A note on the diophantine equation $\frac{x^{m}-1}{x-1}=y^{n}$

Maohua Le (Changsha)

1. Introduction. Let $\mathbb{Z}, \mathbb{N}, \mathbb{Q}$ be the sets of integers, positive integers and rational numbers respectively, and let \mathbb{P} be the set of primes and prime powers. The solutions $\left({ }^{1}\right)(x, y, m, n)$ of the equation

$$
\begin{equation*}
\frac{x^{m}-1}{x-1}=y^{n}, \quad x>1, y>1, m>2, n>1 \tag{1}
\end{equation*}
$$

which satisfy $x \in \mathbb{P}$ and $y \in \mathbb{P}$ are connected with many questions in number theory and group theory (see [2], [3], [4] and [7]). In [8], the authors proved that equation (1) has only finitely many solutions (x, y, m, n) for fixed $x \in \mathbb{P}$ or $y \in \mathbb{P}$. In this note we prove the following thorem.

ThEOREM. If (x, y, m, n) is a solution of equation (1) satisfying $x \in \mathbb{P}$ and $y \equiv 1(\bmod x)$, then $x^{m}<C$, where C is an effectively computable absolute constant.
2. Preliminaries. For any real numbers α, β and γ, the hypergeometric function $F(\alpha, \beta, \gamma, z)$ is defined by the series

$$
\begin{equation*}
F(\alpha, \beta, \gamma, z)=1+\sum_{i=1}^{\infty}\left(\prod_{j=0}^{i-1} \frac{(\alpha+j)(\beta+j)}{\gamma+j}\right) \frac{z^{i}}{i!} \tag{2}
\end{equation*}
$$

and satisfies the differential equation

$$
z(z-1) F^{\prime \prime}+((\alpha+\beta+1) z-\gamma) F^{\prime}+\alpha \beta F=0
$$

Let $n, t, t_{1}, t_{2} \in \mathbb{N}$ be such that $n>1, t>1$ and $t_{1}+t_{2}=t$. Further, let $G(z)=F\left(-t_{2}-1 / n,-t_{1},-t, z\right), H(z)=F\left(-t_{1}+1 / n,-t_{2},-t, z\right)$ and

$$
E(z)=\frac{F\left(t_{2}+1, t_{1}+(n-1) / n, t+2, z\right)}{F\left(t_{2}+1, t_{1}+(n-1) / n, t+2,1\right)}
$$

[^0]From (2), we have

$$
\begin{align*}
& \binom{t}{t_{1}} G(z)=\sum_{i=0}^{t_{1}}\binom{t_{2}+1 / n}{i}\binom{t-i}{t_{2}}(-z)^{i}, \tag{3}\\
& \binom{t}{t_{1}} H(z)=\sum_{i=0}^{t_{2}}\binom{t_{1}-1 / n}{i}\binom{t-i}{t_{1}}(-z)^{i} . \tag{4}
\end{align*}
$$

This implies that $G(z)$ and $H(z)$ are polynomials of degree t_{1} and t_{2} respectively. The proofs of the following two lemmas may be found in [9].

Lemma 1. $G(z)-(1-z)^{1 / n} H(z)=z^{t+1} G(1) E(z)$.
Lemma 2. Let $\bar{G}(z)=F\left(-t_{2}+1-1 / n,-t_{1}-1,-t, z\right), \bar{H}(z)=F\left(-t_{1}-\right.$ $\left.1+1 / n,-t_{2}+1,-t, z\right)$ and

$$
\bar{E}(z)=\frac{F\left(t_{2}, t_{1}+1+(n-1) / n, t+2, z\right)}{F\left(t_{2}, t_{1}+1+(n-1) / n, t+2,1\right)} .
$$

Then $\bar{G}(z) H(z)-G(z) \bar{H}(z)=\lambda z^{t+1}$ for some non-zero constant λ.
Lemma 3. Let $a, b, k, l_{0} \in \mathbb{Z}$ with $k>0$, and let

$$
L=\prod_{l=l_{0}}^{l_{0}+k-1}(a l+b)
$$

If p is a prime with $p \nmid a$ and $p^{\alpha} \| k$!, then $p^{\alpha} \mid L$.
Proof. Since $p \nmid a$, the congruence

$$
\begin{equation*}
a x+b \equiv 0\left(\bmod p^{r}\right) \tag{5}
\end{equation*}
$$

is solvable for any $r \in \mathbb{N}$. Let $N(r)$ denote the number of solutions of (5) which satisfy $l_{0} \leq x \leq l_{0}+k-1$. Then

$$
\begin{equation*}
N(r) \geq\left[\frac{k}{p^{r}}\right] \tag{6}
\end{equation*}
$$

