On representing the multiple of a number by a quadratic form

by

Todd Cochrane (Manhattan, Kan.)

Let $Q(\mathbf{x})=\sum_{i \leq j} c_{i j} x_{i} x_{j}$ be a quadratic form in n variables with integral coefficients. Write $Q(\mathbf{x})=\frac{1}{2} \mathbf{x} A \mathbf{x}^{t}$ where $A=\left[a_{i j}\right]$ is a symmetric $n \times n$ matrix with entries $a_{i i}=2 c_{i i}$ and $a_{i j}=c_{i j}$ for $i<j$. Set $d=d(Q)=$ $\operatorname{det} A$. We say Q is primitive if the coefficients $c_{i j}$ are relatively prime, and nonsingular if $d \neq 0$. This paper addresses the following problem: Given a positive integer m what is the smallest nonzero integer λ (in absolute value) such that λm is represented over \mathbb{Z} by Q, that is,

$$
\begin{equation*}
Q(\mathbf{x})=\lambda m \tag{1}
\end{equation*}
$$

is solvable over \mathbb{Z}. Grant [6] has shown that for positive definite forms in $n \geq 4$ variables there exists a constant $c_{0}(Q)$, depending on Q, such that for any positive integer $m(1)$ is solvable for some λ with $0<\lambda<c_{0}(Q)$. We extend his result in our first theorem.

Theorem 1. (i) For any nonsingular quadratic form Q in $n \geq 3$ variables there exists a constant $c_{1}(Q)$, depending only on Q, such that for any positive integer m, (1) is solvable for some λ with $0<|\lambda|<c_{1}(Q)$. (λ can be taken positive or negative if Q is indefinite.)
(ii) If $n=2$ the same result holds true provided that for any odd prime p dividing m to an odd multiplicity either $p \mid d$ or $\left(\frac{-d}{p}\right)=1$.

We note that when $n=2$, the condition given in part (ii) of the theorem is also a necessary condition, for if p is an odd prime dividing m to an odd multiplicity and $\left(\frac{-d}{p}\right)=-1$, then whenever $Q(\mathbf{x})=\lambda m$ is solvable it follows that $p \mid \lambda$, and consequently $|\lambda| \geq p$.

Corollary. Let $Q(\mathbf{x})$ be a quadratic form in $n \geq 3$ variables. Then for any positive integer m the congruence $Q(\mathbf{x}) \equiv 0(\bmod m)$ has a nonzero solution \mathbf{x} with $\max \left|x_{i}\right| \leq c(Q) m^{1 / 2}$, where $c(Q)$ is a constant depending only on Q. The same result holds when $n=2$ for any value of m satisfying the hypothesis of Theorem 1(ii).

This Corollary generalizes the result of [6]. The Corollary is immediate from Theorem 1 in case Q is a definite form, but requires Lemma 2 for indefinite forms. Of course, the real interest is in obtaining the result of the Corollary with $c(Q)$ replaced by a constant depending only on n (for $n \geq 4$). There has been a lot of work in this direction; see Schinzel, Schlickewei and Schmidt [11], Heath-Brown [7], [8], Sander [10], and Cochrane [4], [5].

We now seek the best possible value of λ. When $m=1$ the problem reduces to finding the minimum nonzero value of $|Q(\mathbf{x})|$ as \mathbf{x} runs through \mathbb{Z}^{n}. It is well known (see e.g. [2, Lemma 3.1, p. 135]) that for $n \geq 1$ there exists a constant $k(n)$, depending only on n, such that if $Q(\mathbf{x})$ is nonsingular then there exists an integral \mathbf{x} with $0<|Q(\mathbf{x})| \leq k(n)|d|^{1 / n}$. We are led to ask the following

Question. For $n \geq 4$ does there exist a constant $c(n)$ depending only on n such that if $Q(\mathbf{x})$ is a nonsingular form in n variables and m is any positive integer, then (1) is solvable for some nonzero λ with $|\lambda|<c(n)|d|^{1 / n}$?

It suffices to consider the case of primitive quadratic forms, for if $Q=$ $a Q_{1}$ with Q_{1} primitive and \mathbf{x}_{0} is such that $Q_{1}\left(\mathbf{x}_{0}\right)=\lambda_{0} m$ with $0<\left|\lambda_{0}\right|<$ $c(n)\left|d\left(Q_{1}\right)\right|^{1 / n}$, then $Q\left(\mathbf{x}_{0}\right)=\left(a \lambda_{0}\right) m$ and $0<\left|a \lambda_{0}\right|<c(n)|d(Q)|^{1 / n}$. This observation also indicates that one can do no better than $|d|^{1 / n}$ for imprimitive forms. However, for primitive forms we can do better.

Theorem 2. There exist constants $c_{2}(n), c_{3}(Q)$ and $c_{4}(d)$ depending only on n, Q and d respectively such that for any nonsingular primitive quadratic form Q we have the following.
(i) If Q is indefinite and $n \geq 4$ then, for any $m>0$, (1) is solvable for some λ with

$$
\begin{equation*}
0<\lambda<c_{2}(n) d_{0}^{1 /(2(n-2))} \tag{2}
\end{equation*}
$$

where d_{0} is the odd part of $|d|$. (A value for $c_{2}(n)$ can be easily calculated from the proof given here.)
(ii) If Q is definite, $n=4, m=m_{1} m_{2}^{2}$ with m_{1} square free and $m_{1} \geq$ $c_{4}(d)$, or Q is definite, $n \geq 5$ and $m \geq c_{3}(Q)$ then the same bound (2) holds for m, with λ replaced by $-\lambda$ for negative definite forms. (The constants $c_{3}(Q)$ and $c_{4}(d)$ are those given in Lemmas 4 and 5 respectively.)

