On the zeros of $\zeta(s)-a$

by
R. Balasubramanian (Madras) and K. Ramachandra (Bombay)

1. Introduction. The main object of this paper is to prove the following theorem. (We write $s=\sigma+i t$ as usual.)

Theorem 1. Let a be any non-zero complex constant. Let δ and μ be any two constants satisfying $0<\delta \leq 1 / 10$ and $0<\mu \leq 1 / 10$. Then for $T \geq T_{0}(\delta, \mu, a)$ (depending only on the constants indicated) there are at least $\geq C T^{\mu}$ distinct zeros of $\zeta(s)-a$ in the rectangle $\left(\sigma \geq 1-\delta, T \leq t \leq T+T^{\mu}\right)$ where $C(>0)$ is independent of T.

Remark1. As a complement to this theorem we can prove (by using some ideas of J. E. Littlewood) that the number of zeros (counted with multiplicity) of $\zeta(s)-a$ in $\left(\sigma \geq 1-\delta, T \leq t \leq T+T^{\mu}\right)$ is $O\left(T^{\mu}\right)$ for a certain constant $\delta=\delta(a, \mu)>0$. (Thus there are $\gg T^{\mu}$ zeros of a fixed bounded (bound independent of T) order which depends on μ and a. The order, however, may depend on the rectangle.)

In fact, under fairly general conditions on a generalised Dirichlet series one of which being $\int_{T}^{T+T^{\mu}}\left|F\left(1-\delta_{0}+i t\right)\right|^{2} d t=O\left(T^{\mu}\right)$ (where $\delta_{0}>0$ is a suitable constant) there are at most $O\left(T^{\mu}\right)$ zeros (counted with multiplicity) of $F(s)$ in $\left(\sigma \geq 1-\delta, T \leq t \leq T+T^{\mu}\right)$ for every constant $\delta\left(0<\delta<\delta_{0}\right)$.

Remark 2. As can easily be seen, the theorem is equivalent to the one with $\mu=\delta$. But we have stated it in this way since we feel that it is possible to prove a uniform result in a certain range for δ with $\mu=\delta^{3 / 2-\varepsilon}$ for any fixed $\varepsilon>0$. Note that Theorem 1 deals with any non-zero complex constant a, while in [3] we dealt with zeros of $\zeta^{\prime}(s)-a$ for any complex constant a.

Remark 3. H. Bohr and B. Jessen have proved the remarkable result that the number of zeros (counted with multiplicity) of $\log \zeta(s)-a$ (with any complex constant a) in $(1 / 2<\alpha<\sigma<\beta<1,0 \leq t \leq T)$ is \sim $K(a, \alpha, \beta) T$ as $T \rightarrow \infty$ for any two fixed constants α, β (see pp. 306-308 of [5]; a correction on p. 308: Jensen should read Jessen). But our Theorem 1 gives a new information which may be of some interest.

Remark 4. Our proof is sufficiently general and goes through for ζ and L-functions and ζ-function of any ray class in any algebraic number field. Actually in the last section we formulate a theorem which we can further generalise to some extent. However, if we are dealing with functions $f(s)$ like the zeta-function of a ray class where we do not have an Euler product we can only prove that $f(s)(f(s)-a)$ has $\gg T^{\mu}$ distinct zeros in the rectangle $\left(\sigma \geq 1-\delta, T \leq t \leq T+T^{\mu}\right)$. (The notation $\gg T^{\mu}$ means $\geq C T^{\mu}$ where $C(>0)$ is independent of T.) In fact, if $f(s)$ has an Euler product we first prove that $f(s)(f(s)-a)$ has $\gg T^{\mu}$ distinct zeros and we recover that $f(s)-a$ has $\gg T^{\mu}$ zeros since by density results $f(s)$ has a smaller number of zeros for a suitable δ.
2. Some preparations. Throughout this paper we consider the function $F(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ with the following two conditions.
(i) Let a_{1}, a_{2}, \ldots be a sequence of complex numbers with n_{0} the least integer for which $a_{n_{0}} \neq 0$ and n_{1} the next least integer for which $a_{n_{1}} \neq 0$. Let $\sum_{n \leq x}\left|a_{n}\right|^{2} \ll x^{1+\varepsilon}$ for every $\varepsilon>0$ and all $x \geq 1$.
(ii) Suppose $F(s)$ can be continued analytically in $(\sigma \geq 1-\eta, T-1 \leq$ $\left.t \leq T+T^{\mu}+1\right)$ for some fixed $\eta(0<\eta<1 /(10 A))$ and there $\max |F(s)|<$ T^{A} where $A(\geq 1)$ is any positive constant.

