The Diophantine equation $x^2 + q^m = p^n$

by

Nobuhiro Terai (Tokyo)

1. Introduction. In 1956, Sierpiński [4] showed that the equation

$$3^x + 4^y = 5^z$$

has the only positive integral solution (x, y, z) = (2, 2, 2). Jeśmanowicz [2] proved that the only positive integral solution of each of the equations

$$5^{x} + 12^{y} = 13^{z}$$
, $7^{x} + 24^{y} = 25^{z}$, $9^{x} + 40^{y} = 41^{z}$, $11^{x} + 60^{y} = 61^{z}$

is given by (x, y, z) = (2, 2, 2), and conjectured that if a, b, c are Pythagorean triples, i.e. positive integers satisfying $a^2 + b^2 = c^2$, then the equation

$$a^x + b^y = c^z$$

has the only solution (x, y, z) = (2, 2, 2) (cf. [5]).

As an analogue of his conjecture, we consider the following:

Conjecture. If $a^2+b^2=c^2$ with (a,b,c)=1 and a even, then the equation

$$x^2 + b^m = c^n$$

has the only positive integral solution (x, m, n) = (a, 2, 2).

In this paper, under the assumption that b and c in the above conjecture are odd primes p,q which satisfy $q^2+1=2p$, we consider whether the equation

$$x^2 + q^m = p^n$$

has other positive integral solutions (x, m, n) than (p-1, 2, 2) or not. Then we prove the following:

THEOREM. Let p and q be primes such that

- (i) $q^2 + 1 = 2p$,
- (ii) d = 1 or even if $q \equiv 1 \pmod{4}$,

where d is the order of a prime divisor of (p) in the ideal class group of $\mathbb{Q}(\sqrt{-q})$. Then the equation

$$(1) x^2 + q^m = p^n$$

has the only positive integral solution (x, m, n) = (p - 1, 2, 2).

The proof of the Theorem is divided into three cases: (a) n is even, (b) m is even and n is odd, (c) m and n are odd. In case (a), from the results of Störmer and Ljunggren, it follows that (1) has the only positive integral solution (x, m, n) = (p - 1, 2, 2). In cases (b) and (c), we show that (1) has no positive integral solutions (x, m, n), by decomposing (1) in the imaginary quadratic field $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{-q})$, and using the well known method which reduces the problem of a Diophantine equation of second degree to that of a linear recurrence of second order.

Finally, we give the examples where b and c in the Conjecture are such that $b^2 + 1 = 2c$, b < 20, c < 200. In these cases, the Conjecture certainly holds.

2. The equation $x^2 + q^m = p^n$ (n even). In this section we treat the equation $x^2 + q^m = p^n$ when n is even. We use the following two lemmas to prove Proposition 1.

LEMMA 1 (Störmer [6]). The Diophantine equation

$$x^2 + 1 = 2y^n$$

has no solutions in integers x > 1, $y \ge 1$ and n odd ≥ 3 .

LEMMA 2 (Ljunggren [3]). The Diophantine equation

$$x^2 + 1 = 2y^4$$

has the only positive integral solutions (x, y) = (1, 1), (239, 13).

PROPOSITION 1. Let p and q be primes with $q^2 + 1 = 2p$. If n is even, then the equation

$$x^2 + q^m = p^n$$

has the only positive integral solution (x, m, n) = (p - 1, 2, 2).

Proof. Put n=2k. By the equation $x^2+q^m=p^n$, we have

$$q^m = (p^k + x)(p^k - x).$$

Since q is prime and $(p^k + x, p^k - x) = 1$, we have

$$q^m = p^k + x, \quad 1 = p^k - x,$$

so

$$q^m + 1 = 2p^k.$$

Now we show that m is even. It follows from $q^2 + 1 = 2p$ that $q^2 \equiv -1 \pmod{p}$, so q has order 4 (mod p). From (2) we have $q^m \equiv -1 \pmod{p}$, hence $q^{2m} \equiv 1 \pmod{p}$. Thus we find that $2m \equiv 0 \pmod{4}$, i.e. m is even.