The upper bound $d_{0}^{1 /(2(n-2))}$ in (2) is easily seen to be best possible. Consider for example the form $Q(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+m^{2}\left(x_{3}^{2}+\ldots+x_{n}^{2}\right)$ where m is a product of distinct odd primes p satisfying $\left(\frac{-1}{p}\right)=-1$. Then any nonzero solution of $Q(\mathbf{x})=\lambda m$ must satisfy $m \mid \lambda$ and hence $|\lambda| \geq m=d_{0}^{1 /(2(n-2))}$. This example also shows that the best one can hope for with $n=3$ is
$\lambda \ll|d|^{1 / 2}$. Theorem 2 establishes an affirmative answer to the question above for indefinite forms in $n \geq 4$ variables. The question remains open for definite forms in general but the following theorem lends further support to an affirmative answer.

Theorem 3. Let $Q(\mathbf{x})$ be a positive definite form in an even number of variables and $m=m_{1}^{2} m_{2}$ with m_{2} positive and square free. Suppose that for each odd prime divisor p of m_{2} either $p \mid d$ or $\left(\frac{(-1)^{n / 2} d}{p}\right)=1$. Then (1) is solvable for some λ with

$$
\begin{equation*}
0<\lambda \leq \frac{4}{\left(B_{n}(1)\right)^{2 / n}} d^{1 / n}, \tag{3}
\end{equation*}
$$

where $B_{n}(1)$ is the volume of a ball of radius 1 in \mathbb{R}^{n}.
Lemmas. The idea for the proofs of Theorems 1 and 2 is quite simple. We make use of classical results that imply that under appropriate conditions (1) is solvable over \mathbb{Z} if it is solvable over every local ring \mathbb{Z}_{p}; see Lemmas $1,3,4$ and 5 . Thus our problem reduces to finding a small value of λ such that (1) is solvable everywhere locally and this just amounts to having λ divisible by certain primes dividing $d(Q)$ and satisfying certain quadratic residuacity conditions for other primes dividing $d(Q)$. Theorem 3 follows from Lemma 6 and a standard argument from the geometry of numbers.

Lemma 1 [13, Theorem 52]. Let q be a nonzero integer and Q be a nonsingular quadratic form in $n \geq 3$ variables. Then there exists a nonzero integer $k=k(q, Q)$ with $(k, q)=1$ such that if $a \in \mathbb{Z}$ is such that $k^{2} \mid a, a Q$ is indefinite or positive definite, and $Q(\mathbf{x}) \equiv a(\bmod t)$ is solvable for all nonzero t, then $Q(\mathbf{x})=a$ is solvable over \mathbb{Z}.

Lemma 2 (Watson [15]). Let Q be a quadratic form that does not represent zero nontrivially over \mathbb{Z}. Then for any integer a represented by Q there is a representation $Q(\mathbf{x})=a$ with $\max \left|x_{i}\right| \leq \gamma(Q)|a|^{1 / 2}$, where $\gamma(Q)$ is a constant depending only on Q.

Lemma 3 [2, Theorem 1.5, p. 131]. Let Q be a nonsingular, indefinite form in $n \geq 4$ variables and $a \neq 0 \in \mathbb{Z}$. If a is represented by Q over all \mathbb{Z}_{p}, then a is represented by Q over \mathbb{Z}. (Cassels's book [2] deals with quadratic forms with even coefficients $c_{i j}$, for $i \neq j$, but the result extends to general quadratic forms.)

Lemma 4 (Tartakovskiĭ [12]). For any positive definite quadratic form in $n \geq 5$ variables there is a constant $c_{3}(Q)$ depending only on Q such that for any integer $a>c_{3}(Q)$, if $Q(\mathbf{x}) \equiv a(\bmod t)$ is solvable for all nonzero t then $Q(\mathbf{x})=a$ is solvable over \mathbb{Z}.

Lemma 5 (Linnik, Malyshev [9]). There exists a constant $c_{4}(d)$ such that for any positive definite quadratic form Q in $n=4$ variables, with $d=d(Q)$, and any square free integer $a>c_{4}(d)$ such that $Q(\mathbf{x}) \equiv a(\bmod t)$ is solvable for all nonzero t, the equation $Q(\mathbf{x})=a$ is solvable over \mathbb{Z}.

Lemma 6 (Cochrane [3]). Let $F(\mathbf{x})$ be a form of any degree over \mathbb{Z} and $m=p_{1} p_{2} \ldots p_{k}$ be a product of distinct primes. Suppose that for $i=1,2, \ldots, k$ the congruence $F(\mathbf{x}) \equiv 0\left(\bmod p_{i}\right)$ has a subspace of solutions of dimension d_{i}. Then there exists a lattice of solutions of the congruence $F(\mathbf{x}) \equiv 0(\bmod m)$ of volume $\prod_{i=1}^{k} p_{i}^{n-d_{i}}$.

