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1. Introduction. In 1953 K. Mahler [12] gave a lower bound for
rational approximations to π by showing that

∣

∣

∣

∣

π − p

q

∣

∣

∣

∣

≥ q−42

for any integers p, q with q ≥ 2. He also indicated that the exponent 42
can be replaced by 30 when q is greater than some integer q0. This result
is based on the classical approximation formulae to the exponential and
logarithmic functions due to Hermite. Our aim is to improve the knowledge
of approximations by rational numbers of the classical constants of analysis
such as π and π/

√
3. In general, we say that a real number γ has an

irrationality measure µ ≥ 2 provided that, for any ε > 0, there exists a
positive integer q0(ε) satisfying

∣

∣

∣

∣

γ − p

q

∣

∣

∣

∣

≥ q−µ−ε

for any integers p, q with q ≥ q0(ε).

Later the exponent 30 mentioned above was improved to 20 by
M. Mignotte [13] by a refinement of Mahler’s method, and to 19.8899944 . . .
by G. V. Chudnovsky [3]. Indeed, Chudnovsky has succeeded in determining
the exact asymptotic behaviour of the complex integral

(1.1)
1

2πi

∫

C

(

n!

z(z − 1) . . . (z − n)

)k

ewz dz

as n tends to infinity. Recently the author [11], modifying the above integral
(1.1), obtained a fairly good irrationality measure 13.394 for π.

On the other hand, F. Beukers [2] gave an elegant irrationality proof of
ζ(2) = π2/6 by considering the double (real) integral
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(1.2)
1

∫

0

1
∫

0

L(x)(1 − y)n

1 − xy
dx dy,

where L(x) = 1
n!

(xn(1 − x)n)(n) is the Legendre polynomial. The inte-
gral (1.2) gives an irrationality measure 11.85078 . . . for π2 and this has
been pared down to 10.02979 by R. Dvornicich and C. Viola [9], to 7.552
by E. A. Rukhadze [15], to 7.5252 by the author [10], and to 7.51 . . . by
D. V. Chudnovsky and G. V. Chudnovsky [6]. (The measures 7.552 and
7.51 . . . were announced without proofs.) Thus the last result due to Chud-
novsky and Chudnovsky brings an irrationality measure 15.02 . . . for π.

All the measures mentioned above are based on rational approximations
to π and its powers, though a single system of approximation to π is desired.
In this paper we consider the complex integral

(1.3)
∫

Γ

(F (a1, a2, a3; z))n dz

z

where

(1.4) F (a1, a2, a3; z) =
(z − a1)

2(z − a2)
2(z − a3)

2

z3

with non-zero distinct complex numbers a1, a2 and a3. By taking a1 = 1,
a2 = 2 and a3 = 1 + i, the integral (1.3) enables us to obtain the following

Theorem 1.1. For any ε > 0, there exists a positive integer H0(ε) such

that

|p + qπ + r log 2| ≥ H−µ−ε

for any integers p, q, r with H ≡ max{|q|, |r|} ≥ H0(ε), where the exponent

µ is given by

µ = −2 log α0 + 6 − π/
√

3

2 log α1 + 6 − π/
√

3

with

αj =
10

9

√
18265 cos

(

θ0 +
4jπ

3

)

+
92

3

√
6 and θ0 =

1

3
arctan

(

23
√

69

1209303

)

.

(Numerically one has µ = 7.016045 . . .)

In particular, we have
∣

∣

∣

∣

π − p

q

∣

∣

∣

∣

≥ q−8.0161 and

∣

∣

∣

∣

π

log 2
− p

q

∣

∣

∣

∣

≥ q−8.0161

for any integers p, q with q ≥ q0. Hence the former remarkably improves the
earlier irrationality measures of π mentioned above.

