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1. Introduction

1.1. Background. This paper is a broadening and deepening of the
project begun in [7]. That paper showed that for each prime p ≡ 1 mod 4
establishing a conjecture of N. C. Ankeny, E. Artin and S. Chowla (de-
noted A-A-C below) about fundamental units in Q(

√
p) was equivalent to

determining which of two shapes occurred at the center of Γ ∗
p \H. Here

Γ ∗
p = Γ (p)∩Γ 0(p2). [7] also offered a characterization of the reflections, their

pointwise fixed reflection lines, and other geometrical attributes of Γ ∗
p \H.

The conjecture A-A-C is as follows: Let (x0, y0) be the fundamental
solution of x2−py2 = −1. Then p ∤ y0 (see [2]). This conjecture has received
a fair amount of attention for algebraic and computational number theorists.
(We refer the reader to [7] for bibliographic discussion and citations.)

Briefly, what we did was effectively characterize the isometries of Γ ∗
p \H,

of which there are many, and then pay close attention to the reflections.
These are of two kinds according as their pointwise fixed reflection lines—
geodesics we call reflectors—are closed geodesics or ones emanating and
terminating from cusps. The cusped ones are easier to handle, as they are
essentially rational in nature; the closed ones are quadratic in nature and
natural geometric questions lead to non-trivial number theoretic questions
in various real quadratic extensions of Q.

One particular closed reflection played a crucial role in the earlier work:
L0 := z → p/z. (L0 is associated with the involution so central to the
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work of Atkin and Lehner on the Hecke theory for Γ 0(N).) The h-line
σL = (±√

p) is pointwise fixed by L0, and thus its projection to Γ ∗
p \H is

closed and pointwise fixed by L0 on that surface. (We trust no confusion will
arise from the fact that we will often use the same notation for reflections
on Γ ∗

p \H and their lifts to reflections on H.)

The connection with A-A-C is then this: A-A-C is true or false according
as σL is orthogonal to pointwise fixed reflection lines of one or p cusped
reflections of Γ ∗

p \H. (We defined these reflectors as reversed by one another,
for the obvious reason.)

(For subsequent work on the geometry of reflections of Γ (N)\H and
Γ 0(N)\H, see [1].)

1.2. The present paper. The general theme of this paper is first, that
the above correspondence between the geometry of pointwise fixed reflec-
tors and features of CF(

√
p) continues to hold as we examine in turn: (a)

more general closed reflectors, and (b) shortest connections (of differential
geometry) between such reflectors. In brief, the entire CF(

√
p) is in fact

equivalent to this more general class of closed reflectors; and the incidence
pattern of the connections is determined by intermediate convergents. We
now turn to a statement of our results.

First, the association of L0 with the Pell equation x2 − py2 = −1 turns
out to be much more general. In fact, there are closed reflectors for each
k mod p admitting a solution of x2−py2 = k. Here is the precise statement:

Theorem 1. To each congruence class mod p of integers k admitting a
solution of x2 − py2 = k there exists a set of precisely p closed reflections
on Γ ∗

p \H. Different congruence classes have disjoint sets of reflections.
Reflections within a set belonging to a single congruence class are conjugated
into one another by Γ ∗

p \H conformal isometries given by the group generated

by

(

1 p
0 1

)

. All of these reflections are Γ 0(p) conjugate to L0 := z → p/z;

and thus all of these reflections have fixed lines orthogonal to fixed lines of
cusped reflections.

R e m a r k. Because |k| <
√

p ⇒ k = (−1)mQm, and knowing the Qm is
equivalent to knowing CF(

√
p), we see that the symmetries of the surface

Γ ∗
p \H determine CF(

√
p). This is one motivation for calling Γ ∗

p \H the
√

p
surface.

As stated above, [7] showed that if A-A-C is false at p, then there are

p closed reflectors (called σL = π(±√
p), σ′

L, σ′′
L, . . . , σ

(p)
L below), of L0 with

cusped L0-reversed reflectors orthogonal to them.

