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1. Introduction. A classical Kronecker sequence is a sequence of in-
teger multiples of a point in Rs which are considered modulo 1. Thus, if
(α1, . . . , αs) ∈ Rs, s ≥ 1, then the corresponding Kronecker sequence is
defined by

xn = ({nα1}, . . . , {nαs}) , n = 0, 1, . . . ,

where {u} is the fractional part of u ∈ R. It is well known that the sequence
x0,x1, . . . is uniformly distributed in Is = [0, 1]s if and only if 1, α1, . . . , αs

are linearly independent over Q, and that the finer quantitative description
of the distribution behavior of this sequence depends on the diophantine
approximation character of the point (α1, . . . , αs); compare with [6].

In this paper we study sequences of points in Is that are obtained by a
construction reminiscent of that of classical Kronecker sequences, but which
operates in a function field setting. This construction was introduced in
Niederreiter [17, Chapter 4], and the resulting sequences have attractive
distribution properties. The detailed investigation of these Kronecker-type
sequences that we carry out in the present work leads to interesting connec-
tions with nonarchimedean diophantine approximations. The construction
belongs to the framework of the theory of (t,m, s)-nets and (t, s)-sequences,
which are point sets and sequences, respectively, with special uniformity
properties.

We follow [17] in the notation and terminology. For a point set P consist-
ing of N arbitrary points y0,y1, . . . ,yN−1 in Is and for an arbitrary subset
B of Is, let A(B;P ) be the number of n with 0 ≤ n ≤ N − 1 for which
yn ∈ B. Let an integer b ≥ 2 be fixed, and let λs denote the s-dimensional
Lebesgue measure. A subinterval E of Is = [0, 1)s of the form

E =
s∏

i=1

[aib
−di , (ai + 1)b−di)
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with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s is called an elementary
interval in base b.

Definition 1. Let 0 ≤ t ≤ m be integers. A (t,m, s)-net in base b is a
point set P of bm points in Is such that A(E;P ) = bt for every elementary
interval E in base b with λs(E) = bt−m.

Definition 2. Let t ≥ 0 be an integer. A sequence y0,y1, . . . of points
in Is is a (t, s)-sequence in base b if for all integers k ≥ 0 and m > t the
point set consisting of the yn with kbm ≤ n < (k+ 1)bm is a (t,m, s)-net in
base b.

Constructions of (t,m, s)-nets and (t, s)-sequences have been given by
Faure [4], Niederreiter [12], [13], [14], [16], and Sobol’ [21]. An exposi-
tory account of these constructions can be found in [17, Chapter 4]. The
Kronecker-type sequences that we investigate can be viewed as the sequence
analogs of the point sets introduced and analyzed in Niederreiter [16] (see
also Larcher [10] for further results on these point sets). These point sets
are obtained from rational functions over finite fields and, as the recent cal-
culations of Hansen, Mullen, and Niederreiter [5] have shown, possess excel-
lent distribution properties if the parameters in the construction are chosen
suitably; in particular, this family of point sets includes (t,m, s)-nets with
relatively small values of t.

For an arbitrary prime power q, let Fq be the finite field of order q, let
Fq(z) be the rational function field over Fq, and let Cq be the completion of
Fq(z) with respect to the unique infinite prime of Fq(z). Every element L
of Cq has a unique expansion into a formal Laurent series

(1) L =
∞∑

k=w

ukz
−k

with an integer w and all uk ∈ Fq. The degree valuation ν on Cq is defined
by ν(L) = −∞ if L = 0 and ν(L) = −w if L 6= 0 and (1) is written in such
a way that uw 6= 0. If L is as in (1), then its fractional part is defined by

Fr(L) =
∞∑

k=max(1,w)

ukz
−k .

For a given dimension s ≥ 1 the construction of Kronecker-type se-
quences in [17] can now be described as follows.

Let Zq = {0, 1, . . . , q − 1} be the set of digits in base q. For r = 0, 1, . . .
we choose bijections ψr : Zq → Fq with ψr(0) = 0, and for i = 1, 2, . . . , s
and j = 1, 2, . . . we choose bijections ηij : Fq → Zq. Furthermore, we choose
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s elements L1, . . . , Ls of Cq, say

(2) Li =
∞∑

k=wi

u
(i)
k z−k for 1 ≤ i ≤ s ,

where we can assume that wi ≤ 1 for 1 ≤ i ≤ s. For n = 0, 1, . . . let

n =
m(n)∑
r=0

ar(n)qr with all ar(n) ∈ Zq

be the digit expansion of n in base q. For n ≥ 0, j ≥ 1, and 1 ≤ i ≤ s we
put

(3) y
(i)
nj = ηij

( m(n)∑
r=0

u
(i)
r+jψr(ar(n))

)
∈ Zq ,

and for n ≥ 0 and 1 ≤ i ≤ s we put

(4) x(i)
n =

∞∑
j=1

y
(i)
nj q

−j .