If k=1 or 2, then we easily see that (2) has the only solution (m,k)=(2,1) since $q^2+1=2p$. If $k\geq 3$, then it follows from Lemmas 1 and 2 that (2) has no solutions. \blacksquare

3. The equation $x^2 + D^m = p^n$ (m even and n odd). In this section we consider the equation (1) when m is even and n is odd. More generally, we show the following:

PROPOSITION 2. Suppose that $D = a^2 - b^2$ and $p = a^2 + b^2$, where a and b are positive integers with (a,b) = 1, a > b and opposite parity. If m is even and n is odd, then the equation

$$(3) x^2 + D^m = p^n$$

has no positive integral solutions (x, m, n).

Proof. Put m = 2r. By (3), we have

$$(x + D^r i)(x - D^r i) = (a + bi)^n (a - bi)^n$$
.

Since $x + D^r i$, $x - D^r i$ are relatively prime and a + bi, a - bi are prime in $\mathbb{Q}(i)$, we obtain

(4)
$$\varepsilon(x \pm D^r i) = (a + bi)^n,$$

where $\varepsilon = \pm 1, \pm i$.

Now we show that (4) is impossible for odd n. Let π be a rational prime divisor of D. Then either $a \equiv b \pmod{\pi}$ or $a \equiv -b \pmod{\pi}$. Assume the first possibility, the second being similar. It follows from (4) that

$$\varepsilon x \equiv a^n (1+i)^n \pmod{\pi}$$
.

Note that $(1+i)^n = (2i)^{(n-1)/2}(1+i)$ for odd n. Since π does not divide 2a, the right hand side of the above congruence can never be purely real or imaginary modulo π , whereas the left hand side is. Thus (4) is impossible for odd n. This completes the proof of Proposition 2.

4. The equation $x^2 + q^m = p^n$ (m and n odd). In this section we treat the equation (1) when m and n are odd.

We first consider (1) when m = 1. We show the following:

PROPOSITION 3. Let p and q be odd primes with $q \equiv 1 \pmod{4}$. Then the equation

$$(5) x^2 + q = p^n$$

has positive integral solutions (x, n) if and only if $p^d - q$ is a square, where d is the order of a prime divisor of (p) in the ideal class group of $\mathbb{Q}(\sqrt{-q})$.

Proof. Since $\left(\frac{-q}{p}\right) = 1$ by (5), it follows from the theory of quadratic fields that $(p) = \mathfrak{pp'}$, where \mathfrak{p} and $\mathfrak{p'}$ are distinct conjugate prime ideals in $\mathbb{Q}(\sqrt{-q})$. Therefore (5) yields the ideal equation

$$(x+\sqrt{-q})(x-\sqrt{-q}) = \mathfrak{p}^n \mathfrak{p}'^n.$$

Since the factors on the left are relatively prime, we have either $(x+\sqrt{-q})=\mathfrak{p}^n$ or \mathfrak{p}'^n . We may assume that

$$(x+\sqrt{-q})=\mathfrak{p}^n$$
.

Then \mathfrak{p}^n is a principal ideal and so n=dt for some positive integer t. By definition, \mathfrak{p}^d is principal, say

$$\mathfrak{p}^d = (a + b\sqrt{-q}).$$

Thus we have

$$(x + \sqrt{-q}) = \mathfrak{p}^{dt} = (a + b\sqrt{-q})^t,$$

so

$$x + \sqrt{-q} = \pm (a + b\sqrt{-q})^t,$$

which implies

$$1 = \pm b \sum_{j=0}^{(t-1)/2} {t \choose 2j+1} a^{t-(2j+1)} b^{2j} (-q)^j.$$

Hence $b = \pm 1$. Then it follows from (6) that

$$\mathfrak{p}^d = (a \pm \sqrt{-q}).$$

Taking the norm from $\mathbb{Q}(\sqrt{-q})$ to \mathbb{Q} of the above equation gives $p^d = a^2 + q$. Therefore $p^d - q$ is a square.

The converse is clear. This completes the proof of Proposition 3. •

COROLLARY. Let p and q be primes such that

- (i) $q^2 + 1 = 2p$,
- (ii) $q \equiv 1 \pmod{4}$,
- (iii) d = 1 or even,

where d is as in Proposition 3. Then the equation $x^2 + q = p^n$ has no positive integral solutions (x, n).