This certainly introduces so many new reflections on Γ ∗
p \H that hope

of embedding it in R3 should be abandoned (see [6]); however, geometric
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insight can be gained in such situations by passing to cleverly chosen finite
covers.

Next, if we consider the shortest geodesic connections between these
closed reflectors, we have

Theorem 2. If A-A-C is false at p, then the connections of the various

σ
(n)
L cannot intersect.

As will be discussed in the next section of this Introduction, this offers
both proof and algorithmic possibilities concerning A-A-C.

As will be shown below, Theorem 2 strongly suggested a study of when
a closed geodesic on Γ ∗

p \H intersects a cusped reflector. This turned out to
be completely determined by intermediate and plain convergents. Here is
the precise result:

Theorem 3. Let (α,α) be (project to) a closed geodesic on Γ ∗
p \H. This

geodesic will intersect an Ni reflector if and only if it intersects τ , a lift
of that Ni reflector given by convergents and intermediate convergents of
CF(α) in accordance with exactly one of these four possibilities (assume
pn/qn < α < pn+1/qn+1, i.e., that n is odd):

(i) τ =

(

pn + xpn+1

qn + xqn+1
,
pn+1

qn+1

)

, 0 ≤ x ≤ an+2,

(ii) τ =

(

pn+2

qn+2
,
xpn+2 + pn+1

xqn+2 + qn+1

)

, 0 ≤ x ≤ an+3,

(iii) τ =

(

2pn + xpn+1

2qn + xqn+1
,
pn+1

qn+1

)

, 1 ≤ x ≤ 2an+2 − 1; x odd ,

(iv) τ =

(

pn+2

qn+2
,
xpn+2 + 2pn+1

xqn+2 + 2qn+1

)

, 1 ≤ x ≤ 2an+3 − 1; x odd ,

where in every case p divides at least one of the four numerators or de-
nominators. Note also that no orthogonality assumption is made as to the
intersection.

1.3. New possibilities for A-A-C

• An explicit formula is given below for all lifts of σ′
L, but as is fully

explained there, we cannot as yet effectively determine correct choices of
two parameters (without actually computing y0, which is of course the very
thing we are trying to avoid). Now there are an infinite family of such correct
choices; it would be beautiful if σ′

L = (p2 ±√
p)/(p − 1) were a correct

lift; that is to say, that (α, p/α) = (2 + p ±
√

(2 + p)2 + 4p)/2 is always
the shortest connection between σL and σ′

L. This is surely the “highest”
connection in H, thus motivating our hope.
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If we could establish this for all p, or at least give an easy and effective
decision algorithm, then we could either (a) show the algorithm given by
Theorem 3 produces an N0 reflector intersection with (α, p/α)—thus proving
A-A-C; (b) run that algorithm on (α, p/α) to test for the truth of A-A-C
at p.

• We could simply run the algorithm given by Theorem 3 on σL = (±√
p).

According to [7], if this produced an Ni reflector intersection, for some i 6= 0,
the A-A-C would be true at that p.

• The algorithm of Theorem 3 shows that N0 reflector intersection with
closed geodesics is determined by congruence conditions on pairs of “suc-
cessive” intermediate and plain convergents. The congruence properties of
successive plain convergents corresponding to a generic geodesic have been
studied most illuminatingly by Moeckel [4]; the basic insight is that since
the geodesic flow is known to be ergodic (and indeed much more), these
congruence classes are randomly distributed (in appropriate sense).

What we are looking for here is congruences in some particular consec-
utive pair of convergents corresponding to a finite set of p(p − 1)/2 specific
geodesics—the shortest connections. Moeckel’s work suggests that is tanta-
mount to saying that at least one of these geodesics intersects a specific set
in the tangent bundle on Γ ∗

p \H. As many congruences are possible, this set
may be large portion of that tangent bundle (a finite measure space). At
the very least, this should yield a systematic reason to believe in the truth
of A-A-C. It could also yield a proof that A-A-C is correct for an infinite
(but indeterminate) set of primes.