We now define the sequence

(5) xn = (x(1)
n , . . . , x(s)

n ) ∈ Is for n = 0, 1, . . .

The results that we establish for the sequence (5) depend only on the choice
of L1, . . . , Ls in the above construction, and so we denote this sequence
by S(L1, . . . , Ls); thus, in this notation we suppress the dependence of the
sequence on the chosen bijections ψr and ηij .

An equivalent and somewhat more convenient description of the sequence
(5) can be given as follows. With every n = 0, 1, . . . we associate the poly-
nomial

(6) n(z) =
m(n)∑
r=0

ψr(ar(n))zr ∈ Fq[z] ,

and if L ∈ Cq is as in (1), then we define

(7) η(i)(L) =
∞∑

k=max(1,w)

ηik(uk)q−k for 1 ≤ i ≤ s .

Using (2), (3), and (4) and a straightforward calculation, we see that

x(i)
n = η(i)(n(z)Li(z)) for n ≥ 0 and 1 ≤ i ≤ s .

Therefore the sequence S(L1, . . . , Ls) is also described by

(8) xn = (η(1)(n(z)L1(z)), . . . , η(s)(n(z)Ls(z))) for n = 0, 1, . . .
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In Section 2 we prove a criterion for the uniform distribution in Is of
the sequence S(L1, . . . , Ls) which is quite analogous to the criterion for a
classical Kronecker sequence. In Section 3 we establish connections between
the diophantine approximation character of the s-tuple (L1, . . . , Ls) and
bounds for the star discrepancy and the isotropic discrepancy of the sequence
S(L1, . . . , Ls). In low-dimensional cases there are relations with the theory
of continued fractions for elements of Cq; these connections are explored in
Section 4.

2. Criterion for uniform distribution. Recall that a sequence
y0,y1, . . . of points in Is is called uniformly distributed in Is if

(9) lim
N→∞

A(J ;PN )
N

= λs(J)

holds for every subinterval J of Is, where PN is the point set consisting of y0,
y1, . . . ,yN−1.

We now investigate the sequence S(L1, . . . , Ls) with regard to the prop-
erty of uniform distribution in Is. An easy case arises if one of the Li is a
rational function over Fq. Then it follows immediately from the description
(8) of S(L1, . . . , Ls) that in the corresponding coordinate of the points xn

we can have only finitely many possible values, and so S(L1, . . . , Ls) cannot
be uniformly distributed in Is.

Thus, we can assume that L1, . . . , Ls are irrational. We also impose
the condition that for each 1 ≤ i ≤ s there exists a nonzero ci ∈ Fq such
that ηij(ci) = q − 1 for all sufficiently large j. These conditions are stand-
ing hypotheses throughout the rest of the paper. According to [17, Lem-
ma 4.47], these conditions imply that for each n ≥ 0 and 1 ≤ i ≤ s we have
y
(i)
nj < q−1 for infinitely many j. In particular, all points xn of S(L1, . . . , Ls)

lie in Is, and so it suffices to check (9) for all subintervals J of Is.

Theorem 1. The sequence S(L1, . . . , Ls) is uniformly distributed in Is

if and only if 1, L1, . . . , Ls are linearly independent over Fq(z).

P r o o f. We can write the Li in the form

Li =
∞∑

k=w

u
(i)
k z−k for 1 ≤ i ≤ s ,

with w ≤ 1. Now 1, L1, . . . , Ls are linearly dependent over Fq(z) if and only
if there exist polynomials g1, . . . , gs ∈ Fq[z], not all 0, such that

∑s
i=1 giLi ∈

Fq[z]. If we write

gi =
m∑

k=0

g
(i)
k zk for 1 ≤ i ≤ s
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and some m ≥ 0, then the latter condition is equivalent to
s∑

i=1

m∑
k=0

g
(i)
k u

(i)
r+k = 0 for r = 1, 2, . . .

With
u(i)

k = (u(i)
k , u

(i)
k+1, . . .) ∈ F

∞
q for 1 ≤ i ≤ s and k ≥ 1

it follows that 1, L1, . . . , Ls are linearly dependent over Fq(z) if and only
if for some m ≥ 1 the vectors u(i)

k , 1 ≤ i ≤ s, 1 ≤ k ≤ m, are linearly
dependent over Fq.

Now let 1, L1, . . . , Ls be linearly dependent over Fq(z). Then, without
loss of generality, let u(i)

k , 1 ≤ k ≤ mi, 1 ≤ i ≤ s, be linearly independent
over Fq and u(i)

k , 1 ≤ k ≤ m1 + 1 for i = 1 and 1 ≤ k ≤ mi for 2 ≤ i ≤ s, be
linearly dependent over Fq. Then for all h ≥ 0 and all a0, . . . , ah ∈ Zq the
value

u(1)
m1+1(ψ0(a0), . . . , ψh(ah), 0, 0, . . .)T

is uniquely determined by the values

u(i)
k (ψ0(a0), . . . , ψh(ah), 0, 0, . . .)T for 1 ≤ k ≤ mi, 1 ≤ i ≤ s .

