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1. Introduction. The main object of this paper is to prove the follow-
ing theorem. (We write s = σ + it as usual.)

Theorem 1. Let a be any non-zero complex constant. Let δ and µ be
any two constants satisfying 0 < δ ≤ 1/10 and 0 < µ ≤ 1/10. Then for
T ≥ T0(δ, µ, a) (depending only on the constants indicated) there are at least
≥ CTµ distinct zeros of ζ(s)−a in the rectangle (σ ≥ 1−δ, T ≤ t ≤ T +Tµ)
where C (> 0) is independent of T .

R e m a r k 1. As a complement to this theorem we can prove (by using
some ideas of J. E. Littlewood) that the number of zeros (counted with
multiplicity) of ζ(s) − a in (σ ≥ 1 − δ, T ≤ t ≤ T + Tµ) is O(Tµ) for a
certain constant δ = δ(a, µ) > 0. (Thus there are � Tµ zeros of a fixed
bounded (bound independent of T ) order which depends on µ and a. The
order, however, may depend on the rectangle.)

In fact, under fairly general conditions on a generalised Dirichlet series
one of which being

∫ T+T µ

T
|F (1 − δ0 + it)|2dt = O(Tµ) (where δ0 > 0 is a

suitable constant) there are at most O(Tµ) zeros (counted with multiplicity)
of F (s) in (σ ≥ 1− δ, T ≤ t ≤ T + Tµ) for every constant δ (0 < δ < δ0).

R e m a r k 2. As can easily be seen, the theorem is equivalent to the one
with µ = δ. But we have stated it in this way since we feel that it is possible
to prove a uniform result in a certain range for δ with µ = δ3/2−ε for any
fixed ε > 0. Note that Theorem 1 deals with any non-zero complex constant
a, while in [3] we dealt with zeros of ζ ′(s)− a for any complex constant a.

R e m a r k 3. H. Bohr and B. Jessen have proved the remarkable result
that the number of zeros (counted with multiplicity) of log ζ(s) − a (with
any complex constant a) in (1/2 < α < σ < β < 1, 0 ≤ t ≤ T ) is ∼
K(a, α, β)T as T →∞ for any two fixed constants α, β (see pp. 306–308 of
[5]; a correction on p. 308: Jensen should read Jessen). But our Theorem 1
gives a new information which may be of some interest.
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R e m a r k 4. Our proof is sufficiently general and goes through for ζ and
L-functions and ζ-function of any ray class in any algebraic number field.
Actually in the last section we formulate a theorem which we can further
generalise to some extent. However, if we are dealing with functions f(s) like
the zeta-function of a ray class where we do not have an Euler product we
can only prove that f(s)(f(s)− a) has � Tµ distinct zeros in the rectangle
(σ ≥ 1 − δ, T ≤ t ≤ T + Tµ). (The notation � Tµ means ≥ CTµ where
C (> 0) is independent of T .) In fact, if f(s) has an Euler product we
first prove that f(s)(f(s)− a) has � Tµ distinct zeros and we recover that
f(s)− a has � Tµ zeros since by density results f(s) has a smaller number
of zeros for a suitable δ.

2. Some preparations. Throughout this paper we consider the func-
tion F (s) =

∑∞
n=1 ann−s with the following two conditions.

(i) Let a1, a2, . . . be a sequence of complex numbers with n0 the least
integer for which an0 6= 0 and n1 the next least integer for which an1 6= 0.
Let

∑
n≤x |an|2 � x1+ε for every ε > 0 and all x ≥ 1.

(ii) Suppose F (s) can be continued analytically in (σ ≥ 1− η, T − 1 ≤
t ≤ T + Tµ + 1) for some fixed η (0 < η < 1/(10A)) and there max |F (s)| <
TA where A (≥ 1) is any positive constant.

We begin our preparations with

Lemma 1. For some constant η′ (with 0 < η′ < η/2) we have, for all
σ ≥ 1− η′,

T2∫
T1

|F (σ + it)|2dt = O(Tµ) ,

where T1 = T + (log T )2 and T2 = T + Tµ − (log T )2.

R e m a r k. This lemma as well as the lemmas of this section go through
for all functions of the form F (s) =

∑∞
n=1 anλ−s

n where 1 = λ1 < λ2 < . . .
is any sequence of real numbers with C−1

1 ≤ λn+1 − λn ≤ C1 where C1 ≥ 1
is any constant. Of course we have to assume (i) and (ii).