If $p^{\beta} \| L$, from (6) we get

$$
\beta=\sum_{r=1}^{\infty} N(r) \geq \sum_{r=1}^{\infty}\left[\frac{k}{p^{r}}\right]=\alpha
$$

Lemma 4. If n is a prime, then

$$
n^{i+[i /(n-1)]}\binom{t_{2}+1 / n}{i} \in \mathbb{Z}, \quad n^{i+[i /(n-1)]}\binom{t_{1}-1 / n}{i} \in \mathbb{Z}
$$

for any $i \in \mathbb{N}$.

Proof. Let p be a prime, and let $p^{\alpha_{i}} \| i$! for any $i \in \mathbb{N}$. By Lemma 3 , if $p \neq n$, then

$$
p^{\alpha_{i}} \mid \prod_{j=0}^{i-1}\left(n\left(t_{2}-j\right)+1\right), \quad i \in \mathbb{N}
$$

If $p=n$, then

$$
\alpha_{i}=\sum_{r=1}^{\infty}\left[\frac{i}{n^{r}}\right]<\sum_{r=1}^{\infty} \frac{i}{n^{r}}=\frac{i}{n-1}, \quad i \in \mathbb{N} .
$$

Therefore,

$$
n^{i+[i /(n-1)]}\binom{t_{2}+1 / n}{i} \in \mathbb{Z}, \quad i \in \mathbb{N} .
$$

Similarly, we can prove

$$
n^{i+[i /(n-1)]}\binom{t_{1}-1 / n}{i} \in \mathbb{Z}
$$

for any $i \in \mathbb{N}$.
Lemma 5. If $|z| \geq 2$ and $[t / 2] \geq t_{1} \geq[t / 2]-1$, then

$$
\left|\binom{t}{t_{1}} G(z)\right|<2^{t-1}\left(\frac{t}{2}+2\right)|z|^{t_{1}}, \quad\left|\binom{t}{t_{1}} H(z)\right|<2^{t-1}|z|^{t_{2}}
$$

Proof. By (3), we get

$$
\left|\binom{t}{t_{1}} G(z)\right|<\sum_{i=0}^{t_{1}}\binom{t_{2}+1}{i}\binom{t-i}{t_{2}}|z|^{i}=\sum_{i=0}^{t_{1}} \frac{t_{2}+1}{t_{2}-i+1}\binom{t-i}{t_{1}}\binom{t_{1}}{i}|z|^{i}
$$

Notice that $\left(t_{2}+1\right) /\left(t_{2}-t_{1}+1\right) \leq t / 2+2$ and $\binom{t-i}{t_{1}} \leq 2^{t-i-1}\left(i=0,1, \ldots, t_{1}\right)$. If $|z| \geq 2$, then we have

$$
\left|\binom{t}{t_{1}} G(z)\right|<2^{t-1}\left(\frac{t}{2}+2\right)\left(1+\frac{|z|}{2}\right)^{t_{1}} \leq 2^{t-1}\left(\frac{t}{2}+2\right)|z|^{t_{1}}
$$

Similarly, from (4) we get

$$
\left|\binom{t}{t_{1}} H(z)\right|<\sum_{i=0}^{t_{2}}\binom{t_{2}}{i}\binom{t-i}{t_{1}}|z|^{i}<2^{t-1}\left(1+\frac{|z|}{2}\right)^{t_{2}} \leq 2^{t-1}|z|^{t_{2}}
$$

Lemma 6. Let $D \in \mathbb{N}$ be square free, and let $k \in \mathbb{Z}$ with $\operatorname{gcd}(k, 2 D)=1$. Let $K=\mathbb{Q}(\sqrt{D})$, and let $h(D)$ denote the class number of K. Further, let $u_{1}+v_{1} \sqrt{D}$ be the fundamental solution of the equation

$$
\begin{equation*}
u^{2}-D v^{2}=1 \tag{7}
\end{equation*}
$$

If $|k|>1$ and (X, Y, Z) is a solution of the equation

$$
\begin{equation*}
X^{2}-D Y^{2}=k^{Z}, \quad \operatorname{gcd}(X, Y)=1, \quad Z>0 \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
Z=Z_{1} t, \quad X+Y \sqrt{D}=\left(X_{1} \pm Y_{1} \sqrt{D}\right)^{t}(u+v \sqrt{D}), \tag{9}
\end{equation*}
$$

where $t \in \mathbb{N},(u, v)$ is a solution of $(7),\left(X_{1}, Y_{1}, Z_{1}\right)$ is a positive solution of (8) which satisfies $Z_{1} \mid 3 h(D)$ and

$$
\begin{equation*}
1<\left|\frac{X_{1}+Y_{1} \sqrt{D}}{X_{1}-Y_{1} \sqrt{D}}\right|<\left(u_{1}+v_{1} \sqrt{D}\right)^{2} . \tag{10}
\end{equation*}
$$