As another application of the integral (1.3), by taking a1 = 1, a2 =
(1 +

√
3i)/2 and a3 = (3 +

√
3i)/4, we have the following
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Theorem 1.2. For any ε > 0, there exists a positive integer q0(ε) such

that
∣

∣

∣

∣

π√
3
− p

q

∣

∣

∣

∣

≥ q−ξ−ε

for any integers p, q with q ≥ q0(ε), where the exponent ξ is given by

ξ = 1 +
2 log(β/54) + 6 − π/

√
3

log(β/3) − 6 + π/
√

3

with β = 4529+ 3
√

u + v + 3
√

u − v, u = 92868417494 and v = 319599
√

5073.
(Numerically one has ξ = 4.601579 . . .)

Concerning the number π/
√

3, K. Alladi and M. L. Robinson [1] ob-
tained an irrationality measure 8.30998 . . . by using the Legendre polynomi-
als. Later this was improved to 5.7926 by G. V. Chudnovsky [4], to 5.516 by
A. K. Dubitskas [8], to 5.0874 . . . by the author [10], and to 4.97 by G. Rhin
[14]. (The last measure 4.97 was announced without proof.) Therefore our
Theorem 1.2 improves all the measures for π/

√
3 mentioned above.

The principal part of the integral (1.3), as n tends to +∞, can be easily
obtained by the saddle method originated in Riemann’s work, which is de-
scribed in detail in Dieudonné’s book [7]. This may be regarded as a natural
complex version of the well-known formula

lim
n→∞

(

1
∫

0

ϕ(t)(f(t))n dt
)1/n

= max
0≤t≤1

f(t)

for real-valued positive continuous functions ϕ(t) and f(t). Owing to this
method we do not need in this paper any discussion on recurrence relations
of polynomials. We note that our new exponents appearing in Theorems 1.1
and 1.2 contain the roots of some cubic equations with integral coefficients.

We prepare four lemmas in the next section. In particular, Lemma 2.2 is
an elementary arithmetical lemma concerning binomial coefficients, which
plays an important role in this paper. Then Theorems 1.1 and 1.2 will be
proved in Sections 3 and 4 respectively.

2. Preliminaries. First of all we need the following lemma concerning
linear independences over Q:

Lemma 2.1. Let m be a fixed non-negative integer. Let γ1 and γ2 be real

numbers satisfying

qnγ1 − pn = εn and qnγ2 − rn = δn

for some pn, qn, rn ∈ Z + i
√

mZ for all n ≥ 1. Suppose that

lim
n→∞

1

n
log |qn| = σ , lim

n→∞

1

n
log |εn| = −τ , lim

n→∞

1

n
log |δn| = −τ ′
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for positive numbers σ, τ and τ ′ with τ ′ ≥ τ . Suppose further that there exist

infinitely many n’s satisfying δn/εn 6= ̺ for any rational number ̺. Then

the numbers 1, γ1 and γ2 are linearly independent over Q. More precisely ,
for any ε > 0, there exists a positive integer H0(ε) such that

|p + qγ1 + rγ2| ≥ H−σ/τ−ε

for any integers p, q, r with H ≡ max{|q|, |r|} ≥ H0(ε).

P r o o f. Obviously there exists an integer n0 such that qn 6= 0, εn 6= 0
and δn 6= 0 for all n ≥ n0. Putting Λ = p + qγ1 + rγ2 for arbitrarily fixed
integers (p, q, r) 6= (0, 0, 0), we have

Λ = p + q

(

pn + εn

qn

)

+ r

(

rn + δn

qn

)

=
pqn + qpn + rrn

qn
+

qεn + rδn

qn
≡ An

qn
+

ωn

qn
, say.

We first show that the set Ω = {n ≥ 1 : An 6= 0} is infinite. Suppose, on
the contrary, that Ω is finite; that is, An = 0 for all n ≥ n1 for some integer
n1 ≥ n0. Since |qn| ≥ 1 and ωn → 0 as n → ∞, we have Λ = 0. Hence
ωn = 0; so,

q + r
δn

εn
= 0

for all n ≥ n1. Since (q, r) 6= (0, 0), we have r 6= 0; hence δn/εn = −q/r for
all n ≥ n1, contrary to the hypothesis of the lemma.