Remark. If $(\frac{-q}{p}) = -1$, then (p) would be inert in $\mathbb{Q}(\sqrt{-q})$, so d = 1. Thus we may assume $(\frac{-q}{p}) = 1$. There are altogether 10 pairs of (p,q) satisfying $q^2 + 1 = 2p$, $q \equiv 1 \pmod{4}$ and $(\frac{-q}{p}) = 1$, in the range q < 2000. In all these cases, we verified that d = 1 or even. (It is conjectured that d = 1 or even for all such primes p, q.)

Proof of Corollary. By Proposition 3, it suffices to show that $p^d - q$ is not a square. On the contrary, suppose that $p^d - q$ were a square, say $p^d - q = a^2$ for some a.

If d = 1, then we have

$$2a^2 + 2q = 2p = q^2 + 1,$$

so

$$2a^2 = (q-1)^2$$
,

which is impossible.

If d is even, then $a^2 + q = p^d$ has no positive integral solutions by Proposition 1. Therefore $p^d - q$ is not a square.

We next consider the equation (1) when m and n are odd. First we prepare the following:

Lemma 3. Let p and q be primes as in the Corollary. Suppose that r is a fixed positive integer. If the equation

(7)
$$x^2 + q^{2r+1} = p^n$$

has positive integral solutions (x, n), then so does the equation

$$x^2 + q^{2r-1} = p^n .$$

Proof. We note that if (7) has positive integral solutions (x, n), then n is odd ≥ 3 from Proposition 1 and $q^2 + 1 = 2p$. In view of the proof of Proposition 3, the equation (7) leads to

$$x + q^r \sqrt{-q} = \pm (a + b\sqrt{-q})^t.$$

Thus we have

$$q^r = \pm b \sum_{j=0}^{(t-1)/2} {t \choose 2j+1} a^{t-(2j+1)} b^{2j} (-q)^j = \pm bB,$$

 $a \not\equiv 0 \pmod{q}$ and a is even since $p^d = a^2 + bq^2$.

If $B = \pm 1$, then $b = \pm q^r$. Thus

(8)
$$x + q^r \sqrt{-q} = \pm (a + q^r \sqrt{-q})^t.$$

(If necessary, replace a with -a.) We show t=1.

Now, we define the sequences of rational integers $\{u_n\}$ and $\{v_n\}$ $(n \ge 1)$ by setting

$$(a+q^r\sqrt{-q})^n = u_n + v_n\sqrt{-q}.$$

The sequence $\{v_n\}$ has the following properties:

$$v_1 = q^r$$
, $v_2 = 2aq^r$, $v_{n+2} = 2av_{n+1} - p^d v_n$, $v_1 \mid v_n$

for $n \geq 1$.

Here we put $V_n = v_n/v_1$. Then

$$V_1 = 1$$
, $V_2 = V = 2a \equiv 0 \pmod{4}$, $V_{n+2} = VV_{n+1} - p^dV_n$.

For this V_n , we use the following result ([1], Corollary, p. 15):

LEMMA 4. If $n \geq 3$ is odd, $2^s ||V, 2^k|| n - 1$, $p \equiv 2^l - 1 \pmod{2^{l+1}}$, and $2s - 2 \geq l$, then $V_n \equiv 1 + 2^{k+l-1} \pmod{2^{k+l}}$. In particular, $V_n \neq \pm 1$ for n > 1 if $2(s-1) \geq l$.

In our case, since $V \equiv 0 \pmod{4}$ and $p \equiv 1 \pmod{4}$, we have $s \geq 2$ and l = 1, so $2(s - 1) \geq l$. Hence it follows from Lemma 4 that

$$V_n \neq \pm 1$$
 for $n > 1$.

Therefore the only t satisfying (8) is equal to 1. From n = dt, we have n = d, which is impossible since n is odd ≥ 3 and d = 1 or even. Hence $B \neq \pm 1$.

