
ACTA ARITHMETICA

LXIII.3 (1993)

The Eichler Commutation Relation for theta series with
spherical harmonics

by

Lynne H. Walling (Boulder, Colo.)

It is well known that classical theta series which are attached to positive
definite rational quadratic forms yield elliptic modular forms, and linear
combinations of theta series attached to lattices in a fixed genus can yield
both cusp forms and Eisenstein series whose weight is one-half the rank of the
quadratic form. In contrast, generalized theta series—those augmented with
a spherical harmonic polynomial—will always yield cusp forms whose weight
is increased by the degree of the spherical harmonic. A recent demonstration
of the far-reaching importance of generalized theta series is Hijikata, Pizer
and Shemanske’s solution to Eichler’s Basis Problem [4] (cf. [2]) in which
character twists of such theta series are used to provide a basis for the space
of newforms.

In this paper we consider theta series with spherical harmonics over
a totally real number field. We show that such theta series are Hilbert
modular cusp forms whose weight is integral or half-integral, depending on
the rank of the associated lattice. We explicitly describe the action of the
Hecke operators on these theta series in terms of other theta series, yielding a
generalization of the well-known Eichler Commutation Relation. Finally, we
use these theta series to construct Hilbert modular forms which are invariant
under a subalgebra of the Hecke algebra. We are able to show that if the
quadratic form has rank m and the spherical harmonic has degree l, then the
theta series attached to the genus of a lattice is identically zero whenever l
is small relative to m; in particular, the associated collection of theta series
are linearly dependent.

1. The transformation formula. Here we derive the transformation
formula for theta series with spherical harmonics. Our approach is similar
to that of Eichler in [3], but unlike the derivation in [3], we first derive an
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inversion formula by identifying our theta series with a Siegel modular form.
Let K be a totally real number field of degree n over Q, and let O and

∂ denote its ring of integers and its different (respectively). Let V be an m-
dimensional vector space over K with B : V × V → K a symmetric bilinear
form such that Q(x) def= B(x, x) is totally positive for all nonzero x ∈ V .
Take L to be a lattice on V (so L is a rank m O-module contained in V ).
We let L# denote the dual of L (i.e. L# = {x ∈ V : B(x, L) ⊆ O }) and
nL the norm of L (i.e. nL is the fractional O-ideal generated by 1

2Q(L)).
Then as shown in [3] (cf. [7]), (nL)−1(nL#)−1 is an integral ideal. For later
convenience, we take IL to be the smallest fractional ideal of O such that
I2

L ⊇ nL, and we put N(L) = nL in case m is even, and N(L) = I2
L in case

m is odd. We also put N equal to the stufe of L as defined in [7]. Thus if
m is even, N is the product of (nL)−1(nL#)−1 and perhaps some dyadic
primes; if m is odd, N = (nL#)−1I−2

L .
Viewing L as a Z-module, we take {λ1, . . . , λmn} to be a Z-basis for L.

Having fixed a K-basis {v1, . . . , vm} for V , we associate vectors of V with
m × 1 column vectors whose entries lie in K; hence for T = (λ1 . . . λmn) ∈
Mmn,m(K), L = TZmn. We remark here that the matrix T (1)

...
T (n)


is invertible (where the superscript of (j) denotes the image under the jth
embedding of K/Q into R). To see this, notice that 〈v, w〉 = Tr(tv · w) is a
symmetric bilinear form on the rational vector space V (here we still identify
v and w with m× 1 column vectors). Let {κ1, . . . , κmn} be a dual basis for
{λ1, . . . , λmn} with respect to 〈∗, ∗〉 (see [5]); thus

〈λi, κj〉 =
{ 1 if i = j ,

0 otherwise
and so

tκ
(1)
1 . . . tκ

(n)
1

. . .
tκ

(1)
mn . . . tκ

(n)
mn


 λ

(1)
1 . . . λ

(1)
mn

. . .
λ

(n)
1 . . . λ

(n)
mn

 = (〈κi, λj〉) = Imn .

Set F = (B(vi, vj)); then since Q is a totally positive quadratic form,

Z
def=

n∑
j=1

(tTFT )(j)zj = (tT (1) . . .t T (n))


. . .

F (j)zj

. . .


 T (1)

...
T (n)


is in Siegel upper half-space whenever z = (z1, . . . , zn) ∈ Hn (where H
denotes the complex upper half-plane). Given w = (w1, . . . , wn) with wj ∈
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Cm, we can find some u ∈ Cmn such that t(T (1) . . . T (n))u = t(w1 . . . wn).
Let Z〈〈x〉〉 denote txZx; then for any x ∈ Qmn with v = Tx ∈ V ,

Z〈〈x + u〉〉 =
n∑

j=1

(tTFT )(j)〈〈x + u〉〉zj =
n∑

j=1

F (j)〈〈v(j) + wj〉〉zj ;

note that if w0 ∈ V and wj = w
(j)
0 then

Z〈〈x + u〉〉 = Tr(Q(v + w0)z) .

Set ϑ(Z;u) =
∑

x∈Zmn exp{πiZ〈〈x + u〉〉}; by Lemma 1.3.1 of [1] we have

(1) (det(−iZ))1/2ϑ(Z;u) =
∑

x∈Zmn

exp{πi(−Z−1〈〈x〉〉+ 2 txu)}

where the square-root function is defined as in the above cited lemma. Given
our choice of Z, we find that

det(−iZ) = (−i)mn/2zm/2
√

Φ(L)

where

zm/2 =
n∏

j=1

z
m/2
j and Φ(L) = det

( n∑
j=1

(tTFT )(j)
)

.

Also,

Z−1 =
n∑

j=1

(tSF−1S)(j)
1
zj

= (tS(1) . . . tS(n))


. . .

(F (j))−1 1
zj

. . .