2. Closed reflections on Γ ∗
p \H and complete quotients of

√
p.

The purpose of this section is to establish Theorem 1.

2.1. Closed reflections on Γ ∗
p \H. We begin by recalling (with slightly

modified notation) the characterization of these reflections obtained in [7,
Lemma A.4]:

Characterization. “[Every closed] reflection line may be lifted to the
h-line in H running between (αp ± √

p)/γ. The action of the reflection is
given by

z →
(

α
√

p −β
√

p
γ/

√
p −α

√
p

)

z .

Here of course βγ − α2p = −1 and α, β, γ ∈ Z.”

We are going to associate reflections (note the plural) on Γ ∗
p \H with the

k admitting solutions of x2 − py2 = k. If |k| < p, these arise from complete
quotients of the continued fraction expansion of

√
p, and so we begin there.
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2.1.1. |k| <
√

p. In what follows we will assume (k, p) = 1. If that fails,
then p |x and we have a Pell equation associated with a divisor of k. By
iterating this process, we may assume without loss of generality that this
divisor is prime to p.

Expand
√

p in a regular continued fraction expansion CF(
√

p) = [a0; a1,
a2, . . .] and as usual write

Pm +
√

p

Qm

= [am; am+1, am+2, . . .]

for the mth complete quotient. It is classical that [3, p. 279]:

1. There are finitely many complete quotients (due to the periodicity of
CF(

√
p)).

2. Qm <
√

p.

3. QmQm−1 = p − P 2
m.

4. p2
m − q2

m = (−1)mQm, where pm/qm is the mth partial quotient.

5. Each k satisfying

x2 − py2 = k , |k| <
√

p

has the form k = (−1)mQm for some m.

Choose k with (k, p) = 1 satisfying the conditions of number 5 above;
thus we have an m with k = (−1)mQm. Let γ = k in the Characterization.
The problem is to determine α and β. Since (p,Qm) = 1, we may find an
integer ≡ p−1 mod Qm. This is unique mod Qm. Choose α ≡ Pmp−1 mod
Qm. Since p−1 is unique modQm, so is α. The role of the various choices
of α within this constraint is discussed below.

We have

α2p − 1 ≡ P 2
mp−1 − 1 ≡ p−1(P 2

m − p) ≡ 0 mod Qm

by number 3. This means that β(−1)mQm−α2p = −1 is soluble for β. This
means there exist Γ ∗

p \H closed reflections with (P ∗
mp±√

p)/((−1)mQm) as
reflection lines where P ∗

m ≡ Pm mod Qm, P ∗
m = αp.

There are p different choices of α mod p. This is because α0 ≡ Pmp−1

mod Qm may be chosen in [0, Qm) so that α0, α0 + Qm, . . . , α0 + (p− 1)Qm

are all different mod p.

This implies that different choices of α give different reflections. To see
this, note that

(∗)
(

α
√

p −β
√

p
γ/

√
p −α

√
p

)(

α′√p −β′√p
γ′/

√
p −α′√p

)

≡p

(

−βγ′ −(αβ′ − α′β)p
α′γ − αγ′ −β′γ

)

.

(Here (and below) ≡p means the upper right entry is considered mod p2

while all other entries are mod p.)
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Also, in our case γ = γ′ = k, which forces β ≡ β′ mod p by the determi-
nant condition on SL(2, R) matrices. This means RHS of (∗) ∈ Γ ∗

p ⇔ α ≡
α′ mod p.

(∗) also implies different reflections with the same k are conjugate by an

element of the subgroup A of Γ 0(p) generated by

(

1 p
0 1

)

.

Now we consider the question of whether two different Qm’s can give rise
to the same reflection. (The congruences in this paragraph are all mod p.)
Say γ = (−1)mQm and γ′ = (−1)nQn give rise to the same reflection. Then

−1 ≡ βγ ≡ β′γ′ and β′γ ≡ βγ′ ≡ ±1 .