P r o o f. The proof follows from standard arguments. For example let t
be in the range of integration. We start with

1
2πi

2+i∞∫
2−i∞

F (s + w)XwΓ (w) dw =
∞∑

n=1

ann−s exp(−n/X) (X = TAη−2
)

and deform the line of integration to the w-contour obtained by joining the
points 2− i∞, 2− i(log T )2, 1− η− σ − i(log T )2, 1− η− σ + i(log T )2, 2 +
i(log T )2, 2+i∞ (by straight line segments) in this order. The pole at w = 0
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contributes F (s). Rough estimations show that

F (s) =
∞∑

n=1

ann−s exp(−n/X) + O(T−1)

=
∑

n≤X2

ann−s exp(−n/X) + O(T−1) .

To estimate the mean square of the last finite sum we use (for m 6= n)∣∣∣∣aman exp(−(m + n)/X)
(mn)σ log(m/n)

∣∣∣∣ ≤ 2|aman exp(−(m + n)/X)|
(mn)σ

if |log (m/n)| ≥ 1/2. Otherwise we use |log (m/n)| ≥ |(m−n)/(m+n)| and
obtain the lemma with slight work.

Lemma 2. Consider the rectangle (σ ≥ 1 − η′/2, T + 2(log T )2 ≤ t ≤
T + Tµ − 2(log T )2). Divide the t-range into abutting t-intervals I each of
length H (≥ 10) (ignoring a bit at one end). Put M(I) = maximum of
|F (s)| in (σ ≥ 1− η′/2, t ∈ I). Then∑

I

M(I) = O(Tµ) .

P r o o f. Let r = η′/2 and 0 < r1 < r and z = x + iy a complex variable
with |z| ≤ r. Then by Cauchy’s theorem we have

(F (s))2 =
1

2πi

∫
|z|=r1

(F (s + z))2
dz

z

and so

|F (s)|2 ≤ 1
πr2

∫ ∫
|z|≤r

|F (s + z)|2 dx dy .

Note that |F (s)| is bounded in σ ≥ 2. Let now s run through points of
(1− η′/2 ≤ σ ≤ 2, t ∈ I) where max |F (s)| is attained. Then we have∑

s

M(I) ≤ 2
πr2

∫ ∫
|F (s)|2 dx dy ,

the integral being taken over (1 − η′ ≤ σ ≤ 2 + η′, T1 ≤ t ≤ T2). By
Lemma 1 this leads to Lemma 2.

Lemma 3. For at least ≥TµH−1(1 + O(H−1)) intervals I, we have
M(I) ≤ H2.

P r o o f. By Lemma 2 the number of intervals I with M(I) > H2 is
O(TµH−2) and this proves the lemma.

Lemma 4. Let t0 ≥ 100, let δ, δ′, δ′′ be constants with δ > δ′ > δ′′ > 0
and let D(s) be any function analytic in (σ ≥ 1 − δ, |t − t0| ≤ C(δ))
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where C(δ) is a large positive constant depending on δ, δ′ and δ′′ and
D0 to follow. In this region let the maximum of |D(s)| be ≤ M (≥ 30)
and also D(s) 6= 0. Suppose further that for all σ exceeding a large pos-
itive constant D0 we have |log D(s)| ≤ 1/2. Then log D(s) = O(log M)
in (σ ≥ 1 − δ′, |t − t0| ≤ C(δ)/2) and log D(s) = O(log M)θ with a
θ (< 1) not depending on t0 in (σ ≥
1 − δ′′, |t − t0| ≤ C(σ)/3). Here the O-constants depend only on δ, δ′,
δ′′ and D0.

R e m a r k. This lemma is the same as Lemma 1 of [3] with a slight
change of notation.

P r o o f. This lemma is essentially due to J. E. Littlewood. See pages
336 and 337 of [5] for a proof which can be easily generalised to give this
lemma.