Therefore, for example, in q − 1 of the q intervals

[dq−m1−1 , (d+ 1)q−m1−1)×
s∏

i=2

[0, q−mi) , d = 0, 1, . . . , q − 1 ,

there never is a point of the sequence S(L1, . . . , Ls), and so S(L1, . . . , Ls)
is not uniformly distributed in Is.

Let now 1, L1, . . . , Ls be linearly independent over Fq(z). Take any ε > 0,
and choose m ≥ 1 such that q−m < ε. The vectors u(i)

k , 1 ≤ i ≤ s,
1 ≤ k ≤ m, are linearly independent over Fq, and so for some integer h ≥ 1
the vectors

(10) u(i)
k (h) = (u(i)

k , u
(i)
k+1, . . . , u

(i)
k+h−1) ∈ F

h
q , 1 ≤ i ≤ s, 1 ≤ k ≤ m,

are linearly independent over Fq. We consider the points xn with Bqh ≤
n < (B + 1)qh, where B ≥ 0 is an integer. Then

n = btq
t + . . .+ bhq

h + ah−1q
h−1 + . . .+ a0

with certain fixed bj ∈ Zq and with a0, . . . , ah−1 ranging freely over Zq. For
all c(i)k ∈ Fq, 1 ≤ i ≤ s, 1 ≤ k ≤ m, the system

u(i)
k · (0, . . . , 0, ψh(bh), . . . , ψt(bt), 0, 0, . . .)T

+ u(i)
k (h) · (ψ0(a0), . . . , ψh−1(ah−1))T = c

(i)
k , 1 ≤ i ≤ s, 1 ≤ k ≤ m,

has exactly qh−ms solutions (a0, . . . , ah−1) ∈ Zh
q .
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We now consider a subinterval J ′ of Is of the form

J ′ =
s∏

i=1

[Diq
−m , (Di + Ei)q−m)

with integers Di, Ei satisfying 0 ≤ Di < Di + Ei ≤ qm for 1 ≤ i ≤ s. Let
Mqh ≤ N < (M +1)qh for some integer M ≥ 1. Then of the points xn, n =
0, 1, . . . , N−1, forming the point set PN there are at leastMqhE1 . . . Esq

−ms

and at most (M + 1)qhE1 . . . Esq
−ms in J ′. Therefore∣∣∣∣A(J ′;PN )

N
− λs(J ′)

∣∣∣∣ ≤ E1 . . . Esq
−msM−1 ≤M−1 < ε

if N is large enough. Since for every subinterval J of Is we can find subin-
tervals J1, J2 of the above type with J1 ⊆ J ⊆ J2 and λs(J2\J1) ≤ 2sε, it
follows that S(L1, . . . , Ls) is uniformly distributed in Is.

3. Discrepancy bounds. For those sequences S(L1, . . . , Ls) that are
uniformly distributed in Is, we may ask for a more precise description of
their distribution behavior by means of discrepancy bounds. Recall that for
a point set P consisting of N points in Is its star discrepancy is defined by

D∗N (P ) = sup
J

∣∣∣∣A(J ;P )
N

− λs(J)
∣∣∣∣ ,

where the supremum is over all subintervals J of Is with one vertex at the
origin, and its isotropic discrepancy is defined by

JN (P ) = sup
C

∣∣∣∣A(C;P )
N

− λs(C)
∣∣∣∣ ,

where the supremum is over all convex subsets C of Is. For a sequence S of
elements of Is, we write D∗N (S) for the star discrepancy and JN (S) for the
isotropic discrepancy of the first N terms of S.

For classical Kronecker sequences the star discrepancy has been very well
studied (see e.g. [6, Chapter 2], [11]); recently their isotropic discrepancy was
also investigated (see Larcher [8], [9]).

For these sequences it is known that if (α1, . . . , αs) ∈ Rs is badly ap-
proximable in the sense that there exists a constant c > 0 such that for all
q1, . . . , qs ∈ Z (not all 0) we have∥∥∥ s∑

i=1

qiαi

∥∥∥ ≥ c(q1 . . . qs)
−1 ,

where ‖u‖ denotes the distance from u ∈ R to the nearest integer and
q = max(1, |q|), then the star discrepancy of the corresponding Kronecker
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sequence S satisfies

D∗N (S) = O(N−1(logN)s+1) for N ≥ 2 ;

see [6, p. 132].
We now present an analog of this result (with an even better estimate for

the star discrepancy) for the sequences S(L1, . . . , Ls). We use the convention
that for the zero polynomial we put deg(0) = −1.