Proof. Since $\operatorname{gcd}(X, Y)=\operatorname{gcd}(k, 2 D)=1, X+Y \sqrt{D}$ and $X-Y \sqrt{D}$ are relatively prime in $\mathbb{Z}[\omega]$, where

$$
\omega= \begin{cases}(1+\sqrt{D}) / 2 & \text { if } D \equiv 1(\bmod 4) \\ \sqrt{D} & \text { otherwise }\end{cases}
$$

From $[X+Y \sqrt{D}][X-Y \sqrt{D}]=[k]^{Z}$ we get $Z=Z_{1} t, Z_{1}, t \in \mathbb{N}, Z_{1} \mid h(D)$ and $[X+Y \sqrt{D}]=[\alpha]^{t}$, where $\alpha \in \mathbb{Z}[\omega]$. This implies that

$$
\begin{equation*}
X+Y \sqrt{D}=\lambda\left(\frac{X_{0}+Y_{0} \sqrt{D}}{2}\right)^{t} \tag{11}
\end{equation*}
$$

where λ is a unit in $\mathbb{Z}[\omega]$ with norm one and $X_{0}, Y_{0} \in \mathbb{Z}$ satisfy

$$
\begin{gather*}
X_{0}^{2}-D Y_{0}^{2}=4 k^{Z_{1}}, \quad X_{0} \equiv Y_{0}(\bmod 2), \\
\operatorname{gcd}\left(X_{0}, Y_{0}\right)= \begin{cases}1 & \text { if } D \equiv 1(\bmod 4), 2 \nmid X_{0}, \\
2 & \text { otherwise }\end{cases} \tag{12}
\end{gather*}
$$

If $D \not \equiv 1(\bmod 4)$, then from (11) and (12) we get

$$
\begin{equation*}
X+Y \sqrt{D}=\left(X_{0}^{\prime}+Y_{0}^{\prime} \sqrt{D}\right)^{t}\left(u^{\prime}+v^{\prime} \sqrt{D}\right), \tag{13}
\end{equation*}
$$

where (u^{\prime}, v^{\prime}) is a solution of (7) and $X_{0}^{\prime}, Y_{0}^{\prime} \in \mathbb{Z}$ satisfy

$$
\begin{equation*}
X_{0}^{\prime 2}-D Y_{0}^{\prime 2}=k^{Z_{1}}, \quad \operatorname{gcd}\left(X_{0}^{\prime}, Y_{0}^{\prime}\right)=1 \tag{14}
\end{equation*}
$$

Since $|k|>1$, there exists a unique solution $\left(u^{\prime \prime}, v^{\prime \prime}\right)$ of (7) such that $X_{1} \pm$ $Y_{1} \sqrt{D}=\left(X_{0}^{\prime}+Y_{0}^{\prime} \sqrt{D}\right)\left(u^{\prime \prime}+v^{\prime \prime} \sqrt{D}\right)$ satisfies $X_{1}, Y_{1} \in \mathbb{N}$ and (10). We also get (9) from (13). By the same argument, we can prove the lemma in the case that $D \equiv 1(\bmod 4)$ and $2 \mid X_{0}$.

Since $2 \nmid k$, we see from (12) that if $D \equiv 1(\bmod 4)$ and $2 \nmid X_{0}$, then $D \not \equiv 1(\bmod 8)$.

If $D \equiv 1(\bmod 4), 2 \nmid X_{0}$ and $3 \mid t$, then from (12) we get

$$
\left(\frac{X_{0}+Y_{0} \sqrt{D}}{2}\right)^{3}=X_{1}^{\prime}+Y_{1}^{\prime} \sqrt{D}
$$

where $X_{1}^{\prime}, Y_{1}^{\prime} \in \mathbb{Z}$ satisfy

$$
X_{1}^{\prime 2}-D Y_{1}^{\prime 2}=k^{3 Z_{1}}, \quad \operatorname{gcd}\left(X_{1}^{\prime}, Y_{1}^{\prime}\right)=1, \quad 3 Z_{1} \mid 3 h(D) .
$$

Using the same method, we can prove the lemma in this case.