The former follows from the determinant condition on reflections and the
latter from the fact that RHS of (∗) ∈ Γ ∗

p . It is easy to see that choosing −1
in the second congruence forces γ ≡ −γ′ whereas choosing +1 forces β ≡ β′

and γ ≡ γ′. Recall now that all 0 < Qj <
√

p. Thus each congruence for
the γ’s forces Qm = Qn. This may happen [5], however the Pell equations
involved are then identical (perhaps up to sign)—and this is no difference
as p ≡ 1 mod 4.

2.1.2. |k| >
√

p. Again, we assume (k, p) = 1. We are going to associate
reflections with k, just as we did in the previous case, by taking k = γ. The
reduction (given for example in [3]) used to solve the Pell equation in the
case |k| >

√
p begins by finding U and k′ with

U2 − p = kk′ and |k′| < |k| .
Now (k, p) = (γ, p) = 1 means we may find p−1 mod γ. Choose α ≡

Up−1 mod γ. (Once again, α is unique (mod γ).) This forces

α2p ≡ U2p−1 ≡ 1 mod γ

and so we may solve βγ − α2p = −1. Just as in the previous case we get p
essentially different choices of α and the different reflections are conjugated
into one another by elements of A.

2.1.3. Cusped reversed reflections on Γ ∗
p \H. We now turn to the ques-

tion of when a reflection line (αp ±√
p)/γ may be mapped onto ±√

p by a
conformal isometry. This in effect determines all cusped reversed reflectors
as such an isometry will carry (0,∞), the imaginary axis which is a fixed
line of the cusped reflection N0 := z → −z, onto a reversed reflection line
of another cusped reflection. An obvious necessary condition is d2−pc2 = γ
be soluble as

g =

(

a bp
c d

)

: ±√
p → αp ±√

p

γ

implies this. Recall that L0 := z → p/z, and (αp ± √
p)/γ is fixed by L1.

We wish to find g ∈ Γ 0(p) with g(±√
p) = (αp ±√

p)/γ.
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That is, we wish to find g ∈ Γ 0(p) with L1gL0g
−1 ∈ Γ ∗

p . Writing g in
the notation of the previous paragraph and using the reflection matrices of
the Characterization for the L’s gives

L1gL0g
−1 ≡p

(

−βd2 [αa2 − β(ac − bd)]p
−αd2 − γ(bd − ac) −γa2

)

and we want this ∈ Γ ∗
p .

Note that as in the argument of the previous section, we get a2 ≡ ±β and
d2 ≡ ∓γ as necessary conditions. In addition, we need p | −αd2−γ(bd−ac)
and p |αa2 − β(ac − bd), which are both equivalent to

(1) p | ± α − (ac − bd)

by (βγ, p) = 1 and the congruences on a2 and d2; the sign choice of these
congruences determines the sign here.

We will show that a and b may be chosen so that equation (1) is satisfied.
Fix c and d satisfying d2 − pc2 = γ. We may replace a by a + xcp and b by
b + xd where x ∈ Z and we would still have g ∈ Γ 0(p). Note that all such
a’s are congruent mod p, preserving a2 ≡ ±β.

The value of the RHS of equation (1) is now ±α − ac + bd − xγ and by
choosing x appropriately we may be sure that p divides this. Thus we have
shown

Theorem 4. A necessary and sufficient condition for the reflector
(αp±√

p)/γ to be a conformal isometric image of ±√
p is that d2 − pc2 = γ

be soluble with (c, d) = 1.

R e m a r k s. (a) We call such closed reflectors Pellian because of the
association with the equation.

(b) The Pellian reflectors are precisely those that have cusped reversed
reflectors orthogonal to them, just as L0 has (±√

p) orthogonal to (0,∞)
which is fixed by N0.