 S(1)

...
S(n)


where S = (κ1 . . . κmn); thus∑

x∈Zmn

exp{πi(−Z−1〈〈x〉〉+ 2 txu)}

=
∑

x∈Zmn

exp

πi

−Z−1〈〈x〉〉+ 2 tx(tS(1) . . . tS(n))

 w1
...

wn


=

∑
x∈SZmn

exp
{

πi

( n∑
j=1

− 1
zj

(F−1)(j)〈〈x(j)〉〉+ 2 tx(j)wj

)}

=
∑

x∈F−1SZmn

exp
{

πi

( n∑
j=1

− 1
zj

F (j)〈〈x(j)〉〉+ 2 tx(j)F (j)wj

)}
.
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Notice that F−1SZmn is L̃, the complement of L, which is the lattice dual
to L with respect to the bilinear form TrK/Q ◦B. Then with a slight abuse
of notation, formula (1) gives us the “inversion formula”:

(2) θ(L,w; z) =
imn/2

zm/2
√

Φ(L)

∑
y∈L̃

e

{
− 1

z
Q(y) + 2B(y, w)

}
where θ(L,w; z) =

∑
x∈L e{Q(x + w)z} and e{αz} means exp{πiTr(αz)}.

(When w 6∈ V we identify x and w with column vectors and interpret
Q(x + w) as F 〈〈x + w〉〉.)

From this inversion formula we derive an inversion formula for inhomo-
geneous theta series with spherical harmonics. Now, a degree l (l ∈ Z+)
spherical harmonic P relative to the lattice L is a linear combination of
functions on L of the form Pζ,l(x) =

∏n
j=1(x

(j)F (j)ζj)l where ζj ∈ Cm such
that tζjF

(j)ζj = 0 (here x is again identified with an m × 1 column vector
using the basis {v1, . . . , vm} for V ). Thus it suffices to derive an inversion
formula with P = Pζ,l. To derive this formula, we take wj = v(j) + σjζj

where v ∈ V , σj is a scalar, ζj ∈ Cm and tζjF
(j)ζj = 0; we then differentiate

equation (2) l times with respect to each σj . Setting the σj = 0 then gives
us

zl
∑
x∈L

Pw,l(x + v)e{Q(x + v)z}

=
imn/2

zm/2
√

Φ(L)

∑
y∈L̃

Pw,l(y)e
{
− 1

z
Q(y) + 2B(y, v)

}
.

Thus for any degree l spherical harmonic P relative to L and the inhomo-
geneous theta series

θ(L,P, v; z) def=
∑
x∈L

P (x + v)e{Q(x + v)z}

we have

(3) θ(L, P, v; z) =
imn/2

zm/2+l
√

Φ(L)

∑
y∈L̃

P (y)e
{
− 1

z
Q(y) + 2B(y, v)

}
.

For wj = w
(j)
0 with w0 ∈ L̃ this is the inversion formula from [3]. Note,

however, that i has an exponent of mn/2 and not −mn/2; J. Stopple informs
us that in carefully following Eichler’s proof he found a minor oversight
which accounts for this difference in sign.

Without loss of generality, we will assume herein that l is even. For, if
l is odd then θ(L,P ; z) def= θ(L,P, 0; z) = 0 since the coefficient of e{2ζz} is∑

x∈L,Q(x)=2ζ P (x) and P (x) + P (−x) = 0 when l is odd.
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The arguments of [3] or of [7] can now be used to derive the transfor-
mation formula; for completeness, we will sketch here a simplified version

of this proof. Take
(

a b
c d

)
such that a, d ∈ O, d 6= 0, b ∈ (N(L))−1∂−1,

c ∈ NN(L)∂ and ad− bc = 1. Then as in [7] we have

θ

(
L,P ;

az + b

cz + d

)
=

∑
x∈L

P (x)e
{

Q(x)
az + b

cz + d

}
=

∑
x0∈L/dL

e

{
b

d
Q(x0)

} ∑
x∈dL

P (x + x0)e
{

Q(x + x0)
d(d/z + c)

}
and by (3),

=
imn/2√
Φ(dL)

(d(d/z + c))m/2+l

×
∑

x0∈L/dL

e

{
b

d
Q(x0)

} ∑
y∈d−1L̃

P (y)e{−Q(y)d(d/z + c) + 2B(y, x0)}

=
imn/2√
Φ(L)

(d/z + c)m/2+lN(d)l−m/2

×
∑

x0∈L/dL

y∈L̃

e

{
b

d
Q(x0)+

2
d
B(y, x0)−

c

d
Q(y)

}
N(d)−lP (y)e

{
−Q(y)

1
z

}

and since b
dQ(x0) + 2

dB(y, x0)− c
dQ(y) ≡ − c

dQ(bx0 + y) (mod 2∂−1)

=
imn/2√
Φ(L)

(d/z + c)m/2+lN(d)−m/2

×
∑

x0∈L/dL

y∈L̃

e

{
− c

d
Q(bx0 + y)

}
P (y)e

{
−Q(y)

1
z

}
.

Now, for any prime P dividing d we must have

−ordPNN(L)∂ = ordPb ≥ −ordPN(L)∂

(since c ∈ NN(L)∂, b ∈ (N(L))−1∂−1 and ad − bc = 1); hence P cannot
divide N . Thus we can follow the argument of [7] to show that bx0 + y runs
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over L̃/dL̃ as x0 runs over L/dL. So

θ

(
L, P ;

az + b

cz + d

)
=

imn/2√
Φ(L)

(
d

z
+ c

)m/2+l

N(d)−m/2

×
∑

x0∈L/dL

e

{
− c

d
Q(bx0)

} ∑
y∈L̃

P (y)e
{
− 1

z
Q(y)

}
and by (3),

=
(

d

z
+ c

)m/2+l

zm/2+lN(d)−m/2

×
∑

x0∈L/dL

e

{
b

d
Q(x0)

}
θ(L,P ; z) .

The arguments used to prove Theorem 3.7 of [7] immediately give us

Theorem 1. Let Q be a totally positive quadratic form on the rank m
lattice L and let P be a degree l spherical harmonic relative to L. Then
θ(L,P ; z) is a Hilbert modular form of weight m/2+l and quadratic character
χ

L
which transforms under the group{(

a b
c d

)
∈

(
O (N(L))−1∂−1

NN(L)∂ O

)
: ad− bc = 1

}
.

