 > 2d"/"my /B, (1)%/™. Thus Q(x) = Mmy with 0 < X < 2d'/"/B,,(1)*/",
and Q(mix) = Am. If mo is even, say my = 2mg, and x satisfies Q(x) =
Amg with A\ as above, then Q(2x) = (2A\)m2 and Q(2m1x) = (2\)m, with
2\ satisfying (3).
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Note. If the odd square free part of m is relatively prime to d then the

1/(2(n—2)) in (2)

value d,, can be replaced by

~ 142
4/ T +2/\p

1-1 '
pldo /p

In particular, taking m to be one we conclude that for any indefinite, primi-
tive nonsingular quadratic form @ in n > 4 variables there exists an x € Z"
such that

0 < Qx) < ea(m)dy/ 2" T W.

Watson [14] had shown earlier that for such forms in n > 3 variables an x
exists with

pldo

0 < Q(x) < c(e)|d|Y/Bn=D)+s

Appendix

LEMMA 1. Let n be any integer and m be a square free product of odd
primes. Then

8m—1
> e < [T+ vi) [T -1
=0 m m
(a1 o s

Proof. Say m = pips...pr and set
8m 8m 8m
r=r1— +To— + ...+ Tp— + Tp41Mm
b1 b2 Pk

where z; runs through 1,2,...,p; — 1 for 1 <4 < k and x4 runs through
1,3,5,7. Then
8m—1

‘ Z p2mina® /(8m) ‘

=0
(z,8m)=1

Z Z o 2min 2 64m2 i + 2 64m2 i 2 2
— p m 1 p% k p2 k+1

Tr4+1 k

k
<4]]
i=1

LEMMA 2. Let D = 8dids where dyi, do are square free products of odd
primes with (dy,ds) = 1. Let ¢ be any integer with (¢, D) = 1. Then there

;exp<W>‘§4H(m—l) [1a+vm).

pi|n pifn
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exists a A € Z with (A, D) =1 and

32 142 2-1
(1) 0<A< TtV [] AV e
pldi | d2

1-1/p 1-1/p
p

such that cz®> = X\ (mod 8d,) for some z with (z,8d;) = 1.

Proof. Write x = 8d;w+kdsz? where k is any integer satisfying dok = ¢
(mod 8d;), w is such that (w,d2) =1 and z is such that (z,8d;) = 1. Then
x = cz? (mod 8d;) and (x, D) = 1. Thus our goal is to find w, z such that
x is small (mod D). Let I ={0,1,2,...,M — 1} where M € Z, M < D,
let x1 be the characteristic function of I (mod D) and o = x1 * xs;. Then
« has a Fourier expansion

4dyds
a(r) = Z a(y)ep(xy), whereep( )= 2™ ()/D
y=—4d1da+1
and for y # 0,
1 sin®(nMy/D)
laW)l = 5—=— 1

D sin?(ry/D)

In particular, for |y| < 4dydy we have

(2) la(y)| < M?/D
and
(3) la(y)| < D/(4y®) for y #0.

Our goal is to show the following sum is positive for M sufficiently large:

8d,

22 Z a(8d1w + k:dgz2)
z=1
Z a(y)ep((8d1w + kd2z2)y)

= a(0)¢(8drdz) + Y _a(y) Y > ep(8diyw)ep(kdayz?)

y#0 wo oz

= a(0)¢(8d1dz) + Error, say.

To estimate the error term we first observe that if d2 = (da,y) then
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5 cotom = ()i u(2) £ ()

w=1 6|62

- u(of;)ez»(az).

Thus by Lemma 1 we have

Error < 30 3 > Ja@)l| Y earlyw)|| - esa (ky?)|

51 |8d1 52 |d2 y;él)

(y,8d1)251
(y,d2)=62
<4 > D 0@) [[e-v [[a+vp D] law)l.
01| 8dy 62| da pld: pldy y#0
p|é1 pté1 (y,8d1)=01

(y,d2)=62

Set

4d1 dg :| 1 |: 4dl d2

5105 5165 } 7 #0.

y=0102y with = [

We split the sum over y into two pieces. Suppose first that 6162 < 2d;ds/M.
Then, using (2) and (3) we have

M? D
;m(cﬁm)r: > ot X imanre

Ivlé[é%ﬁ@] |~/\2[§*ff;2‘§\24}+1
Now
=1 vl 1
Z — < f—dx:— for N >1
2 = 2 =
B N
and
4d;ds 4d;ds 2d1ds 2d1d>
> —1> for 6:6 .
|:(5152M:| — 5109 M — 010 M or 0102 < M
Thus,
M?  4dyd, D 010oM  3M
010 <2——. 2 . = .
z'y: ‘a( ! 27)| - D 610oM + 4(5152)2 2d1d> 0102
Suppose now that 6102 > 2dydy/M. Then
2d1d2 1 M 7'1'2
> la(d1627)] < - <.
5 (0192) hlzlfy 0102 3
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Thus for any choice of d1, do we have

o 3 0109
(y,8d1):51
(y,d2)=02
and so,
4 , 1 $(d2)
|Error| <37 M[ Z o H (p—1) H (1—1—@)]( Z 5
61| 8dy pldi pldi 02 | da
p|d1 p1o1
<éw2M2H(2+\/ﬁ)H g1
5 pld pld )

Now, the sum of interest is positive provided that
1 1
M?. 5 H <1— p) > |Error|.
pldida
It suffices to take

1 2 2-1
MEEWQH TP /p7
3 1-1/p 1-1/p
| dy plda

whence (1) is obtained.
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