For any ε > 0, one can define a sufficiently small δ ≡ δ(ε) ∈ (0, τ/6)
satisfying

σ + δ

τ − 3δ
<

σ

τ
+

ε

2
.

Then there exists an integer n(ε) ≥ n0 such that

e(σ−δ)n ≤ |qn| ≤ e(σ+δ)n and max{|εn|, |δn|} ≤ e−(τ−δ)n

for all n ≥ n(ε). We now define

H0(ε) = min{N ≥ 1 : 4N ≥ e(τ−δ)n(ε) and Nετ ≥ (4eσ+τ )2τ+4σ}
and

N(H) = min{N > n(ε) : 4H < e(τ−δ)N}
for all H ≥ H0(ε). Since |ωn| ≤ 2He−(τ−δ)n for all n ≥ n(ε), we have
|ωn| < 1/2 for all n ≥ N(H). Therefore

(2.1) |Λ| =

∣

∣

∣

∣

An + ωn

qn

∣

∣

∣

∣

≥ 1 − |ωn|
|qn|

>
1

2|qn|
≥ 1

2
e−(σ+δ)n

for any n ∈ Ω with n ≥ N(H). (Note that |An| ≥ 1 if An 6= 0, since
An ∈ Z + i

√
mZ.)
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Now we distinguish two cases as follows: (a) N(H) ∈ Ω or (b) N(H) 6∈ Ω.
In Case (a), it follows from the definition of N(H) that 4H ≥ e(τ−δ)(N(H)−1);
so,

eN(H) ≤ 23/τ eH1/(τ−δ) .

Hence, putting n = N(H) in (2.1), we have

|Λ| ≥ 1
2e−(σ+δ)N(H) ≥ (H0(ε))

−ε/2H−σ/τ−ε/2 ≥ H−σ/τ−ε ,

as required.

In Case (b), let M(H) be the smallest integer satisfying M(H) > N(H)
and M(H) ∈ Ω. Since AM(H)−1 = 0, we have

|Λ| =

∣

∣

∣

∣

ωM(H)−1

qM(H)−1

∣

∣

∣

∣

≤ 2He−(σ+τ−2δ)(M(H)−1) ;

so,

eM(H) ≤ e

(

2H

|Λ|

)1/(σ+τ−2δ)

.

Hence, putting n = M(H) in (2.1), we obtain

|Λ| ≥ 1

2
e−(σ+δ)M(H) ≥ 1

2
e−(σ+δ)

( |Λ|
2H

)(σ+δ)/(σ+τ−2δ)

;

thus,

|Λ| ≥ (4eσ+τ )−1−2σ/τ H−(σ+δ)/(τ−3δ)

≥ (H0(ε))
−ε/2H−σ/τ−ε/2 ≥ H−σ/τ−ε .

This completes the proof.

R e m a r k 2.1. By the same argument as above, one can show that if
qnγ − pn = εn for some irrational number γ,

lim
n→∞

1

n
log |qn| = σ and lim sup

n→∞

1

n
log |εn| ≤ −τ ,

then γ has an irrationality measure 1 + σ/τ . This slightly improves Propo-
sition 3.3 in [10], in which the author posed the unnecessary hypothesis
that γ is not a Liouville number. This remark will be used in the proof of
Theorem 1.2.

We next give an elementary arithmetical lemma concerning binomial
coefficients.

Lemma 2.2. There exists a positive integer Dn such that

(2.2)
Dn

j + k + l − 3n

(

2n

j

)(

2n

k

)(

2n

l

)

∈ Z
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for all integers 0 ≤ j, k, l ≤ 2n with j + k + l 6= 3n and that

(2.3) lim
n→∞

1

n
log Dn =

1

2

{

6 − π√
3

+ log
27

16

}

≡ κ, say .