Let a be any non-zero constant. Hereafter we put F1(s) = a−1
1 F (s) or

1− a−1F (s) according as a1 6= 0 or a1 = 0. In any case F1(s) is a Dirichlet
series of the type

∑∞
n=1 a′nλ−s

n with a′1 = λ1 = 1 (described in the remark
below Lemma 1). We treat only the first case, i.e. F1(s)(F1(s) − a−1

1 a)
(hereafter we write a in place of a−1

1 a in this case). In the second case we
have to consider F1(s)(F1(s) − 1) and the treatment is exactly similar and
we do not give details of proof in this case.

Lemma 5. Consider the intervals I of Lemma 3. Then there exists a
constant δ1 (with 0 < δ1 < δ) with the following property. In order to prove
that the number of distinct zeros of F1(s)(F1(s) − a) in (σ ≥ 1 − δ, T ≤
t ≤ T + Tµ) is � Tµ, we can assume that there are at least N ≥ 1

4TµH−1

intervals I such that in (σ ≥ 1− δ1, t ∈ I) we have F (s) = O(H2) and also
F1(s)(F1(s)− a) 6= 0. (We denote these intervals by J .)

P r o o f. If at least ≥ 1
2TµH−1 of the intervals I of Lemma 3 have the

property that (σ ≥ 1− δ, t ∈ I) contains a zero of F1(s)(F1(a)− a) then we
are through by fixing H to be a large constant. Hence we may assume that
the number of intervals I of Lemma 3 with the property that the rectangle
(σ ≥ 1− δ, t ∈ I) contains at least one zero is ≤ 1

2TµH−1. The remaining
intervals of Lemma 3 are ≥ 1

4TµH−1 in number and this proves the lemma.

Lemma 6. Let J∗ denote the interval J with t-intervals of length
1000(log H)2 deleted from both ends. Then in (σ ≥ 1− δ1/1000, t ∈ J∗) we
have F (s) = O(exp exp((log log H)θ)), where θ (0 < θ < 1) is independent
of H and T .

P r o o f. Let Jk (k = 1, 2, . . . , 5) denote the interval J with t-intervals
of length 2k(log H)2 deleted from both ends. We apply Lemma 4 to F1(s)
and the rectangle (σ ≥ 1 − δ1/2, t ∈ J2). We see that in this rectangle
log F1(s) = O(log H). Let P (s) = (log F1(s) − log a)(− log a)−1 if a 6= 1
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and otherwise P (s) = gs
1h1 log F1(s) where g1 and h1 are suitable constants

(g1 > 1 and h1 a non-zero complex constant) which secure the property
that P (s) → 1 as σ → ∞. Now since F1(s) 6= a we have P (s) 6= 0 in
(σ ≥ 1 − δ1/3, t ∈ J3). So we can apply Lemma 4 and conclude that
in (σ ≥ 1 − δ1/4, t ∈ J4) we have log P (s) = O(log log H) and that in
(σ ≥ 1 − δ1/5, t ∈ J5) we have |log P (s)| ≤ (log log H)θ for all large H.
This leads to the lemma.

3. Titchmarsh series. In this section we impose some conditions on
F (s) and prove that for every one of the intervals J∗ the maximum m(J∗)
of |F (s)| taken over (σ ≥ 1− δ1/1000, t ∈ J∗) exceeds exp((log H)α) where
α (> 0) is a constant independent of T and H. Plainly it suffices to prove
this result for F (s) + 1 and so if a1 = 0 we can consider F (s) + 1 and
otherwise a−1

1 F (s). Hence for this new function a1 = 1, and we can apply
the results of [4]. Put (F (s))k =

∑∞
n=1 bnn−s where k is an integer satisfying

1 ≤ k ≤ log H. We impose some extra conditions on F (s) so as to secure
that the quantity Q defined by

Q = max
1≤k≤log H

max
σ≥1−δ1/1000

(
1
|J∗|

∫
t∈J∗

|F (s)|2k dt

)1/(2k)

exceeds exp((log H)α) where α is as required by us. According to the main
result of [4] we have the following theorem.

Theorem 2. A lower bound for Q is given by

(1) Q ≥
(

C2

∑
n≤C3H

|bn|2n−2β

(
1− log n

log H
+

1
log log H

))1/(2k)

where C2 (> 0), C3 (> 0) are certain constants and β = 1− δ1/1000.

R e m a r k 1. Since we are going to apply (1) with k a positive constant
power of log H, it suffices to prove the lower bound

Q1 =
( ∑

n≤C3H

|bn|2n−2β
)1/(2k)

> exp((log H)α) .