(c) Γ ∗
p \H has closed reflectors that are not Pellian. Example (p = 5):

Choose α = 1, β = γ = 2. Then βγ−α2p = −1 as required; and (5 ±
√

5)/2
is a closed reflection line. But x2 − 5y2 = 2 is not soluble as (2

5 ) = −1. So
this reflector is not Pellian.

3. Connections between reflectors of L0. This section discusses
the number theoretic significance of the position of the shortest connections
between closed reflector(s) of L0 which intersect cusped reversed reflectors.
(For this section we will henceforth drop the subscript and refer to this as
L : z → p/z.) It will be recalled [7] that there is either one or p of these
according as A-A-C is true or false at p. First, assume there are p such

closed reflectors, σL = π(±√
p), σ′

L, σ′′
L, . . . , σ

(p)
L , recalling the notation

of [7]. Consider the shortest geodesic connecting σL to another of these
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reflectors, say σ′
L. There is no loss of generality in starting with σL since

such reflectors may be mapped to one another by Γ ∗
p conformal isometries

(using the reversed reflectors orthogonal to them). We shall call this a
connection. This connection must be orthogonal to both σL and σ′

L by
local shortest path considerations. (Similar arguments show the connection
is simple.) This orthogonality forces L to map this connection onto another
one of equal length connecting σL to σ′

L; the two taken together form a
closed geodesic—fixed, but not pointwise by L.

It is easy to see that this closed geodesic is in fact simple. For proceeding
at constant speed in both directions from σL, at every moment we are at
points paired by L. If we were to arrive at a self-intersection, it would have
to be a fixed point of L and thus lie on a closed reflector. Minimality ensures
we have arrived at σ′

L.

We will now prove that two such connections cannot intersect. We will
show this yields a contradiction: Say α1 connects σL and σ′

L and α2 connects

σL and σ
′′

L; and assume that they intersected at t (see Fig. 1):

Fig. 1

Now t breaks αi into two pieces, αi1 and αi2, where the former leaves σL.
Minimality implies |α21| ≥ |α11|, where absolute value means length; this is
by considering paths from σL and σ′

L. Symmetry now forces |α21| = |α11|
and now local arguments at t force the existence of a path between σL and
σ′

L that is shorter than α1. This completes the proof of Theorem 2.

We will now lift this picture to H under the assumption that A-A-C is
false at p (see Fig. 2):
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−np2−√
p

±1+mp
−p
α

−np2+
√

p

±1+mp −
√

p −α α
√

p
np2−√

p

±1+mp
p
α

np2+
√

p

±1+mp

Fig. 2

In Figure 2, σL = (±√
p) and σ′

L are presumed distinct reflectors of L,

both reversed by cusped reflections. (Here and below we use σ
(n)
L for both

the reflectors on Γ ∗
p \H and their lifts to H; this should cause no confusion.)

Again, the assumption that σL = (±√
p) is without loss of generality. Now

there is a crucial difficulty here: If we select the correct lift of σ′
L (that is, if

n and m are properly chosen in Figure 2) then the geodesic (α, p/α) will be
the shortest connection between σL and σ′

L. Otherwise it will just be some
geodesic orthogonal to σL and σ′

L. And to make matters worse, it is easy to
construct surfaces on which such arbitrary connections can indeed intersect.
Finding an efficient algorithm to determine the correct lift , without actually
computing y0, would offer an alternative test for the truth of A-A-C.

Our next task is to develop some exact formuli for shortest connections
and discuss the possibility of their intersecting. Note that (α, p/α) is fixed
in H by the product of the reflections through σL and σ′

L. (On Γ ∗
p \H both

reflections are L, of course.) Thus α and p/α are fixed points of
(

0
√

p
1/
√

p 0

)(

np
√

p (±1 + qp)
√

p
(±1 + mp)/

√
p −np

√
p

)

=

(

±1 + mp −np2

np ±1 + qp

)

.

Here of course (±1 + mp)(±1 + qp) + n2p3 = 1. This gives

α =
(m − q) +

√

(m − q)2 + 4n2p

2n
.