(Numerically one has κ = 2.35472 . . .)

P r o o f. Let v(s, p) be the exponent of any prime factor p in the resolu-
tion of each integer 1 ≤ s ≤ 3n into its prime factors; that is,

s =
∏

p prime

pv(s,p) .

Then clearly

v(s, p) ≤
[

log s

log p

]

≤
[

log(3n)

log p

]

.

We next show that any prime number p >
√

3n belonging to the set

Tn =

{

p prime :
1

2
≤

{

n

p

}

<
2

3

}

,

divides all the integers
(

2n

j

)(

2n

k

)(

2n

l

)

,

where (j, k, l) runs through the set Ξ(n, p) = {(j, k, l) : 0 ≤ j, k, l ≤ 2n and
j +k + l ≡ 3n (mod p)}. ({x} denotes the fractional part of x.) To see this,
it suffices to show that

J =

[

2n

p

]

−
[

j

p

]

−
[

2n − j

p

]

+

[

2n

p

]

−
[

k

p

]

−
[

2n − k

p

]

+

[

2n

p

]

−
[

l

p

]

−
[

2n − l

p

]

≥ 1

for any (j, k, l) ∈ Ξ(n, p), since p >
√

3n. Let ω = {n/p}, θ = {j/p},
θ′ = {k/p} and θ′′ = {l/p}. Then obviously

J = [2ω] − [2ω − θ] + [2ω] − [2ω − θ′] + [2ω] − [2ω − θ′′]

= 3 − [2ω − θ] − [2ω − θ′] − [2ω − θ′′] ,

since [2ω] = 1. On the other hand, since 3n = j +k+ l+pq for some integer
q and since [3ω] = 1, we have

{3ω} = {θ + θ′ + θ′′} = 3ω − 1 .

Thus θ + θ′ + θ′′ = 3ω − 1 + r for some integer r ≥ 0; hence

[2ω − θ] + [2ω − θ′] + [2ω − θ′′] ≤ [6ω − θ − θ′ − θ′′] = [6ω − 3ω + 1 − r]

= 1 − r + [3ω] = 2 − r ≤ 2 .

Therefore we have J ≥ 1, as required.
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We define

∆1(n) =
∏

p prime

p≤
√

3n

p

[

log(3n)
log p

]

, ∆2(n) =
∏

p prime
p≤3n

p , ∆3(n) =
∏

p prime
p∈Tn

p

for all n ≥ 1. The above argument implies that the integer

Dn =
∆1(n)∆2(n)

∆3(n)

satisfies (2.2) for any integers j, k, l ∈ [0, 2n] with j + k + l 6= 3n. Put
bi = 3/(3i + 2), ci = 2/(2i + 1) and

Si(n) =
1

n

∑

p prime
p/n∈(bi,ci]

log p

for i ≥ 0 for brevity. Then clearly

1

n
log ∆3(n) =

∞
∑

i=0

Si(n)

and it follows from the prime number theorem that Si(n) → ci−bi as n → ∞
for each i ≥ 0.

Thus

lim
n→∞

1

n
log ∆3(n) =

∞
∑

i=0

lim
n→∞

Si(n) =
∞
∑

i=0

(ci − bi)

=
Γ ′(2/3)

Γ (2/3)
− Γ ′(1/2)

Γ (1/2)
=

1

2

{

π√
3
− log

27

16

}

,

where Γ (z) is the gamma function. (The interchange of the operations of
limit and summation can be easily justified by using the estimate

∑

i≥L

Si(n) ≤ const cL

for any L ≥ 1, where const depends neither on L nor on n.) Since it can
be seen that log ∆1(n) = O(

√
n) and log ∆2(n) ∼ 3n as n tends to +∞, we

thus obtain the asymptotic behaviour (2.3). This completes the proof.