Theorem 2. If there is a constant c ∈ Z such that for all polynomials
Q1, . . . , Qs ∈ Fq[z] (not all 0) we have

(11) ν
(

Fr
( s∑

i=1

QiLi

))
≥ −c−

s∑
i=1

deg(Qi) ,

then the sequence S(L1, . . . , Ls) is a (t, s)-sequence in base q with t = c− s.
In particular , we have

D∗N (S(L1, . . . , Ls)) = O(N−1(logN)s) for N ≥ 2 ,

with an implied constant depending only on c, q, and s.

P r o o f. For an integer h ≥ 1 define the vectors u(i)
k (h) ∈ Fh

q for 1 ≤ i ≤ s
and k ≥ 1 as in (10). Let %(h) be the largest integer m such that for any
integers m1, . . . ,ms ≥ 0 with

∑s
i=1mi = m the system of vectors u(i)

k (h),
1 ≤ k ≤ mi, 1 ≤ i ≤ s, is linearly independent over Fq; here an empty
system of vectors is viewed as linearly independent. For an integer B ≥ 0
we consider the points xn with Bqh ≤ n < (B+1)qh. By arguments similar
to those in the proof of Theorem 1, it is easily seen that these points form
an (h−%(h), h, s)-net in base q. We claim that h−%(h) ≤ c−s, where c is as
in (11). By the definition of %(h), there exist integers m1, . . . ,ms ≥ 0 with∑s

i=1mi = %(h) + 1 such that the vectors u(i)
k (h), 1 ≤ k ≤ mi, 1 ≤ i ≤ s,

are linearly dependent over Fq. Then for some c(i)k ∈ Fq we have
s∑

i=1

mi∑
k=1

c
(i)
k u(i)

k (h) = 0 ∈ Fh
q ,

where c(i)mi 6= 0 whenever mi ≥ 1. Hence with

Qi(z) =
mi∑
k=1

c
(i)
k zk−1 ∈ Fq[z] for 1 ≤ i ≤ s

we obtain

ν
(

Fr
( s∑

i=1

QiLi

))
≤ −h− 1 .
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On the other hand,

ν
(

Fr
( s∑

i=1

QiLi

))
≥ −c−

s∑
i=1

deg(Qi)

by (11). Now
s∑

i=1

deg(Qi) = %(h) + 1− s ,

so that indeed h − %(h) ≤ c − s. This shows that S(L1, . . . , Ls) is a (t, s)-
sequence in base q with t = c− s. The discrepancy bound follows then from
Theorems 4.2 and 4.3 in [12].

An s-tuple (L1, . . . , Ls) ∈ Cs
q satisfying (11) may be called “badly ap-

proximable”. For s = 1, an irrational L1 ∈ Cq is badly approximable if
and only if the degrees of the partial quotients in the continued fraction
expansion of L1 are bounded; compare with Section 4 for these continued
fractions. For s ≥ 2, Armitage [1], [2] claimed to have constructed badly
approximable s-tuples of elements of Cq, but this claim was disproved by
Taussat [22]. The question whether there exist badly approximable s-tuples
of elements of Cq for s ≥ 2 is still open, as is the corresponding question for
s-tuples of reals.

For the isotropic discrepancy we get a result quite analogous to that for
classical Kronecker sequences (compare with [8]).

Theorem 3. Let s ≥ 2 and suppose that there is a constant c > 0 such
that for all polynomials Q1, . . . , Qs ∈ Fq[z] (not all 0) we have

ν
(

Fr
( s∑

i=1

QiLi

))
≥ −c− s max

1≤i≤s
deg(Qi) .

Then the isotropic discrepancy of the sequence S(L1, . . . , Ls) satisfies

JN (S(L1, . . . , Ls)) = O(N−1/s)

with an implied constant depending only on c, q, and s.

P r o o f. As in the proof of Theorem 2, we again consider, for arbitrary
integers B ≥ 0 and h ≥ 1, the point set P (B, h) consisting of the xn with
Bqh ≤ n < (B + 1)qh. If the integers m1, . . . ,ms ≥ 0 are such that the
vectors u(i)

k (h), 1 ≤ k ≤ mi, 1 ≤ i ≤ s, are linearly dependent over Fq

and if the polynomials Q1, . . . , Qs ∈ Fq[z] are obtained as in the proof of
Theorem 2 from a linear dependence relation, then we have

−c− s max
1≤i≤s

deg(Qi) ≤ ν
(

Fr
( s∑

i=1

QiLi

))
≤ −h− 1 .
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Consequently,

max
1≤i≤s

mi ≥
h+ 1− c

s
+ 1 .