R e m a r k. Let us here make more precise the meaning of the theorem.
When m is odd then we must associate an automorphy factor with a matrix

A =
(

a b
c d

)
in the above group of matrices. The automorphy factor we

use is that defined in [7],

θIL
(Az)

θIL
(z)

, where θIL
(z) =

∑
α∈IL

e{2α2z} .

This theta function satisfies the transformation formula (2) (with stufe 4O);
hence

θ(L,P ; z)|
[
A,

θIL
(Az)

θIL
(z)

]
def=

(
θIL

(Az)
θIL

(z)

)−m−2l

θ(L,P ;Az)

= χ
L
(d)θ(L,P ; z) .

When m is even then

θ(L,P ; z)|A def= (cz + d)−m/2−lθ(L,P ;Az) = χ
L
(d)θ(L,P ; z) .

Note that since χ
L

is a quadratic character modulo N , χ
L
(d) = χ

L
(a). Also

note that the theorem holds trivially for l odd, for as remarked earlier, in
that case θ(L,P ; z) = 0.
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To take advantage of theory already developed, we want Hilbert modular
forms which transform under matrices(

a b
c d

)
∈

(
O (N(L))−1∂−1

NN(L)∂ O

)
where ad− bc is any totally positive unit (if m is even) or the square of any
unit (if m is odd). Recall that we are assuming l is even; so for u ∈ U = O×
we have

θ(L,P ; z)|
(

u2 0
0 1

)
= N(u2)m/4+l/2

∑
x∈L

P

(
x

u

)
e{Q(x)z}

= N(u2)m/4+l/2N(u)−lθ(L,P ; z) = θ(L,P ; z)

(since N(u2) = 1, N(u) = ±1 and l is even). Thus θ(L,P ; z) transforms
under all matrices(

a b
c d

)
∈

(
O (N(L))−1∂−1

NN(L)∂ O

)
with ad − bc ∈ U2. Now consider the case where m is even. In the case
where P = 1 (and l = 0), we previously forced the transformation property
we desire by considering

∑
u θ(Lu; z) where the sum ran over a (finite) set

of totally positive units u such that the scaled lattices Lu lay in distinct
isometry classes (see [5]). When P 6= 1 and Lv ' L via the map ϕv : Lv → L,
we have

θ(Lv, P ; z) =
∑
x∈L

P (x)e{vQ(x)z} =
∑
x∈L

P (x)e{Q(ϕ−1
v x)z}

=
∑
x∈L

P (ϕvx)e{Q(x)z} = θ(L,P ◦ ϕv; z) .

(Note that since ϕv : Lv → L is an isometry, ϕv is an automorphism of L
such that Q(ϕvx) = Qv(x) = vQ(x).) Letting

UL = {v ∈ U+ : Lv ' L}

we see that
1

[UL : U2]

∑
u∈U+/UL

∑
v∈UL/U2

θ(Lu, P ◦ ϕv; z)

=
∑

u∈U+/UL

θ

(
Lu,

1
[UL : U2]

∑
v∈UL/U2

P ◦ ϕv; z
)

transforms under all matrices(
a b
c d

)
∈

(
O (N(L))−1∂−1

NN(L)∂ O

)
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with ad−bc ∈ U+. (One easily checks that
∑

v P ◦ϕv is a spherical harmonic
relative to Lu for any u ∈ U+.) So when m is even, we consider the modular
form

θ([L], [P ]; z) def=
∑

u∈U+/UL

θ

(
Lu,

1
[UL : U2]

∑
v∈UL/U2

P ◦ ϕv; z
)

;

so that we may simultaneously treat the case where m is odd, we set

θ([L], [P ]; z) = θ(L,P ; z)

when m is odd. So essentially [L] is the union
⋃

u Lu where u runs over
U+/UL, and [P ] is the “smoothed” spherical harmonic relative to L. Thus
we have the

Corollary. The function θ([L], [P ]; z) is a modular form of weight
m/2 + l with character χ

L
and which transforms under the group

Γ0(N , N(L)) =
{

A ∈
(

O (N(L))−1∂−1

NN(L)∂ O

)
: det A ∈ U+

}
(when m is even) or

Γ̃0(N , N(L)) =
{

Ã : A ∈
(

O (N(L))−1∂−1

NN(L)∂ O

)
, detA ∈ U2

}
(when m is odd).

2. θ([L], [P ]; z) as a cusp form. We now verify that θ(L,P ; z) (and
hence θ([L], [P ]; z)) is a cusp form where we assume P 6= 1. The computation
is very similar to that in Lemma 1 of [12]. It is clear that θ(L,P ; z) is 0
at the cusp i∞. For any β ∈ K×, we write β = α/γ where α, γ ∈ O and
α � 0; we want to show that

lim
z→i∞

θ(L,P ; z)|A = 0

where A =
(

α 0
γ 1

)
. When m is odd we must associate with A some auto-

morphy factor; our computation is independent of this automorphy factor,
though, for changing our choice of automorphy factor can only change the
value of θ(L,P ; z)|A by a fourth root of unity (cf. [12]). Now,

θ(L,P ;Az) =
∑
x∈L

P (x)e
{

Q(x)
α

γ + 1/z

}
and by (3),

=
imn/2√
Φ(L)

(
γ + 1/z

α

)m/2+l ∑
x∈L̃

P (x)e
{
−Q(x)

γ + 1/z

α

}



Eichler Commutation Relation 241

=
imn/2√
Φ(L)

(
γ + 1/z

α

)m/2+l

×
∑

x0∈L̃/αL
x∈αL

e

{
− γ

α
Q(x0)

}
P (x + x0)e

{
−Q(x + x0)

1
αz

}

=
imn/2√
Φ(L)

(
γ + 1/z

α

)m/2+l

×
∑

x0∈L̃/αL
x∈αL

e

{
− γ

α
Q(x0)

}
θ(αL,P, x0;−1/αz)

and again by (3),

=
imn

N(α)mΦ(L)

(
γ + 1/z

α

)m/2+l ∑
x0∈L̃/αL

e

{
− γ

α
Q(x0)

}
×

∑
y∈α−1L̃

P (y)e{Q(y)αz + 2B(y, x0)}

=
imn

N(α)mΦ(L)

(
γ + 1/z

α

)m/2+l

×
∑

y,x0∈L̃/αL

e

{
− γ

α
Q(x0) +

2
α

B(y, x0)
}

θ(αL,P, y; z/α) .