Incidentally we remark that the conjecture that in (1),

1− log n

log H
+

1
log log H

can be replaced by 1 (made in [4]) is solved in fact in a stronger form in [2]
by a simpler method.

Let F (s) = Pχ(s) + E(s) where Pχ(s) =
∑∗

χ(n)ann−s where the as-
terisk indicates that n runs over a semigroup (with identity) generated by a
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set S of primes and χ is a complex-valued (restricted) multiplicative func-
tion and further the an are all real and non-negative. We suppose that
E(s) =

∑∗
b′nn−s where b′n are arbitrary complex numbers and the asterisk

indicates that n runs through integers which have at least one prime factor
not in S. Then

(F (s))k = (Pχ(s) + E(s))k = (Pχ(s))k + Q(s) ,

where Q(s) is a Dirichlet series “with integers n not in (Pχ(s))k”. Let
Qχ(s) =

∑′
χ(m)amm−s where the accent indicates that m’s run over

square-free power products (times a fixed integer ≥ 1) of primes in S. Then
we impose only the conditions

(iii) |am| � m−ε for all m,
(iv) |χ(m)| � m−ε for all large m,
(v)

∑
p∈S,Y≤p≤2Y

1� Y 1−ε for all large Y ,

all valid for all ε > 0 (in addition to (i) and (ii) imposed at the beginning
of Section 2). Then the following theorem holds.

Theorem 3. We have the lower bound

m(J∗) > exp((log H)α)

where α (> 0) is independent of T and H.

P r o o f. Put W0 =
∑

n≤C3H |bn|2n−2β . Then we have

W0 ≥
∑

n≤C3H

∣∣∣χ(n)n−β
∑′

m1...mk=n

am1 . . . amk

∣∣∣2 ≥ ∑
n≤C3H

n−2β−ε(d∗k(n))2 ,

where d∗k(n) =
∑

m1...mk=n 1, i.e. d∗k(n) is defined by
∞∑

n=1

d∗k(n)n−s =
(∑′

m−s
)k

=
∏
p∈S

(1 + p−s)k .

This leads to
W0 ≥

∏
(k2p−2σ) (σ = β + ε) ,

where the product is extended over all primes in S with Y ≤ p ≤ 2Y and
Y = k1/σ−ε. Thus

W0 ≥ 32Y 1−ε

and hence
m(J∗) ≥W

1/(2k)
0 ≥ exp(k1/σ−1−2ε) .

We have still to satisfy
∏

p ≤ C3H where the product is over all primes
between Y and 2Y . This leads to the following (we allow in fact a stronger)
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restriction on k, which is otherwise arbitrary:

(2Y )2Y ≤ C3H ,

which gives k ≤ (log H)σ−5ε. We can take for k the greatest integer with
this property. Thus we obtain

m(J∗) ≥ exp((log H)1−σ−100ε) .

Here we note that σ = β + ε, β = 1 − δ1/1000 and we can choose ε small
enough. This leads to Theorem 3.

R e m a r k. The conditions imposed on F (s) here are more general than
those mentioned in Remark 3 on p. 342 of [1].

4. Completion of the proof. We have proved (compare Lemma 6 and
Theorem 3) that F (s)(F (s) − a) has � Tµ distinct zeros in the rectangle
(σ ≥ 1− δ, T ≤ t ≤ T + Tµ) for a suitable constant δ = δ(a, µ) > 0. On the
other hand, if F (s) has an Euler product of the type

F (s) =
∏
p

(
1 +

apχ(p)
ps

+
ap2χ(p2)

p2s
+ . . .

)
where p−εapχ(p), p−2εap2χ(p2), . . . are all Oε(1) say for every ε > 0 then the
number of zeros of F (s) (counted with multiplicity) in the same rectangle is
≤ TC4δ where C4 is independent of T and µ. Hence by choosing δ smaller
we can show that the number of zeros of F (s) is O(T ν) where ν = µ/2. This
completes the proof of Theorem 1.

5. Further generalisations. We can consider the zeros of F (s)(F (s)−
G(s)) where G(s) is a generalised Dirichlet series (of the type described in
remark below Lemma 1) which does not vanish (for example) in σ ≥ 3/4
and there log G(s) = O(1). Of course we should have the conditions (i) to
(v). However, we do not carry out the details.
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