We now consider the function F (z) ≡ F (a1, a2, a3; z) defined in (1.4) for
non-zero distinct complex numbers a1, a2 and a3. It is easily seen that F ′(z)
has three zero points ζ1, ζ2, ζ3 in the region C − {a1, a2, a3}, which satisfy
the cubic equation

(2.4) z3 + s2z
2 + s1z + s0 = 0
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with s0 = a1a2a3, s1 = −(a1a2 +a2a3 +a3a1)/3 and s2 = −(a1 +a2 +a3)/3.
Such points ζj are called “saddles” of the surface Σ of |F (z)|. Using the
equalities

F (ζj) = 4

{

(s2
2 − 3s1)ζj +

s2
1 − 3s0s2

ζj
− 7s1s2 − s0

}

for 1 ≤ j ≤ 3, one can easily calculate every elementary symmetric function
on F (ζ1), F (ζ2) and F (ζ3). We thus have

Lemma 2.3. Put t0 = s0, t1 = s1s2 and t2 = s3
2+s3

1/s0 for brevity. Then

we have the identity

3
∏

j=1

(z − F (ζj)) = z3 + 4σ2z
2 + 16σ1z + 64σ0 ,

where

σ0 = t30 − 12t20t1 − 8t20t2 + 30t0t
2
1 + 48t0t1t2

+ 16t0t
2
2 + 36t31 + 24t21t2 + 9t41/t0 ,

σ1 = 3t20 + 3t0t1 + 20t0t2 + 57t21 + 12t1t2 + t31/t0 ,

σ2 = 3t0 + 15t1 + t2 .

Finally, we recall the following result from Dieudonné’s book [7]:

Lemma 2.4. Let Γ be a smooth oriented path with a finite length, which

departs from aj and arrives at ak through a saddle ζl for some 1 ≤ j, k, l ≤ 3.
Put ℓz = {z + t : t ≥ 0}, the half-straight line parallel to the real axis.

Suppose that the saddle ζl is a simple root of (2.4) and suppose further

that Γ − {aj , ak} is contained in the simply connected region C0 ≡ C −
(ℓ0 ∪ ℓa1

∪ ℓa2
∪ ℓa3

) and that Γ − {aj , ak, ζl} is contained in the open set

{z ∈ C0 : |F (z)| < |F (ζl)|}. Then the principal part of the integral

In =
∫

Γ

(F (z))n dz

z
,

as n tends to +∞, is given by

In ∼ d0
(F (ζl))

n

√
n

with d0 =

√

−2π
F (ζl)

F ′′(ζl)
· 1

ζl
;

in particular , we have

lim
n→∞

1

n
log |In| = log |F (ζl)| .

Indeed, the above lemma is an immediate consequence of the result in
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[7; Chapter IX], since the integral In can be expressed as

In = (−1)n
∫

Γ

g(z)enh(z) dz ,

where g(z) = 1/z and h(z) = 2
∑3

j=1 Log(aj − z) − 3Log(−z) are analytic
functions in C0.

3. Proof of Theorem 1.1. Let Γz,w be a smooth oriented path de-
parting from z, arriving at w, and contained in C − {0}. We then consider
the integral

In(Γz,w) ≡
∫

Γz,w

(F (a1, a2, a3; z))n dz

z

=

2n
∑

j=0

2n
∑

k=0

2n
∑

l=0

Bj,k,l

(

2n

j

)(

2n

k

)(

2n

l

)

∫

Γz,w

zj+k+l−3n−1dz,

where

Bj,k,l = (−1)j+k+la2n−j
1 a2n−k

2 a2n−l
3 .

Therefore we have the identity

(3.1) In(Γz,w)

=
∑

j+k+l 6=3n

Bj,k,l

j + k + l − 3n

(

2n

j

)(

2n

k

)(

2n

l

)

(wj+k+l−3n − zj+k+l−3n)

+
∑

j+k+l=3n

Bj,k,l

(

2n

j

)(

2n

k

)(

2n

l

)

∫

Γz,w

dz

z

≡ un(z,w) + vn

∫

Γz,w

dz

z
, say.