We begin our preparations with
Lemma 1. For some constant η^{\prime} (with $0<\eta^{\prime}<\eta / 2$) we have, for all $\sigma \geq 1-\eta^{\prime}$,

$$
\int_{T_{1}}^{T_{2}}|F(\sigma+i t)|^{2} d t=O\left(T^{\mu}\right)
$$

where $T_{1}=T+(\log T)^{2}$ and $T_{2}=T+T^{\mu}-(\log T)^{2}$.
Remark. This lemma as well as the lemmas of this section go through for all functions of the form $F(s)=\sum_{n=1}^{\infty} a_{n} \lambda_{n}^{-s}$ where $1=\lambda_{1}<\lambda_{2}<\ldots$ is any sequence of real numbers with $C_{1}^{-1} \leq \lambda_{n+1}-\lambda_{n} \leq C_{1}$ where $C_{1} \geq 1$ is any constant. Of course we have to assume (i) and (ii).

Proof. The proof follows from standard arguments. For example let t be in the range of integration. We start with

$$
\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} F(s+w) X^{w} \Gamma(w) d w=\sum_{n=1}^{\infty} a_{n} n^{-s} \exp (-n / X) \quad\left(X=T^{A \eta^{-2}}\right)
$$

and deform the line of integration to the w-contour obtained by joining the points $2-i \infty, 2-i(\log T)^{2}, 1-\eta-\sigma-i(\log T)^{2}, 1-\eta-\sigma+i(\log T)^{2}, 2+$ $i(\log T)^{2}, 2+i \infty$ (by straight line segments) in this order. The pole at $w=0$
contributes $F(s)$. Rough estimations show that

$$
\begin{aligned}
F(s) & =\sum_{n=1}^{\infty} a_{n} n^{-s} \exp (-n / X)+O\left(T^{-1}\right) \\
& =\sum_{n \leq X^{2}} a_{n} n^{-s} \exp (-n / X)+O\left(T^{-1}\right) .
\end{aligned}
$$

To estimate the mean square of the last finite sum we use (for $m \neq n$)

$$
\left|\frac{a_{m} \bar{a}_{n} \exp (-(m+n) / X)}{(m n)^{\sigma} \log (m / n)}\right| \leq \frac{2\left|a_{m} \bar{a}_{n} \exp (-(m+n) / X)\right|}{(m n)^{\sigma}}
$$

if $|\log (m / n)| \geq 1 / 2$. Otherwise we use $|\log (m / n)| \geq|(m-n) /(m+n)|$ and obtain the lemma with slight work.

Lemma 2. Consider the rectangle ($\sigma \geq 1-\eta^{\prime} / 2, T+2(\log T)^{2} \leq t \leq$ $\left.T+T^{\mu}-2(\log T)^{2}\right)$. Divide the t-range into abutting t-intervals I each of length $H(\geq 10)$ (ignoring a bit at one end). Put $M(I)=$ maximum of $|F(s)|$ in $\left(\sigma \geq 1-\eta^{\prime} / 2, t \in I\right)$. Then

$$
\sum_{I} M(I)=O\left(T^{\mu}\right) .
$$

Proof. Let $r=\eta^{\prime} / 2$ and $0<r_{1}<r$ and $z=x+i y$ a complex variable with $|z| \leq r$. Then by Cauchy's theorem we have

$$
(F(s))^{2}=\frac{1}{2 \pi i} \int_{|z|=r_{1}}(F(s+z))^{2} \frac{d z}{z}
$$

and so

$$
|F(s)|^{2} \leq \frac{1}{\pi r^{2}} \quad \int_{|z| \leq r} \int_{\leq r}|F(s+z)|^{2} d x d y .
$$