As we have said, if m and n (and thus q) are properly chosen this is indeed
a connection.

We now wish to consider the action of N0 in order to obtain another con-
nection. Recall that N0 and L commute as they have orthogonal reflectors.
This means that

N0

((

np2 ±√
p

±1 + mp

))

=

(−np2 ±√
p

±1 + mp

)

is also an L reflector orthogonal to a cusped reflector. Also N0((α, p/α)) =

(−α,−p/α) is the connection between
(−np2±√

p

±1+mp

)

and (±√
p).
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These connections would be identical if
(np2±√

p

±1+mp

)

and
(−np2±√

p

±1+mp

)

were

the same geodesic δ on Γ ∗
p \H. But this is not possible because they are

identified by N0. Specifically: (i) δ could not be fixed by N0 because it
is closed, (ii) δ could not be not reversed by N0 because we are assuming
that A-A-C is false and Lemma D2 of [7] applies, that is, σL is the unique
reflector reversed by N0, (iii) N0 could not act as a glide-reflection along δ
as such geodesics have the form

−(a + d) ±
√

(a + d)2 − 4bcp3

2cp
where

(

a bp2

cp d

)

∈ Γ ∗
p

and (np2 ±√
p)/(±1 + mp) cannot be of this form. At this point, we know

that if (α, p/α) intersects (−α,−p/α) we would have a contradiction to
Theorem 2 and A-A-C would be established at p. That is, an intersection
is sufficient to establish A-A-C. Perhaps the easiest way to establish the
intersection would be to show that (α, p/α) intersects an N0 reflector. (For
we have just shown that this intersection would be on (−α,−p/α) also.)

(In the next section we shall determine precisely which geodesics have an
N0 reflector intersection in terms of intermediate convergents. And indeed
this method works for all cusped reflections Ni on the Γ ∗

p \H.)

We close this section with a conjecture concerning the necessity of such
an intersection for A-A-C.

Conjecture. If A-A-C is true then (α, p/α) intersects (−α,−p/α).
Moreover , there is such an intersection caused by intersection with an N0

reflector.

4. Convergents and cusped reflector intersections. The purpose
of this section is to prove Theorem 3.

We begin with the N0 case. Recall that an N0 reflector has the form
(a/pc, p2b/d) with ad − p3bc = ±1 [7, Lemma B5]. We have pn/qn < α <
pn+1/qn+1 and pn+1qn − qn+1pn = ±1. If p | qn and p2 | pn+1, we are done.
(Here |α − p/α| is assumed large; i.e. greater than one.) We are going
to modify this idea using intermediate convergents—some of what follows
immediately is standard computation with intermediate convergents.

We want

spn + rpn+1

sqn + rqn+1
< α <

tpn + upn+1

tqn + uqn+1
;

p | sqn + rqn+1 , p2 | tpn + upn+1 ; r/s , t/u > 0 ,

with

(spn + rpn+1))(tqn + uqn+1) − (sqn + rqn+1)(tpn + upn+1) = ±1, ±2 .
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(This last may be written:

det

(

s r
t u

)(

pn qn

pn+1 qn+1

)

= ±1, ±2

and thus su − rt = ±1,±2 is necessary and sufficient.) We begin with the
case of +1.

Write x = r/s and consider (pn + xpn+1)/(qn + xqn+1) = α. Clearly
x 6∈ Z, and as a function of x, clearly (pn + xpn+1)/(qn + xqn+1) increases
with x. This means there is a unique integer b such that

pn + bpn+1

qn + bqn+1
< α <

pn + (b + 1)pn+1

qn + (b + 1)qn+1

and it is now a simple matter using standard convergent facts to show that
b = an+2. We will continue to use b as a notational convenience.