For the proof of Theorem 1.1 we choose a1 = 1, a2 = 2 and a3 = 1 + i.
Then it follows from Lemma 2.3 that wk ≡ 9

4
(i−1)F (ζk), 1 ≤ k ≤ 3, satisfy

the cubic equation

9w3 − 4968w2 + 862w − 36 = 0 .

This algebraic equation has three positive roots; indeed,

wk =
10

9

√
109590 cos

(

θ0 +
2kπ

3

)

+ 184

for 1 ≤ k ≤ 3 where θ0 = 1
3

arctan
(

23
√

69
1209303

)

. We thus have |F (ζk)| =
2
9

√
2wk. Let Γ1,2 and Γ1,1+i be the paths illustrated in Figure 1 through
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the saddles ζ1 and ζ2 respectively. Then clearly
∫

Γ1,2

dz

z
= log 2 and

∫

Γ1,1+i

dz

z
=

1

2
log 2 +

π

4
i .

Fig. 1

Since

(−1)j+k+lBj,k,l2
j+k+l−3n = 2j+l−n(1 + i)2n−l = 2jin(1 − i)l

and

(−1)j+k+lBj,k,l(1+ i)j+k+l−3n = 22n−k(1+ i)j+k−n = (1+ i)j+n(1− i)2n−k ,

it follows from Lemma 2.2 that both un(1, 2) and un(1, 1 + i) belong to the
set (Z + iZ)/Dn. Hence, putting

pn = −2iDn{un(1, 2) − 2un(1, 1 + i)}, qn = Dnvn, rn = −Dnun(1, 2) ,

we obtain

qnπ − pn = 2iDn{In(Γ1,2) − 2In(Γ1,1+i)} ≡ εn

and

qn log 2 − rn = DnIn(Γ1,2) ≡ δn , say,

where pn, qn, rn ∈ Z + iZ. Then it follows from Lemmas 2.2 and 2.4 that

τ = − lim
n→∞

1

n
log |εn| = −κ − log |F (ζ2)|
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and

τ ′ = − lim
n→∞

1

n
log |δn| = −κ − log |F (ζ1)| ,

since |F (ζ1)| < |F (ζ2)|. Moreover, the hypothesis on the sequence {δn/εn}
in Lemma 2.1 is clearly satisfied since τ ′ > τ .

Fig. 2

On the other hand,

vn =
∑

j+k+l=3n

Bj,k,l

(

2n

j

)(

2n

k

)(

2n

l

)

=
1

2πi

∫

C

(F (z))n dz

z
,

where C = Γ1,1+i∪Γ1+i,1 is a closed oriented curve enclosing the origin and
Γ1+i,1 is the path illustrated in Figure 2 through the saddle ζ3. Hence

σ = lim
n→∞

1

n
log |qn| = κ + log |F (ζ3)| ,

since |F (ζ3)| > |F (ζ2)|. Therefore, by Lemma 2.1, the numbers 1, log 2 and
π have a linear independence measure

µ =
σ

τ
= −κ + log |F (ζ3)|

κ + log |F (ζ2)|
.

This completes the proof.

4. Proof of Theorem 1.2. We take a1 = 1, a2 = λ, a3 = λ′ = (1+λ)/2
with λ = eπi/3. Then it follows from Lemma 2.3 that wk = 3

√
3iF (ζk),
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1 ≤ k ≤ 3, satisfy the cubic equation

18w3 − 4529w2 + 81w − 1 = 0 .

Indeed, this algebraic equation has one positive root

w3 =
1

54
(4529 + 3

√
u + v + 3

√
u − v) ≡ β

54
, say,

with u = 92868417494 and v = 319599
√

5073, and two complex roots
w1, w2 = w1. We thus have

|F (ζ3)| =

√
3

9
w3 =

√
3β

486
and |F (ζ1)| = |F (ζ2)| =

1

3
√

β

since w1w2w3 = 1/18. Let Γ1,λ be the path illustrated in Figure 3 through
the saddles ζ1 and ζ2. Then clearly

∫

Γ1,λ

dz

z
= Log λ =

π

3
i

and

(−1)j+k+lBj,k,l = λ2n−k(1 + λ)2n−l2l−2n ∈ Z + i
√

3Z

22n+1
.