Let H = d(h+1− c)/se and let h be so large that H ≥ 0. Then the u(i)
k (h),

1 ≤ k ≤ H, 1 ≤ i ≤ s, are linearly independent over Fq, and so in every
elementary interval E in base q of the form

E =
s∏

i=1

[aiq
−H , (ai + 1)q−H)

there are exactly qh−sH points of the point set P (B, h).
Now we can proceed by standard methods; see equation (1.15) and the

last paragraph of the proof of Theorem 1.6 in [6, Chapter 2], as well as [7]
for a more general method. Since the intervals E have diameter s1/2q−H ,
this yields that the isotropic discrepancy J(B, h) of P (B, h) satisfies

qhJ(B, h) ≤ C0(s)qhq−H ≤ C0(c, q, s)qh(1−1/s) ,

where Cj(. . .) denotes a positive constant depending only on the data listed
between the parentheses. By adjusting the constant, we see that the last
bound for qhJ(B, h) holds also for the finitely many h that have been ex-
cluded before. Now let

N =
m∑

r=0

brq
r ≥ 1 with all br ∈ Zq .

Then we obtain

NJN (S(L1, . . . , Ls)) ≤ C1(c, q, s)
m∑

r=0

brq
r(1−1/s) ≤ C2(c, q, s)N1−1/s ,

and the desired result follows.

4. Connections with continued fractions. For classical Kronecker
sequences it is well known that the star discrepancy of one-dimensional
sequences and of associated two-dimensional point sets can be bounded quite
precisely in terms of continued fraction parameters; see [6, Chapter 2], [11]
and the more recent work of Schoißengeier [20]. We show that analogous
results can be established for our Kronecker-type sequences.

Note that every L ∈ Cq has a unique continued fraction expansion

L = A0 +
1

A1 +
1

A2+ .. .

=: [A0;A1, A2, . . .] ,

where Ah ∈ Fq[z] for all h ≥ 0 and deg(Ah) ≥ 1 for all h ≥ 1. The
expansion is finite for rational L and infinite for irrational L. For h ≥ 0 the
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h-th convergent Ph/Qh of L is defined by

Ph/Qh = [A0;A1, . . . , Ah], where Ph, Qh ∈ Fq[z] and gcd(Ph, Qh) = 1 .

For rational L there are only finitely many convergents.
We first consider two-dimensional point sets that are essentially equiva-

lent to the two-dimensional version of the point sets constructed by Nieder-
reiter [16] (compare also with [18]). For an integer v ≥ 1 we define the
truncated versions η(i)

v of the maps η(i) introduced in (7); if L ∈ Cq is as in
(1), then we put

(12) η(i)
v (L) =

v∑
k=max(1,w)

ηik(uk)q−k for 1 ≤ i ≤ s .

Now choose f , g1, g2 ∈ Fq[z] with 1 ≤ deg(f) = m ≤ v and gcd(f, gi) = 1
for i = 1, 2. Then the point set P (g1, g2; f) consists of the qm points

(13) xn =
(
η(1)

v

(
n(z)g1(z)
f(z)

)
, η(2)

v

(
n(z)g2(z)
f(z)

))
∈ I2

for n = 0, 1, . . . , qm − 1 .

If n runs through the set {0, 1, . . . , qm− 1} of integers, then n(z) defined by
(6) runs through the set of all polynomials over Fq of degree less than m.
Furthermore, η(i)

v (L) depends only on the fractional part of L, and so the
point set P (g1, g2; f) is identical with P (1, g∗1g2; f), where g∗1 ∈ Fq[z] is such
that g1g∗1 ≡ 1 mod f . Therefore, it suffices to consider point sets P (1, g; f)
with g ∈ Fq[z] and gcd(f, g) = 1.

For the proof of Theorem 4 below, we need the following auxiliary result.

Lemma 1. Let f , g ∈ Fq[z] with deg(f) = m ≥ 1 and gcd(f, g) = 1, let
Ph/Qh, 0 ≤ h ≤ H, be all convergents of g/f , and put dh = deg(Qh) for
0 ≤ h ≤ H. Let g/f have the Laurent series expansion

g(z)
f(z)

=
∞∑

k=w

vkz
−k ,

where we can assume w ≤ 1. For integers l, k ≥ 1 put

vl(k) = (vl, vl+1, . . . , vl+k−1) ∈ F k
q ,

and let t = t(k) be maximal such that v1(k), . . . ,vt(k) are linearly inde-
pendent over Fq (where an empty system of vectors is viewed as linearly
independent); we set t(0) = 0. Then for 0 ≤ h ≤ H − 1 we have t(k) = dh

for dh ≤ k ≤ dh+1 − 1, and for k ≥ dH = m we have t(k) = dH = m.

P r o o f. For 0 ≤ h ≤ H − 1 we have

(14) ν

(
Fr

(
Qh

g

f

))
= −dh+1 ,
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and for all Q ∈ Fq[z] with dh ≤ deg(Q) < dh+1 we have

(15) ν

(
Fr

(
Q
g

f

))
≥ ν

(
Fr

(
Qh

g

f

))
;

see e.g. [17, Appendix B] for these two results. Then for 0 ≤ h ≤ H − 1 the
vectors v1(dh+1 − 1), . . . ,vdh+1(dh+1 − 1) are linearly dependent over Fq.
For if

Qh(z) =
dh∑

r=0

qrz
r ,

then it follows from (14) that
dh∑

r=0

qrvr+1(dh+1 − 1) = 0 .

