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1. Introduction. In 1956, Sierpiński [4] showed that the equation

3x + 4y = 5z

has the only positive integral solution (x, y, z) = (2, 2, 2). Jeśmanowicz [2]
proved that the only positive integral solution of each of the equations

5x + 12y = 13z, 7x + 24y = 25z, 9x + 40y = 41z, 11x + 60y = 61z

is given by (x, y, z) = (2, 2, 2), and conjectured that if a, b, c are Pythagorean
triples, i.e. positive integers satisfying a2 + b2 = c2, then the equation

ax + by = cz

has the only solution (x, y, z) = (2, 2, 2) (cf. [5]).
As an analogue of his conjecture, we consider the following:

Conjecture. If a2 + b2 = c2 with (a, b, c) = 1 and a even, then the
equation

x2 + bm = cn

has the only positive integral solution (x,m, n) = (a, 2, 2).

In this paper, under the assumption that b and c in the above conjecture
are odd primes p, q which satisfy q2 + 1 = 2p, we consider whether the
equation

x2 + qm = pn

has other positive integral solutions (x,m, n) than (p−1, 2, 2) or not. Then
we prove the following:

Theorem. Let p and q be primes such that

(i) q2 + 1 = 2p,
(ii) d = 1 or even if q ≡ 1 (mod 4),
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where d is the order of a prime divisor of (p) in the ideal class group of
Q(
√
−q). Then the equation

(1) x2 + qm = pn

has the only positive integral solution (x,m, n) = (p− 1, 2, 2).

The proof of the Theorem is divided into three cases: (a) n is even,
(b) m is even and n is odd, (c) m and n are odd. In case (a), from the
results of Störmer and Ljunggren, it follows that (1) has the only positive
integral solution (x,m, n)=(p − 1, 2, 2). In cases (b) and (c), we show that
(1) has no positive integral solutions (x, m, n), by decomposing (1) in the
imaginary quadratic field Q(i) or Q(

√
−q), and using the well known method

which reduces the problem of a Diophantine equation of second degree to
that of a linear recurrence of second order.

Finally, we give the examples where b and c in the Conjecture are such
that b2 + 1 = 2c, b < 20, c < 200. In these cases, the Conjecture certainly
holds.

2. The equation x2 + qm = pn (n even). In this section we treat the
equation x2 + qm = pn when n is even. We use the following two lemmas to
prove Proposition 1.

Lemma 1 (Störmer [6]). The Diophantine equation

x2 + 1 = 2yn

has no solutions in integers x > 1, y ≥ 1 and n odd ≥ 3.

Lemma 2 (Ljunggren [3]). The Diophantine equation

x2 + 1 = 2y4

has the only positive integral solutions (x, y) = (1, 1), (239, 13).

Proposition 1. Let p and q be primes with q2 + 1 = 2p. If n is even,
then the equation

x2 + qm = pn

has the only positive integral solution (x,m, n) = (p− 1, 2, 2).

P r o o f. Put n = 2k. By the equation x2 + qm = pn , we have

qm = (pk + x)(pk − x).

Since q is prime and (pk + x, pk − x) = 1, we have

qm = pk + x, 1 = pk − x ,

so

(2) qm + 1 = 2pk .
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Now we show that m is even. It follows from q2 + 1 = 2p that q2 ≡ −1
(mod p), so q has order 4 (mod p). From (2) we have qm ≡ −1 (mod p),
hence q2m ≡ 1 (mod p). Thus we find that 2m ≡ 0 (mod 4), i.e. m is even.

If k = 1 or 2, then we easily see that (2) has the only solution (m, k) =
(2, 1) since q2 + 1 = 2p. If k ≥ 3, then it follows from Lemmas 1 and 2 that
(2) has no solutions.

3. The equation x2 +Dm = pn (m even and n odd). In this section
we consider the equation (1) when m is even and n is odd. More generally,
we show the following:

Proposition 2. Suppose that D = a2 − b2 and p = a2 + b2, where a
and b are positive integers with (a, b) = 1, a > b and opposite parity. If m
is even and n is odd , then the equation

(3) x2 + Dm = pn

has no positive integral solutions (x,m, n).