If $B \neq \pm 1$, then $B \equiv 0 \pmod{q}$. Since $B \equiv ta^{t-1} \pmod{q}$ and $a \not\equiv 0 \pmod{q}$, we have $t \equiv 0 \pmod{q}$, say t = qc. Thus by (8) we obtain

$$(9) x + q^r \sqrt{-q} = \pm (u + v\sqrt{-q})^q.$$

SO

$$q^r = \pm qv(u^{q-1} + qw)$$

for some integers u, v, w. Since $u \not\equiv 0 \pmod{q}$, we have $q^r = \pm qv$, so $v = \pm q^{r-1}$. Hence by (7), (9) we obtain

$$(u^2 + q^{2r-1})^q = x^2 + q^{2r+1} = p^n = p^{dqc}$$
,

which implies $u^2 + q^{2r-1} = p^{dc}$. This completes the proof of Lemma 3. \blacksquare

PROPOSITION 4. Let p and q be primes as in the Corollary. If m is odd, then the equation $x^2 + q^m = p^n$ has no positive integral solutions (x, m, n).

Proof. The proposition follows immediately from the Corollary and Lemma 3. \blacksquare

5. Proof of Theorem and examples. Now, using Propositions 1, 2 and 4, we can prove the Theorem.

Proof of Theorem. We note that $q^2 + 1 = 2p$ implies $p \equiv 1 \pmod{4}$.

Suppose that n is even. Then by Proposition 1, (1) has the only positive integral solution (x, m, n) = (p - 1, 2, 2).

Suppose that n is odd. When $q \equiv 3 \pmod{4}$, (1) yields $(-1)^m \equiv 1 \pmod{4}$, so m is even. Then by Proposition 2, (1) has no solutions. When $q \equiv 1 \pmod{4}$, by Propositions 2 and 4 the equation (1) has no solutions if d = 1 or even.

We give the examples where b and c in the Conjecture are such that $b^2 + 1 = 2c, b < 20, c < 200$. In these cases, the Conjecture certainly holds.

Examples. The only positive integral solution of each of the equations

(a)
$$x^2 + 3^m = 5^n$$
, (b) $x^2 + 5^m = 13^n$, (c) $x^2 + 7^m = 25^n$,

(b)
$$x^2 + 5^m = 13^n$$

(c)
$$x^2 + 7^m = 25^n$$
,

(d)
$$x^2 + 9^m = 41^n$$
.

(e)
$$x^2 + 11^m = 61^n$$
.

(d)
$$x^2 + 9^m = 41^n$$
, (e) $x^2 + 11^m = 61^n$, (f) $x^2 + 13^m = 85^n$,

(g)
$$x^2 + 15^m = 113^n$$
, (h) $x^2 + 17^m = 145^n$, (i) $x^2 + 19^m = 181^n$

(h)
$$x^2 + 17^m = 145^n$$
,

(i)
$$x^2 + 19^m = 181$$

is given by (x, m, n) = (4, 2, 2), (12, 2, 2), (24, 2, 2), (40, 2, 2), (60, 2, 2),(84, 2, 2), (112, 2, 2), (144, 2, 2), and (180, 2, 2), respectively.

Proof. Cases (a), (b), (e) and (i) are covered by the Theorem. (Note that in (b), m is even by taking the equation mod 3.)

- (c) Taking the equation mod 4, we see that m is even. The equation $x^2 + 7^m = 5^{2n}$ leads to $7^m + 1 = 2 \cdot 5^n$. Hence our assertion follows from Lemmas 1 and 2.
- (d) Taking the equation mod 3, we see that n is even, say n = 2k. Thus the equation $x^2 + 3^{2m} = 41^n$ leads to $3^{2m} + 1 = 2 \cdot 41^k$. Hence our assertion follows from Lemmas 1 and 2.
- (f) By $(\frac{13}{5}) = (\frac{85}{13}) = -1$, we see that m is even and n is even. Therefore our assertion follows from Lemmas 1 and 2.
- (g) Taking the equation mod 3 and 4 respectively, we see that m and nare even, say n = 2k. Thus we have

$$15^m + 1 = 2 \cdot 113^k$$

or

$$3^m + 5^m = 2 \cdot 113^k$$
.

The first equation has the only solution (m, k) = (2, 1) by Lemmas 1 and 2.