Note that $|F(s)|$ is bounded in $\sigma \geq 2$. Let now s run through points of $\left(1-\eta^{\prime} / 2 \leq \sigma \leq 2, t \in I\right)$ where $\max |F(s)|$ is attained. Then we have

$$
\sum_{s} M(I) \leq \frac{2}{\pi r^{2}} \quad \iint|F(s)|^{2} d x d y
$$

the integral being taken over $\left(1-\eta^{\prime} \leq \sigma \leq 2+\eta^{\prime}, T_{1} \leq t \leq T_{2}\right)$. By Lemma 1 this leads to Lemma 2.

Lemma 3. For at least $\geq T^{\mu} H^{-1}\left(1+O\left(H^{-1}\right)\right)$ intervals I, we have $M(I) \leq H^{2}$.

Proof. By Lemma 2 the number of intervals I with $M(I)>H^{2}$ is $O\left(T^{\mu} H^{-2}\right)$ and this proves the lemma.

Lemma 4. Let $t_{0} \geq 100$, let $\delta, \delta^{\prime}, \delta^{\prime \prime}$ be constants with $\delta>\delta^{\prime}>\delta^{\prime \prime}>0$ and let $D(s)$ be any function analytic in ($\sigma \geq 1-\delta,\left|t-t_{0}\right| \leq C(\delta)$)
where $C(\delta)$ is a large positive constant depending on δ, δ^{\prime} and $\delta^{\prime \prime}$ and D_{0} to follow. In this region let the maximum of $|D(s)|$ be $\leq M(\geq 30)$ and also $D(s) \neq 0$. Suppose further that for all σ exceeding a large positive constant D_{0} we have $|\log D(s)| \leq 1 / 2$. Then $\log D(s)=O(\log M)$ in $\left(\sigma \geq 1-\delta^{\prime},\left|t-t_{0}\right| \leq C(\delta) / 2\right)$ and $\log D(s)=O(\log M)^{\theta}$ with a $\theta \quad(<1)$ not depending on t_{0} in $(\sigma \quad \geq$ $\left.1-\delta^{\prime \prime},\left|t-t_{0}\right| \leq C(\sigma) / 3\right)$. Here the O-constants depend only on δ, δ^{\prime}, $\delta^{\prime \prime}$ and D_{0}.

Remark. This lemma is the same as Lemma 1 of [3] with a slight change of notation.

Proof. This lemma is essentially due to J. E. Littlewood. See pages 336 and 337 of [5] for a proof which can be easily generalised to give this lemma.

Let a be any non-zero constant. Hereafter we put $F_{1}(s)=a_{1}^{-1} F(s)$ or $1-a^{-1} F(s)$ according as $a_{1} \neq 0$ or $a_{1}=0$. In any case $F_{1}(s)$ is a Dirichlet series of the type $\sum_{n=1}^{\infty} a_{n}^{\prime} \lambda_{n}^{-s}$ with $a_{1}^{\prime}=\lambda_{1}=1$ (described in the remark below Lemma 1). We treat only the first case, i.e. $F_{1}(s)\left(F_{1}(s)-a_{1}^{-1} a\right)$ (hereafter we write a in place of $a_{1}^{-1} a$ in this case). In the second case we have to consider $F_{1}(s)\left(F_{1}(s)-1\right)$ and the treatment is exactly similar and we do not give details of proof in this case.