We have r/s ≤ b or r ≤ bs, and similarly t(b + 1) ≤ u. Recall that
u = (1 + rt)/s ≤ 1/s+ bt. Thus bt+ t ≤ u ≤ bt+1/s. This forces s = t = 1
with u = b + 1 and r = b; or t = 0 with s = u = 1 and 0 ≤ r ≤ b. The
first case is really that of a convergent pn+2/qn+2 and its first intermediate
convergent toward pn+1/qn+1. The second is

(

pn + ipn+1

qn + iqn+1
,
pn+1

qn+1

)

for 0 ≤ i ≤ b .

We can now exhaust the det = +1 possibilities of N0 reflectors sur-
rounding α that come from intermediate convergents. In the following test
means check numerators and denominators of the intervals for the required
congruence conditions.

Algorithm. Begin with (pn

qn

, pn+1

qn+1
). Test (pn+ipn+1

qn+iqn+1
, pn+1

qn+1
) for i ≤ an+2.

(The last test is (pn+2

qn+2
, pn+1

qn+1
)). Proceed to test (pn+2

qn+2
, ipn+2+pn+1

iqn+2+qn+1
) for i ≤

an+3. (The last test is (pn+2

qn+2
, pn+3

qn+3
)). Continue in this way.

The det = +2 case is similar : Begin with (2pn+ipn+1

2qn+iqn+1
, pn+1

qn+1
). (If i is

even, this has already occurred in the det = +1 case, so we restrict to i
odd.) We test for i ≤ 2an+2 − 1. (The last test is (2pn+2−pn+1

2qn+2−qn+1
, pn+1

qn+1
); note

that i = 2an+2 + 1 gives (2pn+2+pn+1

2qn+2+qn+1
, pn+1

qn+1
) and this entire interval is to

the right of α.) Proceed to test (pn+2

qn+2
, ipn+2+2pn+1

iqn+2+2qn+1
), for odd i ≤ 2an+3 − 1.

Continue in this way.

The det = −1,−2 cases simply reverse the role of n and n + 1; i.e.
assume that n is even. Also, the generalization from N0 to Ni, as per [7,
Lemmas A3 and B1], amounts to checking different congruence conditions
as we test. Alternatively we could (effectively) conjugate Ni into N0 with
a Γ ∗

p \H conformal isometry φ and then test φ(α) for intersection by an N0

reflector.
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Last, we will show that all Ni reflectors crossing (α,α) arise from inter-
mediate and plain convergents. Indeed, if |ad−bc| = 1, we have |a/c−b/d| =
1/(cd). Without loss of generality assume that |α − a/c| > |α − b/d|, and
a/c < α < b/d. If c > d then |α − b/d| ≤ 1/(2cd) ≤ 1/(2d2) and b/d is a
convergent, say pn+1/qn+1. This forces a = pn +xpn+1 and c = qn +xqn+1.
(If pn/qn < a/c, we have x ≤ an+2; we will deal with this assumption at the
end of the proof.)

We are reduced to the case d > c, |α − a/c| > |α − b/d|. This forces
|α−a/c| < 1/c2 and a = pn+xpn+1, c = qn+xqn+1 where again pn/qn < a/c
gives 0 ≤ x ≤ an+2. Just as before we get b = pn+1 + y(pn + xpn+1) , d =
qn+1 + y(qn + xqn+1). Since α < b/d, we have

xy + 1

y
= x +

1

y
≥ an+2 ≥ x.

This resolves to the two cases y = 1, x = an+2 − 1 or an+3 ≥ y > 1, x =
an+2; the latter of which is part of the pn+2/qn+2 intermediate convergent
case. The case |ad − bc| = 2 proceeds similarly.

The assumption that pn/qn < a/c < α is without loss of generality. This
is because a lift of any Ni reflector intersecting (α,α) may be mapped (by
a power of the primitive Γ ∗

p hyperbolic fixing (α,α)) onto a lift of the same
Ni reflector with pn/qn < a/c < pn+2/qn+2 < α for some n (not uniquely,
of course). This completes the proof of Theorem 3.
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