Taking the second equation mod 7, yields $3^m + 5^m \equiv 2 \pmod{7}$. Since 3 and 5 are primitive roots mod 7 respectively and 3^m , $5^m \equiv 1, 2, 4 \pmod{7}$ for even m, we see that $m \equiv 0 \pmod{6}$. Hence $1 \pm 1 \equiv 2 \cdot 113^k \pmod{13}$. Since the order of 113 mod 13 is equal to 3, $k \equiv 0 \pmod{3}$. Put $X = 3^{m/3}$, $Y = 5^{m/3}$ and $Z = 113^{k/3}$. Therefore we have

$$X^3 + Y^3 = 2Z^3$$
.

which has no solutions, as is well-known.

(h) Taking the equation mod 3, we see that m is even, say m = 2k. If n is even, then the equation has the only solution (x, m, n) = (144, 2, 2) by Lemmas 1 and 2.

Suppose that n is odd. By an argument similar to the one used in Proposition 2, we obtain

$$x^{2} + 17^{k}i = i^{r}(a+bi)^{n}, \quad r = 0, 1, 2, 3.$$

The factor i^r can be absorbed into the *n*th power, so we may assume r = 0. Since $a^2 + b^2 = 145$ and a is even and b is odd, (a, b) = (8, 9), (12, 1). Now,

we define the sequences of rational integers $\{a_n\}$ and $\{b_n\}$ $(n \ge 1)$ by setting

$$(a+bi)^n = a_n + b_n i.$$

The sequence $\{b_n\}$ has the following properties:

$$b_{m+n} = a_m b_n + a_n b_m, \quad b_1 \mid b_n$$

for $m \ge 1$, $n \ge 1$. We show that $b_n \not\equiv 0 \pmod{17}$ for odd n.

By $b_1 \mid b_n$, we have $b_1 = b = 1$, a = 12. Then $b_1 \equiv 1 \pmod{17}$, $b_2 \equiv 7 \pmod{17}$, $b_3 \equiv 6 \pmod{17}$, $b_4 \equiv 13 \pmod{17}$, $b_5 \equiv 3 \pmod{17}$, $b_6 \equiv 6 \pmod{17}$, $b_7 \equiv 15 \pmod{17}$ and $b_8 \equiv 0 \pmod{17}$. Since $b_{n+8} = a_8b_n + a_nb_8$, we have $b_{n+8} \equiv a_8b_n \pmod{17}$. Thus by $a_8 \not\equiv 0 \pmod{17}$, we obtain

$$17 \mid b_n \Leftrightarrow 8 \mid n$$
,

which is impossible since n is odd. Hence $b_n \not\equiv 0 \pmod{17}$ for odd n. Therefore the equation has no solutions when n is odd. \blacksquare

Acknowledgment. The author would like to thank the referee for his valuable suggestions and Y. Sato for his generous assistance.

References

- [1] R. Alter and K. K. Kubota, The diophantine equation $x^2 + D = p^n$, Pacific J. Math. (1) 46 (1973), 11–16.
- [2] L. Jeśmanowicz, Kilka uwag o liczbach pitagorejskich [Some remarks on Pythagorean numbers], Wiadom. Mat. 1 (1956), 196–202.
- [3] W. Ljunggren, Zur Theorie der Gleichung $x^2 + 1 = Dy^4$, Avh. Norske Vid. Akad. Oslo 5 (1942), 1–27.
- [4] W. Sierpiński, O równaniu $3^x + 4^y = 5^z$ [On the equation $3^x + 4^y = 5^z$], Wiadom. Mat. 1 (1956), 194–195.
- [5] —, Elementary Theory of Numbers, PWN—Polish Scientific Publishers, Warszawa 1988.
- [6] C. Störmer, L'équation m arctan $\frac{1}{x} + n$ arctan $\frac{1}{y} = k\frac{\pi}{4}$, Bull. Soc. Math. France 27 (1899), 160–170.

DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCE AND ENGINEERING WASEDA UNIVERSITY OKUBO, SHINJUKU, TOKYO 169, JAPAN

> Received on 31.3.1992 and in revised form on 20.7.1992 (2248)