Lemma 5. Consider the intervals I of Lemma 3. Then there exists a constant δ_{1} (with $0<\delta_{1}<\delta$) with the following property. In order to prove that the number of distinct zeros of $F_{1}(s)\left(F_{1}(s)-a\right)$ in $(\sigma \geq 1-\delta, T \leq$ $\left.t \leq T+T^{\mu}\right)$ is $\gg T^{\mu}$, we can assume that there are at least $N \geq \frac{1}{4} T^{\mu} H^{-1}$ intervals I such that in $\left(\sigma \geq 1-\delta_{1}, t \in I\right)$ we have $F(s)=O\left(H^{2}\right)$ and also $F_{1}(s)\left(F_{1}(s)-a\right) \neq 0$. (We denote these intervals by $\left.J.\right)$

Proof. If at least $\geq \frac{1}{2} T^{\mu} H^{-1}$ of the intervals I of Lemma 3 have the property that ($\sigma \geq 1-\delta, t \in I$) contains a zero of $F_{1}(s)\left(F_{1}(a)-a\right)$ then we are through by fixing H to be a large constant. Hence we may assume that the number of intervals I of Lemma 3 with the property that the rectangle ($\sigma \geq 1-\delta, t \in I$) contains at least one zero is $\leq \frac{1}{2} T^{\mu} H^{-1}$. The remaining intervals of Lemma 3 are $\geq \frac{1}{4} T^{\mu} H^{-1}$ in number and this proves the lemma.

Lemma 6. Let J^{*} denote the interval J with t-intervals of length $1000(\log H)^{2}$ deleted from both ends. Then in $\left(\sigma \geq 1-\delta_{1} / 1000, t \in J^{*}\right)$ we have $F(s)=O\left(\exp \exp \left((\log \log H)^{\theta}\right)\right)$, where $\theta(0<\theta<1)$ is independent of H and T.

Proof. Let $J_{k}(k=1,2, \ldots, 5)$ denote the interval J with t-intervals of length $2 k(\log H)^{2}$ deleted from both ends. We apply Lemma 4 to $F_{1}(s)$ and the rectangle ($\sigma \geq 1-\delta_{1} / 2, t \in J_{2}$). We see that in this rectangle $\log F_{1}(s)=O(\log H)$. Let $P(s)=\left(\log F_{1}(s)-\log a\right)(-\log a)^{-1}$ if $a \neq 1$
and otherwise $P(s)=g_{1}^{s} h_{1} \log F_{1}(s)$ where g_{1} and h_{1} are suitable constants ($g_{1}>1$ and h_{1} a non-zero complex constant) which secure the property that $P(s) \rightarrow 1$ as $\sigma \rightarrow \infty$. Now since $F_{1}(s) \neq a$ we have $P(s) \neq 0$ in $\left(\sigma \geq 1-\delta_{1} / 3, t \in J_{3}\right)$. So we can apply Lemma 4 and conclude that in $\left(\sigma \geq 1-\delta_{1} / 4, t \in J_{4}\right)$ we have $\log P(s)=O(\log \log H)$ and that in $\left(\sigma \geq 1-\delta_{1} / 5, t \in J_{5}\right)$ we have $|\log P(s)| \leq(\log \log H)^{\theta}$ for all large H. This leads to the lemma.
3. Titchmarsh series. In this section we impose some conditions on $F(s)$ and prove that for every one of the intervals J^{*} the maximum $m\left(J^{*}\right)$ of $|F(s)|$ taken over $\left(\sigma \geq 1-\delta_{1} / 1000, t \in J^{*}\right)$ exceeds $\exp \left((\log H)^{\alpha}\right)$ where $\alpha(>0)$ is a constant independent of T and H. Plainly it suffices to prove this result for $F(s)+1$ and so if $a_{1}=0$ we can consider $F(s)+1$ and otherwise $a_{1}^{-1} F(s)$. Hence for this new function $a_{1}=1$, and we can apply the results of [4]. Put $(F(s))^{k}=\sum_{n=1}^{\infty} b_{n} n^{-s}$ where k is an integer satisfying $1 \leq k \leq \log H$. We impose some extra conditions on $F(s)$ so as to secure that the quantity Q defined by

$$
Q=\max _{1 \leq k \leq \log H} \max _{\sigma \geq 1-\delta_{1} / 1000}\left(\frac{1}{\left|J^{*}\right|} \int_{t \in J^{*}}|F(s)|^{2 k} d t\right)^{1 /(2 k)}
$$

exceeds $\exp \left((\log H)^{\alpha}\right)$ where α is as required by us. According to the main result of [4] we have the following theorem.