Similarly, for k ≥ dH the vectors v1(k), . . . ,vdH+1(k) are linearly depen-

dent over Fq since Fr
(
QH

g

f

)
= 0.

Furthermore, for 0 ≤ h ≤ H − 1 the vectors v1(dh+1), . . . ,vdh+1(dh+1)
are linearly independent over Fq. For if we had

dh+1−1∑
r=0

prvr+1(dh+1) = 0

with P (z) =
∑dh+1−1

r=0 prz
r not the zero polynomial, then we get

ν

(
Fr

(
P
g

f

))
< −dh+1 .

Since 0 ≤ deg(P ) < dh+1, there exists a unique j with 0 ≤ j ≤ h such that
dj ≤ deg(P ) < dj+1. Then

ν

(
Fr

(
P
g

f

))
< −dj+1 = ν

(
Fr

(
Qj

g

f

))
,

which is a contradiction to (15). The result of the lemma follows now im-
mediately.

Theorem 4. If f , g ∈ Fq[z], 1 ≤ deg(f) = m ≤ v, gcd(f, g) = 1, and
g

f
= [A0;A1, . . . , AH ]

is the continued fraction expansion of g/f , then the star discrepancy of the
two-dimensional point set P (1, g; f) satisfies

qmD∗qm(P (1, g; f)) ≤ 1 +
1
4

H∑
h=1

qdeg(Ah)(1 + q− deg(Ah))2 .
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P r o o f. The Laurent series expansion of 1/f has the form

1
f(z)

=
∞∑

k=m

ukz
−k with um 6= 0 .

Let 0 < α, β ≤ 1 with digit expansions

α =
m∑

k=1

αkq
−k , β =

∞∑
k=1

βkq
−k ,

where all αk, βk ∈ Zq, except in the case α = 1 where we allow αm = q; also
βk < q − 1 for infinitely many k, except in the case β = 1 where βk = q − 1
for all k.

We abbreviate (13) by xn = (x(1)
n , x

(2)
n ), and we consider the set of all

n ∈ {0, 1, . . . , qm − 1} with 0 ≤ x
(1)
n < α. This set can also be described as

the set of all n =
∑m−1

r=0 arq
r, ar ∈ Zq, for which for some integer j with

1 ≤ j ≤ m the following condition Bj holds:

η1r(umψm−r(am−r) + . . .+ um+r−1ψm−1(am−1)) = αr

for r = 1, 2, . . . , j − 1

and

η1j(umψm−j(am−j) + . . .+ um+j−1ψm−1(am−1)) = a

for some integer a with 0 ≤ a < αj .

For 0 ≤ h ≤ H − 1 let Mh be the set of all n ∈ {0, 1, . . . , qm − 1} for which
one of the conditions Bj with

(16) m− dh+1 + 1 ≤ j ≤ m− dh where the dh are as in Lemma 1 ,

is satisfied. For every such j and fixed a ∈ {0, 1, . . . , αj−1}, by the condition
Bj the digits am−j , . . . , am−1 are uniquely determined since um 6= 0, whereas
the digits a0, . . . , am−j−1 are free.

For every j satisfying (16) we have t(m− j) = dh according to Lemma 1.
By the definition of t(m− j) in Lemma 1, for any such j, any a ∈ {0, 1, . . .
. . . , αj − 1}, and any b ∈ {0, 1, . . . , qdh − 1}, there are exactly qm−j−dh

integers n, 0 ≤ n < qm, which satisfy the condition Bj with last digit a and
such that

x(2)
n ∈ [bq−dh , (b+ 1)q−dh) .

The number of n ∈Mh with x(2)
n <

∑dh

k=1 βkq
−k is thus given by

m−dh∑
j=m−dh+1+1

( dh∑
k=1

βkq
dh−k

)
qm−j−dhαj = qm

( dh∑
k=1

βkq
−k

) m−dh∑
j=m−dh+1+1

αjq
−j .
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For 0 ≤ h ≤ H−1 and a subinterval K of [0, 1) we let Nh(K) be the number
of n ∈Mh with x(2)

n ∈ K. Then with

α(h) =
m−dh∑

j=m−dh+1+1

αjq
−j for 0 ≤ h ≤ H − 1

the result above can be written in the form

(17) Nh

([
0,

dh∑
k=1

βkq
−k

))
= qmα(h)

dh∑
k=1

βkq
−k .

We abbreviate the point set P (1, g; f) by P . Then with J = [0, α) × [0, β)
and Kh = [

∑dh

k=1 βkq
−k, β) for 0 ≤ h ≤ H − 1 we have

A(J ;P ) =
H−1∑
h=0

Nh([0, β)) =
H−1∑
h=0

Nh

([
0,

dh∑
k=1

βkq
−k

))
+

H−1∑
h=0

Nh(Kh)

= qm
H−1∑
h=0

α(h)
dh∑

k=1

βkq
−k +

H−1∑
h=0

Nh(Kh) .