Lemma 7. For any primitive quadratic form Q over \mathbb{Z} in $n \geq 2$ variables there exists an odd number a_{0} such that for any $a \equiv a_{0}(\bmod 8)$ the equation $Q(\mathbf{x})=a$ is solvable over \mathbb{Z}_{2}.

Proof. Since Q is primitive it represents some odd number a_{0} over \mathbb{Z}. Now if $a \equiv a_{0}(\bmod 8)$ then $a=a_{0} b^{2}$ for some 2 -adic integer b. Thus Q represents a over the 2 -adic integers.

Proof of Theorem 1(i). We may assume that Q is primitive and that m is square free and relatively prime to $8 d$ (see [6]). Since Q is primitive it represents some integer A (over \mathbb{Z}) relatively prime to $2 d$. Then for any integer B with $B \equiv A(\bmod 8 d)$, it follows that Q represents B over every local ring \mathbb{Z}_{p}.

Let $k=k(q, Q)$ be as given in Lemma 1 with $q=8 d$. In particular, $(k, 8 d)=1$. Let β be such that $\beta k^{2} m \equiv A(\bmod 8 d)$. Select β so that $0<\beta<8|d|$ if Q is indefinite or positive definite and $-8|d|<\beta<0$ if Q is negative definite. Set $\lambda=\beta k^{2}$. Then $\lambda m Q$ is indefinite or positive definite, $k^{2} \mid \lambda$, and $Q(\mathbf{x}) \equiv \lambda m\left(\bmod p^{i}\right)$ is solvable for all prime powers p^{i}. Thus, by Lemma $1, Q(\mathbf{x})=\lambda m$ is solvable over \mathbb{Z}, and $|\lambda| \leq 8|d| k^{2}$.

Proof of Theorem 1(ii). Again we may assume that m is an odd square free integer. For each prime $p \mid m$ the congruence $Q(\mathbf{x}) \equiv 0(\bmod p)$ has a nonzero solution $(\bmod p)\left(\right.$ since $p \mid d$ or $\left.\left(\frac{-d}{p}\right)=1\right)$, and thus by Lemma 6 the congruence $Q(\mathbf{x}) \equiv 0(\bmod m)$ has a lattice of solutions of volume m. Then by Minkowski's theorem there is a nonzero solution \mathbf{x} of the congruence $Q(\mathbf{x}) \equiv 0(\bmod m)$ with $\max \left|x_{i}\right|<m^{1 / 2}$. For this \mathbf{x} we have $Q(\mathbf{x})=\lambda m$ with $|\lambda|<\left|c_{11}\right|+\left|c_{12}\right|+\left|c_{22}\right|$. If $\lambda=0$ then $Q(\mathbf{x})$ represents 0 over \mathbb{Z} and we may assume without loss of generality that $Q(\mathbf{x})=x_{2}\left(c_{12} x_{1}+c_{22} x_{2}\right)$, with $c_{12} \neq 0$. In this case set $x_{2}=m$, choose x_{1} so that $0<\left|c_{12} x_{1}+c_{22} m\right| \leq\left|c_{12}\right|$ and set $\lambda^{\prime}=c_{12} x_{1}+c_{22} m$. Then $Q(\mathbf{x})=\lambda^{\prime} m$ with $0<\left|\lambda^{\prime}\right| \leq\left|c_{12}\right|$.

Proof of Corollary. If Q represents 0 nontrivially over \mathbb{Z} the result is trivial, indeed one obtains a solution of $Q(\mathbf{x}) \equiv 0(\bmod m)$ with $\max \left|x_{i}\right| \leq c(Q)$. Suppose now that Q does not represent 0 nontrivially.

In particular, Q is nonsingular. Let λ, m be such that $0<|\lambda|<c_{1}(Q)$ and (1) is solvable. Then by Lemma 2 there exists an $\mathbf{x} \in \mathbb{Z}^{n}$ such that $Q(\mathbf{x})=\lambda m$, with $0<\max \left|x_{i}\right| \leq \gamma(Q)(\lambda m)^{1 / 2}$. Thus $Q(\mathbf{x}) \equiv 0(\bmod m)$ and $0<\max \left|x_{i}\right| \leq \gamma(Q) c_{1}(Q)^{1 / 2} m^{1 / 2}$. (If Q is definite one can be more precise and obtain $0<\max \left|x_{i}\right| \leq|\lambda / \beta|^{1 / 2} m^{1 / 2}$ where $|\beta|$ is the minimum modulus of the eigenvalues of Q.)