Theorem 2. A lower bound for Q is given by

$$
\begin{equation*}
Q \geq\left(C_{2} \sum_{n \leq C_{3} H}\left|b_{n}\right|^{2} n^{-2 \beta}\left(1-\frac{\log n}{\log H}+\frac{1}{\log \log H}\right)\right)^{1 /(2 k)} \tag{1}
\end{equation*}
$$

where $C_{2}(>0), C_{3}(>0)$ are certain constants and $\beta=1-\delta_{1} / 1000$.
Remark 1. Since we are going to apply (1) with k a positive constant power of $\log H$, it suffices to prove the lower bound

$$
Q_{1}=\left(\sum_{n \leq C_{3} H}\left|b_{n}\right|^{2} n^{-2 \beta}\right)^{1 /(2 k)}>\exp \left((\log H)^{\alpha}\right) .
$$

Incidentally we remark that the conjecture that in (1),

$$
1-\frac{\log n}{\log H}+\frac{1}{\log \log H}
$$

can be replaced by 1 (made in [4]) is solved in fact in a stronger form in [2] by a simpler method.

Let $F(s)=P_{\chi}(s)+E(s)$ where $P_{\chi}(s)=\sum^{*} \chi(n) a_{n} n^{-s}$ where the asterisk indicates that n runs over a semigroup (with identity) generated by a
set S of primes and χ is a complex-valued (restricted) multiplicative function and further the a_{n} are all real and non-negative. We suppose that $E(s)=\sum^{*} b_{n}^{\prime} n^{-s}$ where b_{n}^{\prime} are arbitrary complex numbers and the asterisk indicates that n runs through integers which have at least one prime factor not in S. Then

$$
(F(s))^{k}=\left(P_{\chi}(s)+E(s)\right)^{k}=\left(P_{\chi}(s)\right)^{k}+Q(s)
$$

where $Q(s)$ is a Dirichlet series "with integers n not in $\left(P_{\chi}(s)\right)^{k}$ ". Let $Q_{\chi}(s)=\sum^{\prime} \chi(m) a_{m} m^{-s}$ where the accent indicates that m 's run over square-free power products (times a fixed integer ≥ 1) of primes in S. Then we impose only the conditions
(iii) $\left|a_{m}\right| \gg m^{-\varepsilon}$ for all m,
(iv) $|\chi(m)| \gg m^{-\varepsilon}$ for all large m,
(v) $\sum_{p \in S, Y \leq p \leq 2 Y} 1 \gg Y^{1-\varepsilon}$ for all large Y,
all valid for all $\varepsilon>0$ (in addition to (i) and (ii) imposed at the beginning of Section 2). Then the following theorem holds.

Theorem 3. We have the lower bound

$$
m\left(J^{*}\right)>\exp \left((\log H)^{\alpha}\right)
$$

where $\alpha(>0)$ is independent of T and H.
Proof. Put $W_{0}=\sum_{n \leq C_{3} H}\left|b_{n}\right|^{2} n^{-2 \beta}$. Then we have

$$
W_{0} \geq \sum_{n \leq C_{3} H}\left|\chi(n) n^{-\beta} \sum_{m_{1} \ldots m_{k}=n}^{\prime} a_{m_{1}} \ldots a_{m_{k}}\right|^{2} \geq \sum_{n \leq C_{3} H} n^{-2 \beta-\varepsilon}\left(d_{k}^{*}(n)\right)^{2}
$$

where $d_{k}^{*}(n)=\sum_{m_{1} \ldots m_{k}=n} 1$, i.e. $d_{k}^{*}(n)$ is defined by

$$
\sum_{n=1}^{\infty} d_{k}^{*}(n) n^{-s}=\left(\sum^{\prime} m^{-s}\right)^{k}=\prod_{p \in S}\left(1+p^{-s}\right)^{k}
$$