P r o o f. Put m = 2r. By (3), we have

(x + Dri)(x−Dri) = (a + bi)n(a− bi)n .

Since x + Dri, x−Dri are relatively prime and a + bi, a− bi are prime in
Q(i), we obtain

(4) ε(x±Dri) = (a + bi)n ,

where ε = ±1,±i.
Now we show that (4) is impossible for odd n. Let π be a rational prime

divisor of D. Then either a ≡ b (mod π) or a ≡ −b (mod π). Assume the
first possibility, the second being similar. It follows from (4) that

εx ≡ an(1 + i)n (mod π) .

Note that (1 + i)n = (2i)(n−1)/2(1 + i) for odd n. Since π does not divide
2a, the right hand side of the above congruence can never be purely real or
imaginary modulo π, whereas the left hand side is. Thus (4) is impossible
for odd n. This completes the proof of Proposition 2.

4. The equation x2 + qm = pn (m and n odd). In this section we
treat the equation (1) when m and n are odd.

We first consider (1) when m = 1. We show the following:

Proposition 3. Let p and q be odd primes with q ≡ 1 (mod 4). Then
the equation

(5) x2 + q = pn

has positive integral solutions (x, n) if and only if pd − q is a square, where
d is the order of a prime divisor of (p) in the ideal class group of Q(

√
−q).
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P r o o f. Since
(
−q

p

)
= 1 by (5), it follows from the theory of quadratic

fields that (p) = pp′, where p and p′ are distinct conjugate prime ideals in
Q(
√
−q). Therefore (5) yields the ideal equation

(x +
√
−q)(x−

√
−q) = pnp′n .

Since the factors on the left are relatively prime, we have either (x+
√
−q) =

pn or p′n. We may assume that

(x +
√
−q) = pn .

Then pn is a principal ideal and so n = dt for some positive integer t. By
definition, pd is principal, say

(6) pd = (a + b
√
−q) .

Thus we have
(x +

√
−q) = pdt = (a + b

√
−q)t ,

so
x +

√
−q = ±(a + b

√
−q)t ,

which implies

1 = ±b

(t−1)/2∑
j=0

(
t

2j + 1

)
at−(2j+1)b2j(−q)j .

Hence b = ±1. Then it follows from (6) that

pd = (a±
√
−q) .

Taking the norm from Q(
√
−q) to Q of the above equation gives pd = a2+q.

Therefore pd − q is a square.
The converse is clear. This completes the proof of Proposition 3.

Corollary. Let p and q be primes such that

(i) q2 + 1 = 2p,
(ii) q ≡ 1 (mod 4),
(iii) d = 1 or even,

where d is as in Proposition 3. Then the equation x2+q = pn has no positive
integral solutions (x, n).

R e m a r k. If (−q
p ) = −1, then (p) would be inert in Q(

√
−q), so d = 1.

Thus we may assume (−q
p ) = 1. There are altogether 10 pairs of (p, q)

satisfying q2 + 1 = 2p, q ≡ 1 (mod 4) and (−q
p )=1, in the range q < 2000.

In all these cases, we verified that d = 1 or even. (It is conjectured that
d = 1 or even for all such primes p, q.)



The Diophantine equation x2 + qm = pn 355

P r o o f o f C o r o l l a r y. By Proposition 3, it suffices to show that pd−q
is not a square. On the contrary, suppose that pd − q were a square, say
pd − q = a2 for some a.

If d = 1, then we have

2a2 + 2q = 2p = q2 + 1 ,

so
2a2 = (q − 1)2 ,

which is impossible.
If d is even, then a2 + q = pd has no positive integral solutions by

Proposition 1. Therefore pd − q is not a square.

We next consider the equation (1) when m and n are odd. First we
prepare the following:

Lemma 3. Let p and q be primes as in the Corollary. Suppose that r is
a fixed positive integer. If the equation

(7) x2 + q2r+1 = pn

has positive integral solutions (x, n), then so does the equation

x2 + q2r−1 = pn .