Proof of Theorem 2. Let Q be a nonsingular primitive quadratic form of determinant d and m be a positive integer. We may assume that m is odd and square free (for in general, if $m=m_{1}^{2} 2^{e} m_{0}$ with m_{0} odd, square free, and $e=0$ or 1 , and λ is such that (2) holds and $Q(\mathbf{x})=\lambda m_{0}$ for some $\mathbf{x} \in \mathbb{Z}^{n}$, then $\left.Q\left(m_{1} 2^{e} \mathbf{x}\right)=2^{e} \lambda m\right)$. Now for any odd prime p, Q is equivalent over \mathbb{Z}_{p} to one of the following types of forms:
(i) $\alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}+\alpha_{3} x_{3}^{2}+Q^{\prime}\left(x_{4}, \ldots, x_{n}\right)$,
(ii) $\alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}+p \alpha_{3} x_{3}^{2}+p \alpha_{4} x_{4}^{2}+p Q^{\prime}\left(x_{5}, \ldots, x_{n}\right), p^{n-2} \mid d$,
(iii) $\alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}+p \alpha_{3} x_{3}^{2}+p^{2} Q^{\prime}\left(x_{4}, \ldots, x_{n}\right), p^{2 n-5} \mid d$,
(iv) $\alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}+p^{2} \alpha_{3} x_{3}^{2}+p^{2} Q^{\prime}\left(x_{4}, \ldots, x_{n}\right), p^{2(n-2)} \mid d$,
(v) $\alpha_{1} x_{1}^{2}+\alpha_{2} x_{2}^{2}+p^{3} Q^{\prime}\left(x_{3}, \ldots, x_{n}\right), p^{3(n-2)} \mid d$,
(vi) $\alpha_{1} x_{1}^{2}+p \alpha_{2} x_{2}^{2}+p Q^{\prime}\left(x_{3}, \ldots, x_{n}\right), p^{n-1} \mid d$,
(vii) $\alpha_{1} x_{1}^{2}+p^{2} \alpha_{2} x_{2}^{2}+p^{2} Q^{\prime}\left(x_{3}, \ldots, x_{n}\right), p^{2(n-1)} \mid d$,
(viii) $\alpha_{1} x_{1}^{2}+p^{j} Q^{\prime}\left(x_{2}, \ldots, x_{n}\right), j \geq 3, p^{3(n-1)} \mid d$,
where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are integers not divisible by p, and Q^{\prime} is a quadratic form with integer coefficients. Next to each form we have put a power of p dividing d (not necessarily the largest power). Write

$$
d=2^{e} d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}
$$

where d_{k} consists of primes p such that Q is of type $(k), 1 \leq k \leq 8$, and

$$
m=m_{1} m_{2} m_{3} m_{4} m_{5} m_{6} m_{7} m_{8} m_{9}
$$

where $m_{i} \mid d_{i}, 1 \leq i \leq 8$, and $\left(m_{9}, d\right)=1$.
Our goal is to obtain a small value of λ such that $Q(\mathbf{x})=\lambda m$ is solvable over \mathbb{Z}_{p} for all p. By considering appropriate examples it is clear that λ must be divisible by $m_{4} m_{5} m_{7} m_{8}$ in order to succeed in general, thus we consider instead the equation

$$
\begin{equation*}
Q(\mathbf{x})=\lambda m_{4} m_{5} m_{7} m_{8} m=\lambda M, \tag{4}
\end{equation*}
$$

say, where $M=m_{4} m_{5} m_{7} m_{8} m$. We consider in turn solving (4) over \mathbb{Z}_{p} for the various odd primes p. For simplicity we shall assume that Q equals one of the eight canonical types given above (for a given prime p) and say that (4) is solvable if it is solvable over \mathbb{Z}_{p}.
(i) If $p \nmid d$ or $p \mid d_{1}$ (so that Q is of type (i)), then (4) is solvable for any λ.
(ii) If $p \mid d_{2}$ and $p \nmid m_{2}$ then (4) is solvable for any $\lambda \not \equiv 0(\bmod p)($ just put $x_{3}=\ldots=x_{n}=0$). If $p \mid m_{2}$, then we set $x_{1}=x_{2}=0$, and consider $\alpha_{3} x_{3}^{2}+\alpha_{4} x_{4}^{2}=\lambda M / p$, which again is solvable for any $\lambda \not \equiv 0(\bmod p)$.
(iii) If $p \mid d_{3}$ and $p \nmid m_{3}$ then (4) is solvable for $\lambda \not \equiv 0(\bmod p)$. If $p \mid m_{3}$, we set $x_{1}=x_{2}=0$ and are left with $\alpha_{3} x_{3}^{2}=\lambda M / p$, which is solvable provided $\left(\frac{\lambda}{p}\right)=\left(\frac{\alpha_{3} M / p}{p}\right)$.
(iv) If $p \mid d_{4}$ and $p \nmid m_{4}$ then (4) is solvable for $\lambda \not \equiv 0(\bmod p)$. If $p \mid m_{4}$ then we set $x_{1}=p y_{1}, x_{2}=p y_{2}$ and consider $\alpha_{1} y_{1}^{2}+\alpha_{2} y_{2}^{2}+\alpha_{3} x_{3}^{2}=\lambda M / p^{2}$, which is solvable for any λ.
(v) If $p \mid d_{5}$ then as in (iv), (4) is solvable for any $\lambda \not \equiv 0(\bmod p)$.
(vi) If $p \mid d_{6}$ and $p \nmid m_{6}$ then (4) is solvable provided $\left(\frac{\lambda}{p}\right)=\left(\frac{\alpha_{1} M}{p}\right)$. If $p \mid m_{6}$ then (4) is solvable provided $\left(\frac{\lambda}{p}\right)=\left(\frac{\alpha_{2} M / p}{p}\right)$.
(vii) If $p \mid d_{7}$ and $p \nmid m_{7}$ then (4) is solvable provided $\left(\frac{\lambda}{p}\right)=\left(\frac{\alpha_{1} M}{p}\right)$. If $p \mid m_{7}$ then we set $x_{1}=p y_{1}$ and consider $\alpha_{1} y_{1}^{2}+\alpha_{2} x_{2}^{2}=\lambda M / p^{2}$, which is solvable for $\lambda \not \equiv 0(\bmod p)$.
(viii) If $p \mid d_{8}$ and $p \nmid m_{8}$ then (4) is solvable provided $\left(\frac{\lambda}{p}\right)=\left(\frac{\alpha_{1} M}{p}\right)$. If $p \mid m_{8}$, then setting $x_{1}=p y_{1}$ we see that (4) is solvable provided $\left(\frac{\lambda}{p}\right)=$ $\left(\frac{\alpha_{1} M / p^{2}}{p}\right)$.