This leads to

$$
W_{0} \geq \prod\left(k^{2} p^{-2 \sigma}\right) \quad(\sigma=\beta+\varepsilon)
$$

where the product is extended over all primes in S with $Y \leq p \leq 2 Y$ and $Y=k^{1 / \sigma-\varepsilon}$. Thus

$$
W_{0} \geq 3^{2 Y^{1-\varepsilon}}
$$

and hence

$$
m\left(J^{*}\right) \geq W_{0}^{1 /(2 k)} \geq \exp \left(k^{1 / \sigma-1-2 \varepsilon}\right)
$$

We have still to satisfy $\prod p \leq C_{3} H$ where the product is over all primes between Y and $2 Y$. This leads to the following (we allow in fact a stronger)
restriction on k, which is otherwise arbitrary:

$$
(2 Y)^{2 Y} \leq C_{3} H,
$$

which gives $k \leq(\log H)^{\sigma-5 \varepsilon}$. We can take for k the greatest integer with this property. Thus we obtain

$$
m\left(J^{*}\right) \geq \exp \left((\log H)^{1-\sigma-100 \varepsilon}\right) .
$$

Here we note that $\sigma=\beta+\varepsilon, \beta=1-\delta_{1} / 1000$ and we can choose ε small enough. This leads to Theorem 3.

Remark. The conditions imposed on $F(s)$ here are more general than those mentioned in Remark 3 on p. 342 of [1].
4. Completion of the proof. We have proved (compare Lemma 6 and Theorem 3) that $F(s)(F(s)-a)$ has $\gg T^{\mu}$ distinct zeros in the rectangle ($\sigma \geq 1-\delta, T \leq t \leq T+T^{\mu}$) for a suitable constant $\delta=\delta(a, \mu)>0$. On the other hand, if $F(s)$ has an Euler product of the type

$$
F(s)=\prod_{p}\left(1+\frac{a_{p} \chi(p)}{p^{s}}+\frac{a_{p^{2}} \chi\left(p^{2}\right)}{p^{2 s}}+\ldots\right)
$$

where $p^{-\varepsilon} a_{p} \chi(p), p^{-2 \varepsilon} a_{p^{2}} \chi\left(p^{2}\right), \ldots$ are all $O_{\varepsilon}(1)$ say for every $\varepsilon>0$ then the number of zeros of $F(s)$ (counted with multiplicity) in the same rectangle is $\leq T^{C_{4} \delta}$ where C_{4} is independent of T and μ. Hence by choosing δ smaller we can show that the number of zeros of $F(s)$ is $O\left(T^{\nu}\right)$ where $\nu=\mu / 2$. This completes the proof of Theorem 1.
5. Further generalisations. We can consider the zeros of $F(s)(F(s)-$ $G(s))$ where $G(s)$ is a generalised Dirichlet series (of the type described in remark below Lemma 1) which does not vanish (for example) in $\sigma \geq 3 / 4$ and there $\log G(s)=O(1)$. Of course we should have the conditions (i) to (v). However, we do not carry out the details.

References

[1] R. Balasubramanian and K. Ramachandra, On the frequency of Titchmarsh's phenomenon for $\zeta(s)$. III, Proc. Indian Acad. Sci. Sect. A 86 (1977), 341-351.
[2] -, -, Proof of some conjectures on the mean-value of Titchmarsh series. I, HardyRamanujan J. 13 (1990), 1-20.
[3] -, -, On the zeros of $\zeta^{\prime}(s)-a$, this volume, 183-191.
[4] K. Ramachandra, Progress towards a conjecture on the mean-value of Titchmarsh series, in: Recent Progress in Analytic Number Theory, Vol. 1, H. Halberstam and C. Hooley (eds.), Academic Press, London 1981, 303-318.
[5] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised and edited by D. R. Heath-Brown, Clarendon Press, Oxford 1986.

MATSCIENCE
THARAMANI P.O.
MADRAS 600113
INDIA

SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH HOMI BHABHA ROAD

COLABA
BOMBAY 400005 INDIA

