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Introduction. An old conjecture of P. Erdős repeated many times with
a prize offer states that the counting function A(n) of a Br-sequence A
satisfies

lim inf
n→∞

A(n)
n1/r

= 0 .

The conjecture was proved for r = 2 by P. Erdős himself (see [5]) and
in the cases r = 4 and r = 6 by J. C. M. Nash in [4] and by Xing-De Jia
in [2] respectively. A very interesting proof of the conjecture in the case
of all even r = 2k by Xing-De Jia is to appear in the Journal of Number
Theory [3].

Here we present a different, very short proof of Erdős’ hypothesis for all
even r = 2k which we developped independently of Jia’s version.

Notation and terminology. We call a set of positive integers A a
Br-sequence if the equation n = a1 + . . . + ar, a1 ≤ . . . ≤ ar, ai ∈ A, has at
most one solution for all n.

We define

B = kA = {a1 + . . . + ak : ai ∈ A},
S = {(a1, . . . , ak; a′1, . . . , a

′
k) : ai, a

′
i ∈ A ∩ [1, N2] ,

1 ≤ (a1 + . . . + ak)− (a′1 + . . . + a′k) ≤ N} ,

S′ = {(bi, bj) : 1 ≤ bj − bi ≤ N, bi, bj ∈ B ∩ [1, N2]} .

Theorem. Let A be a B2k-sequence such that

A(n2) � (A(n))2 .

Then

(1)
A(n)

n1/(2k)
(log n)1/(2k) < ∞ .
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P r o o f. Erdős showed (see [5]) that every B2-sequence A satisfies

(2)
A(n)
n1/2

(log n)1/2 < ∞ .

Using an idea of Erdős on which the proof of (2) is based (see [1, pp. 89–90])
in this case we get

|S′| � τB(N)2N
where

τB(N) = inf
n>N

B(n)
n1/2

(log n)1/2 .

Since

(3) |S′| ≤ |S|
and as the B2k-property of A implies

(4) B(n) � (A(n))k ,

the proof of

(5) |S| � N

will lead to τB(N) � 1, which implies (1) immediately.
It remains to prove (5). Consider an arbitrary 2k-tuple (a1, . . . , ak;

a′1, . . . , a
′
k) of S. It will be transformed into a new tuple according to the fol-

lowing procedure. Let u be the number of appearances of a1 in (a1, . . . , ak)
and let v be the number of appearances of a1 in (a′1, . . . , a

′
k). Now a1 will be

eliminated min(u, v) times from (a1, . . . , ak) as well as from (a′1, . . . , a
′
k). In

the next step the same procedure will be performed with the next compo-
nent of (a1, . . . , ak) that is different from a1, and so on till every component
of (a1, . . . , ak) has been checked once. Eventually, the 2k-tuple (a1, . . . , ak;
a′1, . . . , a

′
k) is transformed into a new 2j-tuple (ai1, . . . , aij ; a′h1, . . . , a

′
hj)

where j is the number of components of (a1, . . . , ak) and (a′1, . . . , a
′
k) that

have not been dropped as above. Thus

{ai1, . . . , aij} ∩ {a′h1, . . . , a
′
hj} = ∅

for 1 ≤ j ≤ k as

(a1 + . . . + ak)− (a′1 + . . . + a′k) > 0 ∀(a1, . . . , ak; a′1, . . . , a
′
k) ∈ S .

Therefore it is possible to divide S into k disjoint classes S1, . . . , Sk, where
Sj is the set of those 2k-tuples of S whose corresponding tuple according to
the above procedure of successive “truncation” consists of 2j components.
Therefore

|S| =
k∑

j=1

|Sj | .



B2k-sequences 369

Since A is a B2k-sequence,
|Sk| � N .

For if (a1, . . . , ak; a′1, . . . , a
′
k) and (b1, . . . , bk; b′1, . . . , b

′
k) belong to Sk and

(a1 + . . . + ak)− (a′1 + . . . + a′k) = (b1 + . . . + bk)− (b′1 + . . . + b′k)

then the B2k-property of A in view of

{a1, . . . , ak} ∩ {a′1, . . . , a′k} = ∅
and

{b1, . . . , bk} ∩ {b′1, . . . , b′k} = ∅
implies that the numbers (b1, . . . , bk) form a permutation of (a1, . . . , ak) and
also the numbers (b′1, . . . , b

′
k) form a permutation of (a′1, . . . , a

′
k).

For j = 1, . . . , k − 1 we define

Ŝj := {(a1, . . . , aj ; a′1, . . . , a
′
j) : ai, a

′
i ∈ A ∩ [1, N2] ,

1 ≤ (a1 + . . . + aj)− (a′1 + . . . + a′j) ≤ N ,

{a1, . . . , aj} ∩ {a′1, . . . , a′j} = ∅} .

Since for every (a1, . . . , ak; a′1, . . . , a
′
k) ∈ Sj the difference

(a1 + . . . + ak)− (a′1 + . . . + a′k)

may be written in the form

(ai1 − a′h1) + . . . + (aij − a′hj) + (ai,j+1 − ai,j+1) + . . . + (aik − aik)

with
{ai1, . . . , aij} ∩ {ah1, . . . , ahj} = ∅ ,

we have

(6) |Sj | � |Ŝj |(A(N2))k−j .

For every (a1, . . . , aj ; a′1, . . . , a
′
j) ∈ Ŝj let t be the number of different

subsets of {A ∩ [1, N ]} \ {{a1, . . . , aj} ∪ {a′1, . . . , a′j}} consisting of 2(k − j)
different elements. An easy combinatorial argument shows that

t � (A(N))2(k−j) .

Thus there are t � (A(N))2(k−j) ways of transforming an element of Ŝj

into a tuple of S′k where

S′k := {(a1, . . . , ak; a′1, . . . , a
′
k) : ai, a

′
i ∈ A ∩ [1, N2] ,

1 ≤ (a1 + . . . + ak)− (a′1 + . . . + a′k) ≤ kN,

{a1, . . . , ak} ∩ {a′1, . . . , a′k} = ∅} .

Obviously, since A is a B2k-sequence,

|S′k| � N .
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In the course of this procedure for every (a1, . . . , ak; a′1, . . . , a
′
k) ∈ Sj every

(a1, . . . , ak; a′1, . . . , a
′
k) ∈ S′k can appear at most

(
k
j

)(
k
j

)
times. Therefore

|Ŝj |(A(N))2(k−j) � N .

Thus (6) and the assumption (A(N))2 � A(N2) imply

|Ŝj |(A(N2))k−j � N, j = 1, . . . , k − 1 ,

and therefore
|Sj | � N, j = 1, . . . , k .

This implies (5) and thus the proof is complete.

Corollary. Every B2k-sequence A satisfies

(7) lim inf
n→∞

A(n)
n1/(2k)

= 0.

P r o o f. It is easy to see that every B2k-sequence A satisfies A(n) �
n1/(2k). Therefore assuming that there exists a B2k-sequence A satisfying

(8) lim inf
n→∞

A(n)
n1/(2k)

> 0

A also satisfies A(n2) � (A(n))2. But then, as a consequence of the above
theorem, (1) holds, which contradicts (8).

Remark. In the special case r = 4 the more precise estimate for Ŝ1,

|Ŝ1|
N∑

l=1

A2
l � N

with
Al = |A ∩ [(l − 1)N, lN ]|

shows that here the assumption A(N2) � (A(N))2 is not necessary. This
result was already achieved by Nash.

The above theorem also holds for B2k-sequences satisfying only the
weaker condition A(n2) ≤ Λ(A(n))2 for infinitely many n where Λ is any
positive constant.
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