In summary, we see that (4) is solvable for all primes p (including $p=2$) if λ is such that

$$
\begin{gather*}
\lambda M \equiv a_{0}(\bmod 8), \tag{5}\\
\left(\frac{\lambda}{p}\right)=(-1)^{e_{p}} \quad \text { for } p \mid d_{3} d_{6} d_{7} d_{8}, p \nmid m_{7}, \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
p \nmid \lambda \quad \text { for } p \mid d_{2} d_{4} d_{5} m_{7}, p \nmid m_{4} \tag{7}
\end{equation*}
$$

where a_{0} is the value given in Lemma 6 , and the values e_{p} are as indicated above. Set

$$
P=\prod_{\substack{p \mid d_{3} d_{6} d_{7} d_{8} \\ p \nmid m_{7}}} p \quad \text { (a product over distinct primes) }
$$

By standard arguments one can obtain a solution of (5), (6) and (7) with $\lambda \ll \sqrt{P}$, but lacking a convenient reference we have included an appendix to suit our particular needs. By Lemma 2 of the appendix there is a value of λ satisfying (5), (6) and (7) with

$$
\begin{equation*}
0<\lambda<\frac{32}{3} \pi^{2} \sqrt{P} \prod_{p \mid P} \frac{1+2 / \sqrt{p}}{1-1 / p} \prod_{\substack{p \mid d_{2} d_{4} d_{5} m_{7} \\ p \nmid m_{4}}} \frac{2-1 / p}{1-1 / p} \tag{8}
\end{equation*}
$$

Now, by the divisibility conditions given next to the canonical forms (i) to (viii) above we have

$$
\prod_{p \mid d_{2}} p^{n-2} \prod_{p \mid d_{3}} p^{2 n-5} \prod_{p \mid d_{4}} p^{2 n-4} \prod_{p \mid d_{5}} p^{3 n-6} \prod_{p \mid d_{6}} p^{n-1} \prod_{p \mid d_{7}} p^{2 n-2} \prod_{p \mid d_{8}} p^{3 n-3} \mid d_{0}
$$

where d_{0} is the odd part of d, and so

$$
\begin{aligned}
& \prod_{p \mid d_{2}} p^{1 / 2} \prod_{p \mid d_{3}} p^{(2 n-5) /(2 n-4)} \prod_{p \mid d_{4}} p \prod_{p \mid d_{5}} p^{3 / 2} \\
& \times \prod_{p \mid d_{6}} p^{(n-1) /(2 n-4)} \prod_{p \mid d_{7}} p^{(n-1) /(n-2)} \prod_{p \mid d_{8}} p^{(3 n-3) /(2 n-4)} \leq d_{0}^{1 /(2(n-2))}
\end{aligned}
$$

Thus, by (4) and (8), the equation $Q(\mathbf{x})=\lambda m$ is solvable over \mathbb{Z}_{p}, for all primes p, for some λ with

$$
\begin{aligned}
& 0<\lambda<\frac{32}{3} \pi^{2} m_{4} m_{5} m_{7} m_{8} \prod_{\substack{p \mid d_{3} d_{6} d_{7} d_{8} \\
p \nmid m_{7}}} p^{1 / 2} \frac{1+2 / \sqrt{p}}{1-1 / p} \prod_{\substack{d_{2} d_{4} d_{5} m_{7} \\
p \nmid m_{4}}} \frac{2-1 / p}{1-1 / p} \\
& \leq \frac{32}{3} \pi^{2} \prod_{p \mid d_{2}} \frac{2-1 / p}{1-1 / p} \prod_{p \mid d_{3}} p^{1 / 2} \frac{1+2 / \sqrt{p}}{1-1 / p} \prod_{p \mid d_{4}} p \prod_{p \mid d_{5}} p \frac{2-1 / p}{1-1 / p} \\
& \times \prod_{p \mid d_{6}} p^{1 / 2} \frac{1+2 / \sqrt{p}}{1-1 / p} \prod_{p \mid d_{7}} p \frac{2-1 / p}{1-1 / p} \prod_{p \mid d_{8}} p^{3 / 2} \frac{1+2 / \sqrt{p}}{1-1 / p} \\
& \leq c_{2}(n) d_{0}^{1 /(2(n-2))},
\end{aligned}
$$

where $c_{2}(n)$ is an easily calculable constant depending only on n. Theorem 2 now follows from Lemmas 3, 4 and 5 .