P r o o f. We note that if (7) has positive integral solutions (x, n), then
n is odd ≥ 3 from Proposition 1 and q2 + 1 = 2p. In view of the proof of
Proposition 3, the equation (7) leads to

x + qr√−q = ±(a + b
√
−q)t .

Thus we have

qr = ±b

(t−1)/2∑
j=0

(
t

2j + 1

)
at−(2j+1)b2j(−q)j = ±bB ,

a 6≡ 0 (mod q) and a is even since pd = a2 + bq2.
If B = ±1, then b = ±qr. Thus

(8) x + qr√−q = ±(a + qr√−q)t .

(If necessary, replace a with −a.) We show t = 1.
Now, we define the sequences of rational integers {un} and {vn} (n ≥ 1)

by setting
(a + qr√−q)n = un + vn

√
−q .

The sequence {vn} has the following properties:

v1 = qr, v2 = 2aqr, vn+2 = 2avn+1 − pdvn, v1 | vn

for n ≥ 1.
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Here we put Vn = vn/v1. Then

V1 = 1, V2 = V = 2a ≡ 0 (mod 4), Vn+2 = V Vn+1 − pdVn .

For this Vn, we use the following result ([1], Corollary, p. 15):

Lemma 4. If n ≥ 3 is odd , 2s‖V , 2k‖n− 1, p ≡ 2l − 1 (mod 2l+1), and
2s − 2 ≥ l, then Vn ≡ 1 + 2k+l−1 (mod 2k+l). In particular , Vn 6= ±1 for
n > 1 if 2(s− 1) ≥ l.

In our case, since V ≡ 0 (mod 4) and p ≡ 1 (mod 4), we have s ≥ 2 and
l = 1, so 2(s− 1) ≥ l. Hence it follows from Lemma 4 that

Vn 6= ±1 for n > 1 .

Therefore the only t satisfying (8) is equal to 1. From n=dt, we have n=d,
which is impossible since n is odd≥3 and d=1 or even. Hence B 6=±1.

If B 6= ±1, then B ≡ 0 (mod q). Since B ≡ tat−1 (mod q) and a 6≡ 0
(mod q), we have t ≡ 0 (mod q), say t = qc. Thus by (8) we obtain

(9) x + qr√−q = ±(u + v
√
−q)q ,

so
qr = ±qv(uq−1 + qw)

for some integers u, v, w. Since u 6≡ 0 (mod q), we have qr = ±qv, so
v = ±qr−1. Hence by (7), (9) we obtain

(u2 + q2r−1)q = x2 + q2r+1 = pn = pdqc ,

which implies u2 + q2r−1 = pdc. This completes the proof of Lemma 3.

Proposition 4. Let p and q be primes as in the Corollary. If m is odd ,
then the equation x2 + qm = pn has no positive integral solutions (x,m, n).

P r o o f. The proposition follows immediately from the Corollary and
Lemma 3.

5. Proof of Theorem and examples. Now, using Propositions 1, 2
and 4, we can prove the Theorem.

P r o o f o f T h e o r e m. We note that q2 + 1 = 2p implies p ≡
1 (mod 4).

Suppose that n is even. Then by Proposition 1, (1) has the only positive
integral solution (x,m, n) = (p− 1, 2, 2).

Suppose that n is odd. When q ≡ 3 (mod 4), (1) yields (−1)m ≡ 1
(mod 4), so m is even. Then by Proposition 2, (1) has no solutions. When
q ≡ 1 (mod 4), by Propositions 2 and 4 the equation (1) has no solutions if
d = 1 or even.