Fig. 3

Hence, putting

qn = 22n+1Dnvn and pn = 22n+1
√

3iDnun(1, λ) ,
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we obtain, from (3.1),

qn
π√
3
− pn = −22n+1

√
3iDnIn(Γ1,λ) ≡ εn , say,

where pn, qn ∈ Z + i
√

3Z. Then it follows from Lemmas 2.2 and 2.4 that

lim sup
n→∞

1

n
log |εn| ≤ log 4 + κ + lim sup

n→∞

1

n
log(|In(Γ1,λ′)| + |In(Γλ′,λ)|)

≤ log 4 + κ + log |F (ζ1)| ≡ −τ, say,

and that

σ = lim
n→∞

1

n
log |qn| = log 4 + κ + log |F (ζ3)|

since

vn =
1

2πi

∫

C

(F (z))n dz

z

where C = Γ1,λ ∪ Γλ,1 is a closed curve enclosing the origin and Γλ,1 is the
path illustrated in Figure 4 through the saddle ζ3. Therefore, by Remark 2.1,
the number π/

√
3 has an irrationality measure

ξ = 1 +
σ

τ
= 1 − log 4 + κ + log |F (ζ3)|

log 4 + κ + log |F (ζ1)|
.

This completes the proof of Theorem 1.2.

Fig. 4
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5. Remarks. Using Lemma 2.1 one can also obtain a linear inde-
pendence measure for the numbers 1, π/

√
3 and log(3/4) from the integral

considered in Section 4. However, it can be seen that the case in which
a1 = 3/2, a2 = 2 and a3 = 1 + λ with λ = eπi/3 gives a better linear
independence measure µ for such numbers. Indeed, we have

µ = − log 8 + κ + log |x3|
log 8 + κ + log |x2|

= 7.813765 . . . ,

where wk = −(1/
√

3)e−πi/6xk, 1 ≤ k ≤ 3, are three positive roots of the
cubic equation 8748w3−1621134w2+3547w−1 = 0 satisfying w1 < w2 < w3.
The hypothesis on {δn/εn} in Lemma 2.1 is clearly satisfied since τ ′ > τ .
(We must multiply both sides of (3.1) by the factor 23n+1Dn.) In particular,

∣

∣

∣

∣

π√
3 log(3/4)

− p

q

∣

∣

∣

∣

≥ q−8.8138

for any integer p and for sufficiently large integer q.
Similarly one can obtain a linear independence measure µ′ for the num-

bers 1, π/
√

3 and log 3 by taking a1 = 1, a2 = λ and a3 = 1 + λ. In
fact,

µ′ = −
1
2 log 3 + κ + log |y3|
1
2 log 3 + κ + log |y1|

= 8.385245 . . . ,

where wk = 3
4

√
3iyk, 1 ≤ k ≤ 3, are three roots of the cubic equation

9w3 − 1187w2 − 61w − 1 = 0 satisfying w3 > 0 and w1 = w2. (We must
multiply both sides of (3.1) by the factor 2(1+λ)nDn.) In this case we have
|y1| = |y2| (that is, τ ′ = τ); so it follows from Lemma 2.4 that

δn

εn
= d∗einν + o(1)

as n tends to +∞, where d∗ 6= 0 is some complex constant and ν = arg w1−
arg w2 satisfies 0 < |ν| < π. Hence the sequence {δn/εn} satisfies the
hypothesis of Lemma 2.1, as required. In particular,

∣

∣

∣

∣

π√
3 log 3

− p

q

∣

∣

∣

∣

≥ q−9.3853

for any integer p and for sufficiently large q.
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