Consequently,

A(J ;P )− qmαβ = A(J ;P )− qmβ
H−1∑
h=0

α(h)

= qm
H−1∑
h=0

α(h)
( dh∑

k=1

βkq
−k − β

)
+

H−1∑
h=0

Nh(Kh) ,

and so

(18) A(J ;P )− qmαβ =
H−1∑
h=0

(Nh(Kh)− qmα(h)λ1(Kh)) .

For 0 ≤ h ≤ H − 1 put

Gh =
[ dh∑

k=1

βkq
−k,

dh∑
k=1

βkq
−k + q−dh

)
.

Then it follows from (17) that

Nh(Gh) = qm−dhα(h) .

For any fixed choice of adh+1 , . . . , am−1 ∈ Zq and for every a ∈ {0, 1, . . .
. . . , qdh+1 − 1}, we deduce from Lemma 1 that there is exactly one n ∈
{0, 1, . . . , qm − 1} having the given digits adh+1 , . . . , am−1 and such that
x

(2)
n ∈ [aq−dh+1 , (a+ 1)q−dh+1).
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For given 0 ≤ h ≤ H − 1 we now want to derive an upper bound for

Rh := Nh(Kh)− qmα(h)λ1(Kh) .

We note that Kh ⊆ Gh. Clearly, Nh(Kh) attains the largest value if the
points x(2)

n counted by Nh(Gh) are as close as possible to the left-hand
endpoint of Gh, that is, for every b = 0, 1, . . . , qm−dhα(h)−1 there is exactly
one point x(2)

n counted by Nh(Gh) in the interval[ dh∑
k=1

βkq
−k + bq−dh+1 ,

dh∑
k=1

βkq
−k + (b+ 1)q−dh+1

)
.

Also, if Nh(Kh) = c, then in order that all these c counted points x(2)
n can

be in Kh, we must have

β >

dh∑
k=1

βkq
−k + (c− 1)q−dh+1 .

Thus we get

Rh < c(1− γh) + γh with γh = qm−dh+1α(h) .

Since γh ≤ 1, this upper bound is maximal if c is maximal, that is, c =
qm−dhα(h). Therefore

Rh < qdh+1−dh(γh − γ2
h) + γh ≤ 1

4q
dh+1−dh(1 + qdh−dh+1)2 .

Quite analogously it is shown that

Rh > − 1
4q

dh+1−dh(1 + qdh−dh+1)2 .

Together with (18) this yields

|A(J ;P )− qmαβ| < 1
4

H∑
h=1

qdeg(Ah)(1 + q− deg(Ah))2 .

For arbitrary 0 < α, β ≤ 1 and J = [0, α)× [0, β) we obtain

|A(J ;P )− qmαβ| < 1 +
1
4

H∑
h=1

qdeg(Ah)(1 + q− deg(Ah))2

and the result of the theorem is established.

If K ≥ 1 is such that deg(Ah) ≤ K for 1 ≤ h ≤ H, then it follows from
Theorem 4 that with N = qm we have

D∗N (P (1, g; f)) = O(N−1 logN)

with an implied constant depending only on K and q. Note that N−1 logN
is the least order of magnitude of the star discrepancy of any N points in
I2, according to a well-known result of Schmidt [19].
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We now establish a discrepancy bound for a one-dimensional Kronecker-
type sequence S(L1) with an irrational L1 ∈ Cq in terms of continued frac-
tion parameters.

Theorem 5. Let L1 = [A0;A1, A2, . . .] be the continued fraction expan-
sion of an irrational L1 ∈ Cq and put

dH = deg(QH) =
H∑

h=1

deg(Ah) for H ≥ 0 ,

where the QH are the denominators of the convergents of L1. Then for all
integers N with qdH−1 < N ≤ qdH , H ≥ 1, we have

ND∗N (S(L1)) ≤
q + 1
q

+
1
4

H∑
h=1

qdeg(Ah)(1 + q− deg(Ah))2 .

P r o o f. For H ≥ 1 let PH/QH be the Hth convergent of L1. Then

(19) ν

(
L1 −

PH

QH

)
= −dH − dH+1

by [17, Appendix B]. According to (8), the terms xn of S(L1) are given by

xn = η(1)(n(z)L1(z)) for n = 0, 1, . . .

For n = 0, 1, . . . , qdH −1 we have deg(n(z)) ≤ dH−1 by (6), and so it follows
from (19) that for these n we have

(20)
∣∣∣∣xn − η

(1)
dH+1

(
n(z)PH(z)
QH(z)

)∣∣∣∣ ≤ q−dH+1 ≤ q−dH−1

with the notation of (12). Now we consider the two-dimensional point set(
n

qdH
, η

(1)
dH+1

(
n(z)PH(z)
QH(z)

))
, n = 0, 1, . . . , qdH − 1 .