Proof of Theorem 3. Suppose first that m_{2} is odd. Then for any prime divisor p of m_{2} there exists a subspace of solutions of the congruence $Q(\mathbf{x}) \equiv 0(\bmod p)$ of dimension $n / 2$; see $[3$, Lemma 3]. Thus, by Lemma 6 there exists a lattice \mathcal{L} of solutions of the congruence $Q(\mathbf{x}) \equiv 0\left(\bmod m_{2}\right)$ of volume $m_{2}^{n / 2}$. Let \mathcal{R} be the convex region in \mathbb{R}^{n} defined by $Q(\mathbf{x}) \leq r^{2}$. Then the volume of \mathcal{R} is $2^{n / 2} r^{n} B_{n}(1) / \sqrt{d}$ where $B_{n}(1)$ is the volume of an n-ball of radius 1. By Minkowski's theorem \mathcal{R} contains a nonzero point \mathbf{x} of \mathcal{L} if $r^{2} \geq 2 d^{1 / n} m_{2} / B_{n}(1)^{2 / n}$. Thus $Q(\mathbf{x})=\lambda m_{2}$ with $0<\lambda<2 d^{1 / n} / B_{n}(1)^{2 / n}$, and $Q\left(m_{1} \mathbf{x}\right)=\lambda m$. If m_{2} is even, say $m_{2}=2 m_{3}$, and \mathbf{x} satisfies $Q(\mathbf{x})=$ λm_{3} with λ as above, then $Q(2 \mathbf{x})=(2 \lambda) m_{2}$ and $Q\left(2 m_{1} \mathbf{x}\right)=(2 \lambda) m$, with 2λ satisfying (3).

Note. If the odd square free part of m is relatively prime to d then the value $d_{0}^{1 /(2(n-2))}$ in (2) can be replaced by

$$
d_{0}^{1 /(2(n-1))} \prod_{p \mid d_{0}} \frac{1+2 / \sqrt{p}}{1-1 / p}
$$

In particular, taking m to be one we conclude that for any indefinite, primitive nonsingular quadratic form Q in $n \geq 4$ variables there exists an $\mathbf{x} \in \mathbb{Z}^{n}$ such that

$$
0<Q(\mathbf{x})<c_{4}(n) d_{0}^{1 /(2(n-1))} \prod_{p \mid d_{0}} \frac{1+2 / \sqrt{p}}{1-1 / p}
$$

Watson [14] had shown earlier that for such forms in $n \geq 3$ variables an \mathbf{x} exists with

$$
0<Q(\mathbf{x})<c(\varepsilon)|d|^{1 /(2(n-1))+\varepsilon}
$$

Appendix

LEMMA 1. Let n be any integer and m be a square free product of odd primes. Then

$$
\left|\sum_{\substack{x=0 \\(x, 8 m)=1}}^{8 m-1} e^{2 \pi i n x^{2} /(8 m)}\right| \leq 4 \prod_{\substack{p \mid m \\ p \nmid n}}(1+\sqrt{p}) \prod_{\substack{p|m \\ p| n}}(p-1)
$$

Proof. Say $m=p_{1} p_{2} \ldots p_{k}$ and set

$$
x=x_{1} \frac{8 m}{p_{1}}+x_{2} \frac{8 m}{p_{2}}+\ldots+x_{k} \frac{8 m}{p_{k}}+x_{k+1} m
$$

where x_{i} runs through $1,2, \ldots, p_{i}-1$ for $1 \leq i \leq k$ and x_{k+1} runs through $1,3,5,7$. Then

$$
\begin{aligned}
& \left|\sum_{\substack{x=0 \\
(x, 8 m)=1}}^{8 m-1} e^{2 \pi i n x^{2} /(8 m)}\right| \\
& =\left|\sum_{x_{1}} \cdots \sum_{x_{k+1}} \exp \left(\frac{2 \pi i n}{8 m}\left(x_{1}^{2} \frac{64 m^{2}}{p_{1}^{2}}+\ldots+x_{k}^{2} \frac{64 m^{2}}{p_{k}^{2}}+x_{k+1}^{2} m^{2}\right)\right)\right| \\
& \leq 4 \prod_{i=1}^{k}\left|\sum_{x_{i}} \exp \left(\frac{2 \pi i n\left(8 m / p_{i}\right) x_{i}^{2}}{p_{i}}\right)\right| \leq 4 \prod_{p_{i} \mid n}\left(p_{i}-1\right) \prod_{p_{i} \nmid n}\left(1+\sqrt{p_{i}}\right) .
\end{aligned}
$$

LEMMA 2. Let $D=8 d_{1} d_{2}$ where d_{1}, d_{2} are square free products of odd primes with $\left(d_{1}, d_{2}\right)=1$. Let c be any integer with $(c, D)=1$. Then there
exists a $\lambda \in \mathbb{Z}$ with $(\lambda, D)=1$ and

$$
\begin{equation*}
0<\lambda \leq \frac{32}{3} \pi^{2} \sqrt{d_{1}} \prod_{p \mid d_{1}} \frac{1+2 / \sqrt{p}}{1-1 / p} \prod_{p \mid d_{2}} \frac{2-1 / p}{1-1 / p} \tag{1}
\end{equation*}
$$

such that $c z^{2} \equiv \lambda\left(\bmod 8 d_{1}\right)$ for some z with $\left(z, 8 d_{1}\right)=1$.
Proof. Write $x=8 d_{1} w+k d_{2} z^{2}$ where k is any integer satisfying $d_{2} k \equiv c$ $\left(\bmod 8 d_{1}\right), w$ is such that $\left(w, d_{2}\right)=1$ and z is such that $\left(z, 8 d_{1}\right)=1$. Then $x \equiv c z^{2}\left(\bmod 8 d_{1}\right)$ and $(x, D)=1$. Thus our goal is to find w, z such that x is small $(\bmod D)$. Let $I=\{0,1,2, \ldots, M-1\}$ where $M \in \mathbb{Z}, M<D$, let χ_{I} be the characteristic function of $I(\bmod D)$ and $\alpha=\chi_{I} * \chi_{I}$. Then α has a Fourier expansion