We give the examples where b and c in the Conjecture are such that
b2 + 1 = 2c, b < 20, c < 200. In these cases, the Conjecture certainly holds.
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Examples. The only positive integral solution of each of the equations

(a) x2 + 3m = 5n, (b) x2 + 5m = 13n, (c) x2 + 7m = 25n,

(d) x2 + 9m = 41n, (e) x2 + 11m = 61n, (f) x2 + 13m = 85n ,

(g) x2 + 15m = 113n, (h) x2 + 17m = 145n, (i) x2 + 19m = 181n

is given by (x, m, n) = (4, 2, 2), (12, 2, 2), (24, 2, 2), (40, 2, 2), (60, 2, 2),
(84, 2, 2), (112, 2, 2), (144, 2, 2), and (180, 2, 2), respectively.

P r o o f. Cases (a), (b), (e) and (i) are covered by the Theorem. (Note
that in (b), m is even by taking the equation mod 3.)

(c) Taking the equation mod4, we see that m is even. The equation
x2 + 7m = 52n leads to 7m + 1 = 2 · 5n. Hence our assertion follows from
Lemmas 1 and 2.

(d) Taking the equation mod 3, we see that n is even, say n = 2k. Thus
the equation x2 +32m = 41n leads to 32m +1 = 2 · 41k. Hence our assertion
follows from Lemmas 1 and 2.

(f) By ( 13
5 ) = ( 85

13 ) = −1, we see that m is even and n is even. Therefore
our assertion follows from Lemmas 1 and 2.

(g) Taking the equation mod 3 and 4 respectively, we see that m and n
are even, say n = 2k. Thus we have

15m + 1 = 2 · 113k ,

or
3m + 5m = 2 · 113k .

The first equation has the only solution (m, k) = (2, 1) by Lemmas 1 and 2.
Taking the second equation mod 7, yields 3m+5m ≡ 2 (mod 7). Since 3

and 5 are primitive roots mod 7 respectively and 3m, 5m ≡ 1, 2, 4 (mod 7)
for even m, we see that m ≡ 0 (mod 6). Hence 1± 1 ≡ 2 · 113k (mod 13).
Since the order of 113 mod 13 is equal to 3, k ≡ 0 (mod 3). Put X = 3m/3,
Y = 5m/3 and Z = 113k/3. Therefore we have

X3 + Y 3 = 2Z3 ,

which has no solutions, as is well-known.
(h) Taking the equation mod 3, we see that m is even, say m = 2k. If

n is even, then the equation has the only solution (x, m, n) = (144, 2, 2) by
Lemmas 1 and 2.

Suppose that n is odd. By an argument similar to the one used in
Proposition 2, we obtain

x2 + 17ki = ir(a + bi)n, r = 0, 1, 2, 3 .

The factor ir can be absorbed into the nth power, so we may assume r = 0.
Since a2 + b2 = 145 and a is even and b is odd, (a, b) = (8, 9), (12, 1). Now,
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we define the sequences of rational integers {an} and {bn} (n ≥ 1) by setting

(a + bi)n = an + bni .

The sequence {bn} has the following properties:

bm+n = ambn + anbm, b1 | bn

for m ≥ 1, n ≥ 1. We show that bn 6≡ 0 (mod 17) for odd n.
By b1 | bn, we have b1 = b = 1, a = 12. Then b1 ≡ 1 (mod 17), b2 ≡ 7

(mod 17), b3 ≡ 6 (mod 17), b4 ≡ 13 (mod 17), b5 ≡ 3 (mod 17), b6 ≡ 6
(mod 17), b7 ≡ 15 (mod 17) and b8 ≡ 0 (mod 17). Since bn+8 = a8bn +
anb8, we have bn+8 ≡ a8bn (mod 17). Thus by a8 6≡ 0 (mod 17), we obtain

17 | bn ⇔ 8 |n ,

which is impossible since n is odd. Hence bn 6≡ 0 (mod 17) for odd n.
Therefore the equation has no solutions when n is odd.
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[2] L. Je śmanowicz, Kilka uwag o liczbach pitagorejskich [Some remarks on Pythago-
rean numbers], Wiadom. Mat. 1 (1956), 196–202.

[3] W. Ljunggren, Zur Theorie der Gleichung x2 + 1 = Dy4, Avh. Norske Vid. Akad.
Oslo 5 (1942), 1–27.
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