Given any automorphy factor j(A, z) for A, we know that

lim
z→i∞

j(A, z)−m/2−limn(γ + 1/z)m/2+l(−z)m/2+l = ε

for some fourth root of unity ε (depending on the choice of j(A, z)—note
that the branch cut used for the square-root function is that described in
Lemma 1.3.1 of [1]). We know that

lim
z→i∞

θ(αL,P, y; z/α) = 0 ,

so limz→i∞ θ (L,P ; z)|A = 0. This proves

Theorem 2. Given a nontrivial spherical harmonic P relative to the
lattice L, θ(L,P ; z) is a cusp form (and hence so is θ([L], [P ]; z)).

3. The action of Hecke operators on θ([L], [P ]; z). Let P be a
prime ideal not dividing 2N . To describe the action of T (P) or T (P2) on
θ([L], [P ]; z), we will need to understand the action of S(P) on θ(L,P ; z).
For f ∈ Mk(Γ0(N , N(L)), χ

L
) (or Mk(Γ̃0(N , N(L)), χ

L
)) and P a prime
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ideal not dividing N , we define S(P) by

f |S(P) = f |C ∈Mk(Γ0(N ,P2N(L)), χ
L
)

(when k is integral) or

f |S(P) = f |
[
C,N(P)−1/2 θIL

(Cz)
θPIL

(z)

]
∈Mk(Γ̃0(N , P 2N(L)), χ

L
)

(when k is half-integral); here

C =
(

a b
c d

)
∈

(
P P−1(N(L))−1∂−1

NPN(L)∂ O

)
with d ≡ 1 (mod N ) and ad − bc = 1. Now, S(P) is an isomorphism, so
we define S(P−1) = S(P)−1, and we extend the definition of S(∗) multi-
plicatively so that S(Q) is defined for all fractional ideals Q relatively prime
to 2N .

Let I be a fractional ideal and let Mm/2(Γ, χ
L
) denote the space of

Hilbert modular forms of weight m/2 which transform with character χ
L

under the group Γ . For m even we define

T (P) : Mm/2(Γ0(N , I), χ
L
) →Mm/2(Γ0(N ,PI), χ

L
)

by

f |T (P) = N(P)m/4−1
∑
A

f |A

where {A} is a complete set of coset representatives for

(Γ1(N , I) ∩ Γ1(N ,PI))\Γ1(N ,PI).

For m odd we define

T (P2) : Mm/2(Γ̃0(N , I2), χ
L
) →Mm/2(Γ̃0(N ,P2I2), χ

L
)

by

f |T (P2) = N(P)m/2−2
∑
Ã

f |Ã

where {Ã} is a complete set of coset representatives for

(Γ̃1(N , I2) ∩ Γ̃1(N ,P2I2))\Γ̃1(N ,P2I2) .

(Here Γ1(N , I) denotes the set of all elements of Γ0(N , I) whose lower right
entry is congruent to 1 modulo N .)

Lemma. For P a prime ideal not dividing 2N ,

θ(L,P ; z)|S(P) = N(P)m/2εL(P)θ(PL,P ; z)
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where

εL(P) =
{

((−1)m/2εP |P) if m is even,
(2εP |P) if m is odd.

Here εP ∈ O×P such that LP ' %〈1, . . . , 1, εP〉 for some % ∈ KP .

R e m a r k. When m is even, the square class of εP is clearly independent
of the choice of %. When m is odd, Lemma 3.1 of [10] shows that the square
class of εP is independent of the choice of %.

P r o o f. To prove this we essentially follow the arguments used to prove

Proposition 6.1 of [7] and Proposition 3.3 of [10]. Take C =
(

a b
c d

)
as in

the definition of S(P). Then as in the proof of the transformation formula,

θ

(
L,P ;

az + b

cz + d

)
=

∑
x0∈L/dPL

e

{
b

d
Q(x0)

} ∑
x∈dPL

P (x + x0)e
{

Q(x + x0)
d(d/z + c)

}

=
imn/2√
Φ(dPL)

(d(d/z + c))m/2+l

×
∑

x0∈L/dPL

e

{
b

d
Q(x0)

}
×

∑
y∈d−1P−1L̃

P (y)e{−Q(y)d(d/z + c) + 2B(x0, y)}

=
imn/2√
Φ(dPL)

(d(d/z + c))m/2+l

×
∑

x0∈L/dPL

y∈P−1L̃

e

{
b

d
Q(x0) +

2
d
B(y, x0)−

c

d
Q(y)

}

×N(d)−lP (y)e
{
−Q(y)

1
z

}
.

Now, b
dQ(x0) + 2

dB(y, x0)− c
dQ(y) ≡ − c

dQ(bx0 + y) (mod 2∂−1) so

e

{
b

d
Q(x0) +

2
d
B(y, x0)−

c

d
Q(y)

}
= e

{
− c

d
Q(bx0 + y)

}
.

Also, as x0 runs over L/dPL, bx0 + y runs over P−1L̃/dL̃. Hence
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θ

(
L,P ;

az + b

cz + d

)
=

imn/2√
Φ(dPL)

(d(d/z + c))m/2+lN(d)−l

×
∑

x0∈L/dPL

y∈P−1L̃

e

{
b

d
Q(x0) +

2
d
B(y, x0)−

c

d
Q(y)

}
P (y)e

{
−Q(y)

1
z

}

= (d/z + c)m/2+lzm/2+lN(d)−m/2
∑

x0∈L/dPL

e

{
b

d
Q(x0)

}
θ(PL,P ; z)

= (d/z + c)m/2+lzm/2+lN(d)−m/2
∑

x∈PL/dPL

e

{
b

d
Q(x)

}

×
∑

y∈dL/dPL

e

{
b

d
Q(y)

}
θ(PL,P ; z) .