$$
\alpha(x)=\sum_{y=-4 d_{1} d_{2}+1}^{4 d_{1} d_{2}} a(y) e_{D}(x y), \quad \text { where } e_{D}()=e^{2 \pi i() / D},
$$

and for $y \neq 0$,

$$
|a(y)|=\frac{1}{D} \frac{\sin ^{2}(\pi M y / D)}{\sin ^{2}(\pi y / D)} .
$$

In particular, for $|y| \leq 4 d_{1} d_{2}$ we have

$$
\begin{equation*}
|a(y)| \leq M^{2} / D \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
|a(y)| \leq D /\left(4 y^{2}\right) \quad \text { for } y \neq 0 . \tag{3}
\end{equation*}
$$

Our goal is to show the following sum is positive for M sufficiently large:

$$
\begin{aligned}
& \sum_{\substack{w=1 \\
\left(w, d_{2}\right)=1}}^{d_{2}} \sum_{\substack{z=1 \\
\left(z, 8 d_{1}\right)=1}}^{8 d_{1}} \alpha\left(8 d_{1} w+k d_{2} z^{2}\right) \\
&=\sum_{\substack{w=1 \\
\left(w, d_{2}\right)=1}}^{d_{2}} \sum_{\substack{z=1 \\
\left(z, 8 d_{1}\right)=1}}^{8 d_{1}} \sum_{y} a(y) e_{D}\left(\left(8 d_{1} w+k d_{2} z^{2}\right) y\right) \\
&=a(0) \phi\left(8 d_{1} d_{2}\right)+\sum_{y \neq 0} a(y) \sum_{w} \sum_{z} e_{D}\left(8 d_{1} y w\right) e_{D}\left(k d_{2} y z^{2}\right) \\
&=a(0) \phi\left(8 d_{1} d_{2}\right)+\text { Error, say. }
\end{aligned}
$$

To estimate the error term we first observe that if $\delta_{2}=\left(d_{2}, y\right)$ then

$$
\begin{aligned}
\sum_{\substack{w=1 \\
\left(w, d_{2}\right)=1}}^{d_{2}} e_{d_{2}}(y w) & =\sum_{\delta \mid \delta_{2}} \mu\left(\frac{d_{2}}{\delta}\right) \delta=\mu\left(\frac{d_{2}}{\delta_{2}}\right) \sum_{\delta \mid \delta_{2}} \mu\left(\frac{\delta_{2}}{\delta}\right) \delta \\
& =\mu\left(\frac{d_{2}}{\delta}\right) \phi\left(\delta_{2}\right) .
\end{aligned}
$$

Thus by Lemma 1 we have

$$
\begin{aligned}
\mid \text { Error } \mid & \leq \sum_{\delta_{1} \mid 8 d_{1}} \sum_{\delta_{2} \mid d_{2}} \sum_{\substack{y \neq 0 \\
\left(y, 8 d_{1}\right)=\delta_{1} \\
\left(y, d_{2}\right)=\delta_{2}}}|a(y)|\left|\sum_{w} e_{d_{2}}(y w)\right|\left|\sum_{z} e_{8 d_{1}}\left(k y z^{2}\right)\right| \\
& \leq 4 \sum_{\delta_{1} \mid 8 d_{1}} \sum_{\delta_{2} \mid d_{2}} \phi\left(\delta_{2}\right) \prod_{\substack{p\left|d_{1} \\
p\right| \delta_{1}}}(p-1) \prod_{\substack{p \mid d_{1} \\
p \nmid \delta_{1}}}(1+\sqrt{p}) \sum_{\substack{y \neq 0 \\
\left(y, 8 d_{1}\right)=\delta_{1} \\
\left(y, d_{2}\right)=\delta_{2}}}|a(y)| .
\end{aligned}
$$

Set

$$
y=\delta_{1} \delta_{2} \gamma \quad \text { with } \quad \gamma=-\left[\frac{4 d_{1} d_{2}}{\delta_{1} \delta_{2}}\right]+1, \ldots,\left[\frac{4 d_{1} d_{2}}{\delta_{1} \delta_{2}}\right], \gamma \neq 0 .
$$

We split the sum over y into two pieces. Suppose first that $\delta_{1} \delta_{2} \leq 2 d_{1} d_{2} / M$. Then, using (2) and (3) we have

$$
\sum_{\gamma}\left|a\left(\delta_{1} \delta_{2} \gamma\right)\right|=\sum_{|\gamma| \leq\left[\frac{4 d_{1} d_{2}}{\delta_{1} \delta_{2} M}\right]} \frac{M^{2}}{D}+\sum_{|\gamma| \geq\left[\frac{4 d_{1} d_{2}}{\delta_{1} \delta_{2} M}\right]+1} \frac{D}{4\left(\delta_{1} \delta_{2}\right)^{2} \gamma^{2}} .
$$