We can use almost exactly the same arguments as in the proof of Theorem 4.
Then for the star discrepancy D∗ of this point set we obtain

qdHD∗ ≤ 1 +
1
4

H∑
h=1

qdeg(Ah)(1 + q− deg(Ah))2 .

Now by standard methods (compare with [6, pp. 105–106]) and by the in-
equality (20) it is easy to see that

ND∗N (S(L1)) ≤
1
q

+ qdHD∗ for 1 ≤ N ≤ qdH ,

and the desired result follows.

If the irrational L1 ∈ Cq has bounded partial quotients, i.e., if there
exists a K ≥ 1 such that deg(Ah) ≤ K for all h ≥ 1, then it follows from
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Theorem 5 that D∗N (S(L1)) = O(N−1 logN) for all N ≥ 2, with an implied
constant depending only on K and q. The lower bound of Schmidt [19] for
the star discrepancy of arbitrary one-dimensional sequences shows that the
order of magnitude N−1 logN is best possible.

For q = 2 the irrationals L1 ∈ C2 with ν(L1) < 0 and deg(Ah) = 1 for
all h ≥ 1 have been characterized in terms of their Laurent series expansion
by Baum and Sweet [3]; namely, L1 ∈ C2 satisfies these properties if and
only if

L1 =
∞∑

k=1

ukz
−k

with u1 = 1 and u2k+1 = u2k + uk for all k ≥ 1.
We now show how to derive from Theorem 5 a metric result on the

behavior of D∗N (S(L1)) for almost all L1. This result is quite analogous to
the corresponding metric theorem for one-dimensional classical Kronecker
sequences (compare with [6, p. 128]). Since the sequence S(L1) depends only
on the fractional part of L1, it suffices to consider L1 ∈ Cq with ν(L1) < 0;
let Mq be the set of all such L1. With the topology induced by ν and with
respect to addition, Mq is a compact abelian group, and so it has a unique
Haar probability measure µq.

Theorem 6. Let G be a positive nondecreasing function on [1,∞) such
that

∑∞
d=1G(d)−1 <∞. Then µq-almost everywhere we have

D∗N (S(L1)) = O(N−1(logN)G(C(L1) log logN)) for N ≥ 3 ,

with an implied constant depending only on G, q, and L1 and with a constant
C(L1) > 0 depending only on L1.

P r o o f. Since there are only countably many rational functions over Fq,
the set of rational L1 ∈ Mq has µq-measure 0 and can be neglected. Let
Pq be the set of all polynomials over Fq of positive degree and consider the
function g on Pq defined by

g(p) = G(deg(p))−1qdeg(p) for all p ∈ Pq .

Then ∑
p∈Pq

g(p)q−2 deg(p) =
∑
p∈Pq

G(deg(p))−1q− deg(p)

=
∞∑

d=1

G(d)−1q−d(q − 1)qd =: C(G, q) <∞ ,

and so it follows from [15, Theorem 3] that

lim
H→∞

1
H

H∑
h=1

G(deg(Ah))−1qdeg(Ah) = C(G, q) µq-a.e.
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Consequently, we have

(21)
H∑

h=1

G(deg(Ah))−1qdeg(Ah) = O(H) µq-a.e.

with an implied constant depending only on G, q, and L1.
Furthermore, from [15, Theorem 6] it follows that µq-a.e. we have

deg(Ah) = O(log(h+ 1)) for all h ≥ 1

with an implied constant depending only on L1. Thus,

(22) max
1≤h≤H

G(deg(Ah)) ≤ G(C1(L1) log(H + 1)) µq-a.e.

By combining (21) and (22), we obtain
H∑

h=1

qdeg(Ah) ≤ ( max
1≤h≤H

G(deg(Ah)))
H∑

h=1

G(deg(Ah))−1qdeg(Ah)(23)

= O(HG(C1(L1) log(H + 1))) µq-a.e.

with an implied constant depending only on G, q, and L1.
For N ≥ 3 we determine H(N) by the condition in Theorem 5, i.e., by

qdH(N)−1 < N ≤ qdH(N) .

This condition is equivalent to

1
H(N)

H(N)−1∑
h=1

deg(Ah) <
logN

H(N) log q
≤ 1
H(N)

H(N)∑
h=1

deg(Ah) ,

hence by applying [15, Corollary 1] we obtain

H(N) = O(logN) µq-a.e.

with an implied constant depending only on L1. In view of Theorem 5 and
(23), this yields the desired result.

Corollary 1. For every ε > 0 we have µq-almost everywhere

D∗N (S(L1)) = O(N−1(logN)(log logN)1+ε) for N ≥ 3 ,

with an implied constant depending only on ε, q, and L1.
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