When m is even,

N(d)−m/2
∑

x∈PL/dPL

e

{
b

d
Q(x)

}
= χ

L
(d) = 1

(since d ≡ 1 (mod N )) and∑
y∈dL/dPL

e

{
b

d
Q(y)

}
= N(P)m/2εL(P)

(see Proposition 6.1 of [7]); hence

θ(L,P ; z)|S(P) = εL(P)N(P)m/2θ(PL,P ; z) .

When m is odd, the above computation and the proof of Proposition 3.3 of
[10] give us

θ(L,P ; z)|S(P) = εL(P)N(P)m/2θ(PL,P ; z) .

Now we can prove

Theorem 3. Let P be a prime ideal not dividing 2N .

(1) If m is even then

θ([L], [P ]; z)|T (P) = N(P)m/4
∑

x∈[L]
Q(x)∈PnL

[P ](x)e{Q(x)z}

+ εL(P)N(P)3m/4−1
∑

x∈P[L]

[P ](x)e{Q(x)z}
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and

θ([L], [P ]; z)|T (P)2 = N(P)m/2
∑

x∈[L]

Q(x)∈P2nL

[P ](x)e{Q(x)z}

+ εL(P)N(P)m−1
∑

x∈P[L]

Q(x)∈P3nL

[P ](x)e{Q(x)z}

+ εL(P)N(P)m−1
∑

x∈P[L]

[P ](x)e{Q(x)z}

+ N(P)3m/2−2
∑

x∈P2[L]

[P ](x)e{Q(x)z} .

(2) If m is odd then

θ(L,P ; z)|T (P2) = N(P)m/2
∑
x∈L

Q(x)∈P2nL

P (x)e{Q(x)z}

+ N(P)m−3/2
∑

x∈PL
Q(x) 6∈P3nL

P (x)e{Q(x)z}

+ N(P)3m/2−2
∑

x∈P2L

P (x)e{Q(x)z} .

P r o o f. Note that it suffices to consider the action of the Hecke operators
on θ(L,P ; z), which we have seen is a Hilbert modular form. First consider
the case where m is even. Then

θ(L,P ; z)|T (P) = N(P)m/4−1
∑

b

θ(L,P ; z)|
(

1 b
0 1

)
+ N(P)m/4−1θ(L,P ; z)|S(P)

and by the preceding lemma,

= N(P)m/4
∑
x∈L

Q(x)∈PnL

P (x)e{Q(x)z}

+ εL(P)N(P)3m/4−1
∑

x∈PL

P (x)e{Q(x)z}

where b runs over P−1(nL)−1∂−1/(nL)−1∂−1.

Next we see that with b running over P−2(N(L))−1∂−1/(N(L))−1∂−1,
β running over P−2(N(L))−1∂−1/P−1(N(L))−1∂−1 and γ running over
P−1(N(L))−1∂−1/(N(L))−1∂−1, we have
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N(P)2−m/2θ(L, P ; z)|T (P)2

=
∑

b

θ(L,P ; z)|
(

1 b
0 1

)
+

∑
β

θ(L,P ; z)|S(P)|
(

1 β
0 1

)

+
∑

γ

θ(L,P ; z)|
(

1 γ
0 1

)
|S(P) + θ(L,P ; z)|S(P)|S(P)

= N(P)2
∑
x∈L

Q(x)∈P2N(L)

P (x)e{Q(x)z}+ εL(P)N(P)m/2+1θ(PL,P ; z)

+ N(P)mθ(P2L,P ; z) +
∑
γ′

θ(L,P ; z)|S(P)|
(

1 γ′

0 1

)
where γ′ runs over P−3(N(L))−1∂−1/(N(L))−1∂−1. Part (1) of the theorem
now follows.

Now suppose m is odd. By Lemma 2.2 of [10],

N(P)−m/2+2θ(L,P ; z)|T (P2)

=
∑

b

θ(L,P ; z)|
[(

1 b
0 1

)
, 1

]
+

∑
β

θ(L,P ; z)|S(P)|
[(

1 β
0 1

)
, N(P)1/2

( ∑
α∈PIL/P2IL

e{−2βα2}
)−1

]
+ θ(L,P ; z)|S(P2)

where b runs over P−2N(L)−1∂−1/N(L)−1∂−1 and β runs over

(P−3N(L)−1∂−1/P−2N(L)−1∂−1)× .

So to prove part (2) of the theorem, we need to evaluate the middle term.
As shown in §3 of [7],( ∑

α

e{−2βα2}
)2

= (−1|P)N(P)

so∑
β

θ(L,P ; z)|S(P)|
[(

1 β
0 1

)
, N(P)1/2

( ∑
α∈PIL/P2IL

e{−2βα2}
)−1

]
= εL(P)(−1|P)(m−1)/2N(P)(m−1)/2

∑
β

θ(PL,P ; z + β)
∑
α

e{−2βα2}

= εL(P)(−1|P)(m−1)/2N(P)(m−1)/2

×
∑

x∈PL

P (x)e{Q(x)z}
∑
α,β

e{Q(x)β}e{−2βα2} .
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Note that as shown in the proof of Lemma 3.1 of [10], ordPnL must be
even (since P does not divide N ) and hence ordPnL = ordPN(L). Thus
Q(x) ∈ P3nL if and only if Q(x) ∈ P3N(L). Suppose Q(x) ∈ P3nL; then
e{Q(x)β} = 1. Furthermore, taking % ∈ P−1∂−1−∂−1, the techniques used
in §3 of [7] give us∑
α,β

e{Q(x)β}e{−2βα2} =
∑

α,β∈O/P
β 6∈P

e{−2%βα2} =
∑

α,β∈O/P
β 6∈P

(α|P)e{−2%βα}

=
∑

α,β∈O/P

(αβ|P)e{−2%α} = 0

(since
∑

β∈O/P(β|P) = 0).
So now suppose Q(x) 6∈ P3nL. A similar computation shows that when

we take % ∈ P−1∂−1 − ∂−1 and µ ∈ P−1I−1
L − I−1

L we have∑
α,β

e{Q(x)β}e{−2βα2} =
∑

α,β∈O/P
β 6∈P

e{Q(x)µ2%β}e{−2%βα2}

=
∑

β∈O/P

e{Q(x)µ2%β}
∑

α∈O/P

(−β|P)e{2%α2}

= (−1|P)
∑

β∈O/P

e{Q(x)µ2%β2}
∑

α∈O/P

e{2%α2}

= (−2Q(x)µ2|P)
∑

α,β∈O/P

e{2%(α2 + β2)}

= (2Q(x)µ2|P)N(P) .