Now

$$
\sum_{\gamma=N+1}^{\infty} \frac{1}{\gamma^{2}} \leq \int_{N}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{N} \quad \text { for } N \geq 1
$$

and

$$
\left[\frac{4 d_{1} d_{2}}{\delta_{1} \delta_{2} M}\right] \geq \frac{4 d_{1} d_{2}}{\delta_{1} \delta_{2} M}-1 \geq \frac{2 d_{1} d_{2}}{\delta_{1} \delta_{2} M} \quad \text { for } \delta_{1} \delta_{2}<\frac{2 d_{1} d_{2}}{M} .
$$

Thus,

$$
\sum_{\gamma}\left|a\left(\delta_{1} \delta_{2} \gamma\right)\right| \leq 2 \frac{M^{2}}{D} \cdot \frac{4 d_{1} d_{2}}{\delta_{1} \delta_{2} M}+2 \frac{D}{4\left(\delta_{1} \delta_{2}\right)^{2}} \cdot \frac{\delta_{1} \delta_{2} M}{2 d_{1} d_{2}}=\frac{3 M}{\delta_{1} \delta_{2}} .
$$

Suppose now that $\delta_{1} \delta_{2} \geq 2 d_{1} d_{2} / M$. Then

$$
\sum_{\gamma}\left|a\left(\delta_{1} \delta_{2} \gamma\right)\right|<\frac{2 d_{1} d_{2}}{\left(\delta_{1} \delta_{2}\right)^{2}} \sum_{|\gamma| \geq 1} \frac{1}{\gamma^{2}} \leq \frac{M}{\delta_{1} \delta_{2}} \frac{\pi^{2}}{3} .
$$

Thus for any choice of δ_{1}, δ_{2} we have

$$
\sum_{\substack{y \neq 0 \\\left(y, y d_{1}\right)=\delta_{1} \\\left(y, d_{2}\right)=\delta_{2}}}|a(y)|<\frac{\pi^{2}}{3} \frac{M}{\delta_{1} \delta_{2}},
$$

and so,

$$
\begin{aligned}
\mid \text { Error } \mid & <\frac{4}{3} \pi^{2} M\left[\sum_{\delta_{1} \mid \delta d_{1}} \frac{1}{\delta_{1}} \prod_{\substack{p\left|d_{1} \\
p\right| \delta_{1}}}(p-1) \prod_{\substack{p \mid d_{1} \\
p \nmid \delta_{1}}}(1+\sqrt{p})\right]\left(\sum_{\delta_{2} \mid d_{2}} \frac{\phi\left(\delta_{2}\right)}{\delta_{2}}\right) \\
& <\frac{4}{3} \pi^{2} M 2 \prod_{p \mid d_{1}}(2+\sqrt{p}) \prod_{p \mid d_{2}}\left(2-\frac{1}{p}\right) .
\end{aligned}
$$

Now, the sum of interest is positive provided that

$$
M^{2} \cdot \frac{1}{2} \prod_{p \mid d_{1} d_{2}}\left(1-\frac{1}{p}\right)>\mid \text { Error } \mid
$$

It suffices to take

$$
M \geq \frac{16}{3} \pi^{2} \prod_{p \mid d_{1}} \frac{2+\sqrt{p}}{1-1 / p} \prod_{p \mid d_{2}} \frac{2-1 / p}{1-1 / p}
$$

whence (1) is obtained.

References

[1] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York 1966.
[2] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, New York 1978.
[3] T. Cochrane, Small solutions of congruences over algebraic number fields, Illinois J. Math. 31 (1987), 618-625.
[4] -, Small zeros of quadratic congruences modulo pq, Mathematika 37 (1990), 261-272.
[5] -, Small zeros of quadratic forms modulo p, III, J. Number Theory 37 (1) (1991), 92-99.
[6] D. Grant, Small solutions to a given quadratic form with a variable modulus, to be published.
[7] D. R. Heath-Brown, Small solutions of quadratic congruences, Glasgow Math. J. 27 (1985), 87-93.
[8] -, Small solutions of quadratic congruences, II, Mathematika 38 (1991), 264-284.
[9] Yu. V. Linnik and A. V. Malyshev, An elementary proof of the KloostermanTartakovski冗 theorem on the representations of numbers by positive quadratic forms, in: Proc. Fourth All-Union Math. Congr., Leningrad 1961, Vol. II, Nauka, Leningrad 1964, 116-117.
[10] J. W. Sander, A reciprocity formula for quadratic forms, Monatsh. Math. 104 (1987), 125-132.
[11] A. Schinzel, H. P. Schlickewei and W. M. Schmidt, Small solutions of quadratic congruences and small fractional parts of quadratic forms, Acta Arith. 37 (1980), 241-248.
[12] W. A. Tartakowsky [V. A. Tartakovskii], La détermination de la totalité des nombres représentables par une forme quadratique à plus de quatre variables, C. R. Acad. Sci. Paris 186 (1928), 1337-1340, 1401-1403, 1684-1687. Errata to second paper: 187 (1928), 155.
[13] G. L. Watson, Integral Quadratic Forms, Cambridge University Press, London 1960.
[14] -, The minimum of an indefinite quadratic form with integral coefficients, J. London Math. Soc. 32 (1957), 503-507.
[15] - Bounded representations of integers by quadratic forms, Mathematika 4 (1957), 17-24.

DEPARTMENT OF MATHEMATICS
KANSAS STATE UNIVERSITY
MANHATTAN, KANSAS 66506-2602
U.S.A.

E-mail: COCHRANE@KSUVM.BITNET

Received on 23.11.1990
and in revised form on 16.6.1992
(2098)