Now, as argued at the end of the proof of Theorem 7.4 of [7],

(−1|P)(m−1)/2εL(P)(2Q(x)µ2|P) = 1

for x ∈ PL with Q(x) 6∈ P3nL. Using the preceding lemma now yields part
(2) of the theorem.

To count the vectors of L the number of times indicated in the theorem,
we use special sublattices of L which we define as follows.

Definitions. Given a prime ideal P not dividing 2N , we say a lattice
L′ is a P-sublattice of L if PL ⊆ L′ ⊆ L and L′/PL is a maximal totally
isotropic subspace of L/PL. A lattice L′′ is a P2-sublattice of L if L′′ is a
P-sublattice of some P-sublattice L′ of L such that dim L′′/(PL ∩ L′′) =
dim L′/PL.

With these definitions and Propositions 7.2 and 7.3 of [7] (where we
count occurrences of different vectors of L in P- and P2-sublattices of L),
we get a generalization of the Eichler Commutation Relation:
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Corollary. Let P be a prime ideal not dividing 2N .

(1) For m even and εL(P) = 1,

θ(L,P ; z)|T (P) = N(P)m/4λ−1
∑
L′

θ(L′, P ; z)

where λ = (N(P)m/2−1 + 1) . . . (N(P)0 + 1) and the sum is over all P-
sublattices L′ of L.

(2) For m even and εL(P) = −1,

θ(L,P ; z)|T (P)2 = N(P)m/2κ−1
∑
L′′

θ(L′′, P ; z)

+N(P)m/2(1−N(P)m/2−2 − 2N(P)m/2−1)θ(PL,P ; z)

where κ = N(P)m/2−3 . . . N(P)0(N(P)m/2−1 + 1) . . . (N(P)2 + 1) and the
sum is over all P2-sublattices L′′ of L.

(3) For m odd ,

θ(L,P ; z)|T (P2)

=


(N(P)−1/2 + N(P)1/2)θ(L,P ; z) if m = 1,

N(P)m/2κ−1
∑
L′′

θ(L′′, P ; z)

+ (N(P)m/2 −N(P)m−3/2)θ(PL,P ; z) if m > 1,

where κ = N(P)(m−5)/2 . . . N(P)0(N(P)(m−3)/2 + 1) . . . (N(P) + 1) and the
sum is over all P2-sublattices L′′ of L.

4. Eigenforms and linear dependence relations. We can now
follow the constructions of eigenforms given in [9] and [10].

Let genL denote the genus of L. For m even, let fam+L denote the
nuclear family of L (as defined in [9]); so a lattice L′ is in the nuclear family
if there exists some totally positive unit u such that L′P ' Lu

P for all primes
P. We also let fam L denote the family of L; a lattice L′ is in the family of
L if L′ is a lattice on V α for some α � 0 with (α, 2N ) = 1 such that for
every prime P there is a local unit uP giving us L′P ' LuP

P . We set

θ(gen[L], [P ]; z) = θ(fam+L, [P ]; z) =
∑

L′∈genL

1
o(L′)

θ([L′], [P ]; z)

where o(L′) denotes the order of the orthogonal group of L′. Notice that
for m even,

θ(gen[L], [P ]; z) =
∑

L′∈fam+L

1
o(L′)

θ(L, [P ]; z) .

Now the corollary to Theorem 3 together with the counting arguments used
to prove Theorem 3.6 of [9] give us the
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Lemma. Let P be a prime ideal not dividing 2N .

(1) If m is even and εL(P) = 1 then

θ(gen[L], [P ]; z)|T (P) = N(P)m/4(N(P)m/2−1 + 1)θ(gen[K], [P ]; z)

where K is any P-sublattice of L.

(2) If m is even but εL(P) = −1 then

θ(gen[L], [P ]; z)|T (P)2 = N(P)m/2(N(P)m/2−1 − 1)2θ(gen[PL], [P ]; z).

(3) If m is odd then

θ(gen L, P ; z)|T (P2) = N(P)m/2(N(P)m−2 + 1)θ(genPL,P ; z) .

The operators in the above lemma together with the operators S(P)
(P not dividing 2N ) generate an algebra T L which is a subalgebra of the
Hecke algebra T . However, T L does not act on Mm/2+l(Γ0(N , N(L)), χ

L
);

we let T0 denote the subalgebra of T which does act on this space (cf. [8],
[9]). We also let T L

0 = T L ∩ T0. For m odd, the above lemma implies that
θ(gen L,P ; z) is an eigenform for T L

0 (provided it is nonzero).
Consider the case where m is even. Let Q1, . . . ,Qt be the bad primes

for L as defined in [9] (so for each i, 1 ≤ i ≤ t, there is a local unit ui such
that Lui

Qi
6' LQi

). Assume here that these bad primes are nondyadic; in the
case where some bad prime is dyadic the construction of our eigenforms is
more complicated and is described in §1 of [10]. Set

UL = {((u|Q1), . . . , (u|Qt)) : u ∈ U+} .

We associate the nuclear families within fam L with cosets in {±1}t/UL as
follows. Let gens T L be the commutative monoid consisting of all (finite)
products of the operators

{T (P) : εL(P) = 1} ∪ {T (P)2 : εL(P) = −1} ∪ {S(I)}
where it is understood that P is a prime ideal not dividing 2N and I is
a fractional ideal relatively prime to 2N . Then as vector spaces, T L is
generated by gens T L and T L

0 is generated by gens T L
0 = T0 ∩ gens T L.

Take T ∈ gens T L
0 . Thus

T = T (P1) . . . T (Pl)T (Pl+1)2 . . . T (Pl+s)2S(I)

where the Pi are primes (not necessarily distinct) such that εL(Pi) = 1
for 1 ≤ i ≤ l, εL(Pi) = −1 for i > l, and αP1 . . .PlP2

l+1 . . .P2
l+sI2 = O

for some α � 0. Let K = Kl+s ⊂ . . . ⊂ K1 ⊂ K0 = L be lattices
such that Ki is a Pi-sublattice of Ki−1 for 1 ≤ i ≤ l, and Ki is a P2

i -
sublattice of Ki−1 for i > l. Then repeated use of the lemma and the
corollary of Section 3 shows that θ(gen[L], [P ]; z)|T = λT θ(gen[IKα], [P ]; z)
(where λT 6= 0 depends only on T ); we associate fam+ IKα = gen[IKα]



250 L. H. Walling

with the coset ((α|Q1), . . . , (α|Qt))UL. In this way each nuclear family in
famL is associated with some coset ((β|Q1), . . . , (β|Qt))UL; let Lβ be a
lattice in the nuclear family associated with this coset. Then just as when
Lβ = L, θ(gen[Lβ ], [P ]; z)|T = λT θ(gen[Lαβ ], [P ]; z) with λT as above.

Now we can use {θ(gen[Lβ ], [P ]; z)} to construct “eigenforms” for T L
0 .

(Note that these will not be eigenforms if they are 0, and we will show that
at least in some cases the forms we construct are 0.) Let A be an integral
ideal dividing Q1 . . .Qt. Set

EA(z) =
∑

β

(β|A)θ(gen[Lβ ], [P ]; z)

where β varies so that gen[Lβ ] = fam+Lβ varies over the nuclear families
within famL; then for T as above,

EA(z)|T = λT

∑
β

(β|A)θ(gen[Lαβ ], [P ]; z)

= λT (α|A)
∑

β

(αβ|A)θ(gen[Lαβ ], [P ]; z) = λT (α|A)EA(z) .

Hence the nonzero EA(z) are T L
0 -eigenforms. Note that if EA(z) and EA′(z)

are nonzero and (α|A) 6= (α|A′) for some α such that Lα ∈ fam L, then
EA(z) and EA′(z) are linearly independent.

We now lift these T L
0 -eigenforms to T L-eigenforms as follows. Let

I1, . . . , Ih′ represent the distinct (nonstrict) ideal classes; take ideals
J1, . . . ,Jh/h′ such that the JηI2

µ represent the distinct strict ideal classes.
(Note that the I2

µ necessarily lie in distinct strict classes, for if I2 = βO
for β � 0 then by the Global Square Theorem β is necessarily the square
of some element of K×.) Without loss of generality, assume J1 = N(L)
and I1 = O, and assume that the Iσ are relatively prime to 2N . Thus
θ(gen[L], [P ]; z) is an element of Mm/2+l(Γ0(N ,J1I2

1 ), χ
L
) (if m is even) or

Mm/2+l(Γ̃0(N ,J1I2
1 ), χ

L
) (if m is odd). Let

Mm/2+l(N , χ
L
) =


∏
η,µ

Mm/2+l(Γ0(N ,JηI2
µ), χ

L
) if m is even,∏

µ

Mm/2+l(Γ̃0(N ,J1I2
µ), χ

L
) if m is odd,

and let

Mm/2+l(N , χ) = {F ∈Mm/2+l(N , χ
L
) : F |S(Q) = χ∗(Q)F

for all ideals Q, (Q, 2N ) = 1} .

Here χ denotes any Hecke character extending χ
L

(see [8], [6]). For later
convenience we assume that χ is chosen such that for P not dividing 2N ,
χ∗(P) = εL(P) (cf. [9]).
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First consider the case where m is odd. Define Θ(gen[L], [P ]; z) to be
the element of Mm/2+l(N , χ

L
) whose µ-component is N(Iµ)m/2 ×

θ(gen[IµL], [P ]; z). Then by the lemma of Section 3, Θ(gen[L], [P ]; z) ∈
Mm/2+l(N , χ), and

Θ(gen[L], [P ]; z)|T (P2) = (N(P)m−2 + 1)Θ(gen[L], [P ]; z)

for all prime ideals P not dividing N .
Now consider the case where m is even; in this case we basically follow

the procedure described in [8], but in view of what we know about the EA
we can simplify this procedure a bit.

Let [I] denote the complex of the strict ideal class of I (so [I] = {I ′ :
I ′ = αIJ 2 for some α � 0 and some fractional ideal J }). For notational
convenience, we let T0(Pe1

1 . . .Per
r ) = T (P1)e1 . . . T (Pr)er where P1, . . . ,Pr

are prime ideals. Set

C(EA) = {[I] : T0(Q) ∈ T L for some Q ∈ [I]} ;

when Q ∈ [I] such that T0(Q) ∈ T L we say Q witnesses [I] ∈ C(EA).
(To compare this definition of C(EA) to that given in Section 2 of [8],
we simply remark that by the lemmas of this and the preceding sections,
EA|T0(Q2)S(Q−1) 6= 0 whenever EA 6= 0 and T0(Q) ∈ T L; thus we see
that as required in [8], EA|T0(Q) = 0 whenever EA|T0(Q2)S(Q−1) = 0.)
Notice that C(EA) is a group in which every element has order 1 or 2.
Let [Q1], . . . , [Qs] generate C(EA) such that Qj witnesses [Qj ] ∈ C(EA).
Choose cj ∈ C× such that

EA|T0(Q2
j )S(Q−1

j ) = c2
jχ
∗(Qj)EA.

(Recall T0(Q2
j )S(Q−1

j ) ∈ T L
0 .) We define FA ∈ Mm/2+l(N , χ) as follows.

Set the (1, 1)-component of FA equal to EA. If [J−1
1 Jµ] 6∈ C(EA) then set

the (µ, η)-component of FA equal to 0 for all η, 1 ≤ η ≤ h′. Now suppose
[J−1

1 Jµ] ∈ C(EA). Choose η such that JµI2
η ∼ Qt1

1 . . .Qts
s J1 where tj = 0

or 1 and I ∼ J means I and J are in the same strict ideal class. Set the
(µ, η)-component of FA equal to

1
ct1
1 . . . cts

s

EA|T0(Qt1
1 . . .Qts

s ) .

(Note that the exponents tj are uniquely determined by the complex of Jµ;
also note that EA|T0(Qt1

1 . . .Qts
s ) ∈ Mm/2+l(Γ0(N ,JµIη), χ

L
).) For each

σ 6= η, 1 ≤ σ ≤ h′, choose I relatively prime to 2N such that I2
ηI2 ∼ I2

σ;
set the (µ, σ)-component of FA equal to

χ∗(I)Fµη
A |S(I) ∈Mm/2+l(Γ0(N ,JµIσ), χ

L
)

where Fµη
A denotes the (µ, η)-component of FA. Notice that since Fµη

A |S(aO)
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= χ∗(aO)Fµη
A for any a ∈ K×, the definition of Fµη

A is independent of the
choice of I.

It is clear from the construction of FA that FA|S(Q) = χ∗(Q)FA for all
fractional ideals Q relatively prime to 2N . Thus FA ∈ Mm/2+l(N , χ). To
show FA is a T L-eigenform (provided EA 6= 0 and hence FA 6= 0), we take
P to be a prime ideal not dividing 2N . Then the lemmas of this and the
previous sections show us that

EA|T (P)2S(P−1) = εL(P)(N(P)m/2−1 + εL(P))2EA ;

from the construction of FA, we find that

FA|T (P)2 = εL(P)χ∗(P)(N(P)m/2−1 + εL(P))2FA

= (N(P)m/2−1 + εL(P))2FA

(recall that we chose χ so that χ∗(P) = εL(P)). Suppose εL(P) = 1.
Choose tj = 0 or 1 and I a fractional ideal (relatively prime to 2N ) so
that P ∼ Q−t1

1 . . .Q−ts
s I−2. Then T = T0(PQt1

1 . . .Qts
s )S(I) ∈ T L

0 . Thus
EA|T = λT EA and consequently for every µ and σ we have Fµσ

A |T = λT Fµσ
A .

Also,

FA|T0(Q2
j ) = c2

jFA

so

Fµσ
A |T0(Qj)

=
χ∗(I)

ct1
1 . . . cts

s

EA|T0(Qt1
1 . . .Qts

s )T0(Qj)S(I)

=


χ∗(Qj)χ∗(I)

ct1
1 . . . cts

s

c2
jEA|T0(Qt1

1 . . .Q0
j . . .Qts

s )S(QjI) if tj = 1

χ∗(I)
ct1
1 . . . cts

s

EA|T0(Qt1
1 . . .Q1

j . . .Qts
s )S(I) if tj = 0

=


cj

χ∗(QjI)
ct1
1 . . . c0

j . . . cts
s

EA|T0(Qt1
1 . . .Q0

j . . .Qts
s )S(QjI) if tj = 1

cj
χ∗(I)

ct1
1 . . . c1

j . . . cts
s

EA|T0(Qt1
1 . . .Q1

j . . .Qts
s )S(I) if tj = 0

= cjF
µ′σ′

A

for appropriate µ′ and σ′. Hence

λT FA = FA|T = ct1
1 . . . cts

s χ∗(I)FA|T (P).

So if EA 6= 0, FA is a T L-eigenform. In fact, for P a prime ideal not dividing
2N ,

FA(z)|T (P) = ±(N(P)m/2−1 + 1)FA(z)
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when εL(P) = 1, and

FA(z)|T (P)2 = (N(P)m/2−1 − 1)2FA(z)

when εL(P) = −1. (Note that when εL(P) = 1, we can determine the sign
of the eigenvalue by using the methods of [9].)

We know that for an integral weight cuspidal T -eigenform of weight
m/2 + l, its eigenvalue under T (P) is on the order of N(P)(m+2l)/4 (and
so its eigenvalues under T (P)2 are on the order of N(P)(m+2l)/2). We also
know that a cuspidal TL-eigenform is a linear combination of T -eigenforms
(see [6]). So unless l ≥ m/2− 2, the FA(z) are necessarily 0. Letting β vary
as before and letting A vary over the divisors of Q1 . . .Qt, we see that∑

A
EA(z) =

∑
β

( ∑
A

(β|A)
)
θ(gen[Lβ ], [P ]; z) .

If (β|Qj) = 1 for all j then gen[Lβ ] = gen[L]. If (β|Qj) = −1 for some j,
then (β|A) = 1 for exactly half the ideals A dividing Q1 . . .Qt. Thus∑

A
(β|A) =

{
2t if gen[Lβ ] = gen[L] ,
0 otherwise

and so
∑
AEA(z) = 2tθ(gen[L], [P ]; z). This means we have

Theorem 4. If m is even and l , the degree of the spherical harmonic
P 6= 1, is less than m/2− 2 then θ(gen[L], [P ]; z) = 0 and so

θ([L], [P ]; z) = o(L)
∑

L′∈gen L
[L′] 6=[L]

1
o(L′)

θ([L′], [P ]; z) .

R e m a r k s. 1. Although the estimates on eigenvalues are not sufficient
to show this, we suspect this theorem holds for all l > 0.

2. When K = Q, the Shimura lift yields bounds on the magnitude of
eigenvalues for half-integral weight modular forms, so the theorem can be
extended to include the case of m odd and K = Q.

3. Let K = Q and let L be a lattice with an integral positive definite
quadratic form Q. If P is an indefinite quadratic form such that its associ-
ated matrix relative to a Z-basis for L has trace 0 then we can use P as a
degree 2 spherical harmonic. In this case the above theorem shows that for
rank L > 6, ∑

x∈
⋃

gen L

Q(x)=n

P (x) = 0

for every integer n. (Here
⋃

gen L denotes the union of the lattices in the
genus of L relative to the positive definite form Q.)
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