If $D \equiv 1(\bmod 4), 2 \nmid X_{0}$ and $3 \nmid t$, then

$$
\begin{equation*}
\left(\frac{X_{0}+Y_{0} \sqrt{D}}{2}\right)^{t}=\frac{X^{\prime}+Y^{\prime} \sqrt{D}}{2} \tag{15}
\end{equation*}
$$

where $X^{\prime}, Y^{\prime} \in \mathbb{Z}$ with $2 \nmid X^{\prime} Y^{\prime}$. We see from (11) and (15) that $\lambda=$ $(U+V \sqrt{D}) / 2$ where (U, V) is a solution of the equation

$$
\begin{equation*}
U^{2}-D V^{2}=4, \quad \operatorname{gcd}(U, V)=1 \tag{16}
\end{equation*}
$$

For a suitable $\delta \in\{1,-1\}$, we have

$$
\left(\frac{X_{0}+Y_{0} \sqrt{D}}{2}\right)\left(\frac{U+\delta V \sqrt{D}}{2}\right)=X_{0}^{\prime}+Y_{0}^{\prime} \sqrt{D},
$$

where $X_{0}^{\prime}, Y_{0}^{\prime} \in \mathbb{Z}$ satisfy (14). Thus, the lemma also holds in this case.
Lemma 7. $h(D)<\sqrt{D}(\log 4 D+2) / \log \left(u_{1}+v_{1} \sqrt{D}\right)$.
Proof. This follows immediately from Theorem 12.10.1 and Theorem 12.13.3 of [5].

Lemma $8\left(\left[5\right.\right.$, Theorem 12.13.4]). $\log \left(u_{1}+v_{1} \sqrt{D}\right)<\sqrt{D}(\log 4 D+2)$.
Lemma 9 ([1, Theorem 2]). Let $\alpha_{1}, \ldots, \alpha_{r}$ be algebraic numbers with heights H_{1}, \ldots, H_{r} respectively, and let $A_{i}=\max \left(4, H_{i}\right)(i=1, \ldots, r)$. If $A_{1} \leq \ldots \leq A_{r-1} \leq A_{r}$ and $\Lambda=b_{1} \log \alpha_{1}+\ldots+b_{r} \log \alpha_{r} \neq 0$ for some $b_{1}, \ldots, b_{r} \in \mathbb{Z}$, then

$$
|\Lambda|>\exp \left(-(16 d r)^{200 r}(\log B)\left(\prod_{i=1}^{r} \log A_{i}\right)\left(\log \prod_{j=1}^{r-1} \log A_{j}\right)\right)
$$

where d is the degree of $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ and $B=\max \left(4,\left|b_{1}\right|, \ldots,\left|b_{r}\right|\right)$.
Lemma 10 ([10]). Let $a \in \mathbb{Z}$ be non-zero, and let $f(y) \in \mathbb{Z}(y)$ have degree n and at least two simple zeros. If (x, y, m) is a solution of the equation

$$
a x^{m}=f(y), \quad x>1, y>0, m>0,
$$

then

$$
m<\exp \left(\frac{C^{\prime} n^{5}(\log 3 H)^{2}}{\log (n \log 3 H)}\right)(\log 3|a|)(\log \log 3|a|)^{2}
$$

where H is the height of $f(y)$ and C^{\prime} is an effectively computable constant.
3. The proofs. By [6], the only solutions of equation (1) with $2 \mid n$ are given by $(x, y, m, n)=(7,20,4,2)$ and $(3,11,5,2)$. By Theorem 5 of $[8]$, we see that the theorem holds for $2 \mid m$. We now proceed to prove it for $2 \nmid m n$.

When $2 \nmid n, n$ has an odd prime factor q. If (x, y, m, n) is a solution of (1), then $\left(x, y^{n / q}, m, q\right)$ is a solution with the same x^{m}. We can therefore assume that n is an odd prime.

Here and below, let $C_{i}(i=1,2, \ldots)$ denote some effectively computable absolute constants. We now prove the following conclusions.

Assertion 1. Let (x, y, m, n) be a solution of equation (1) such that $x \in \mathbb{P}$ and $y \equiv 1(\bmod x)$. If $n>C_{1}$, then

$$
\begin{equation*}
x<n^{10 / 9} \tag{17}
\end{equation*}
$$

Proof. By the assumption,

$$
\begin{equation*}
x=p^{r}, \quad p \text { is a prime, } r \in \mathbb{N} \tag{18}
\end{equation*}
$$

where r satisfies

$$
r \geq \begin{cases}1 & \text { if } n \neq p \tag{19}\\ 2 & \text { it } n=p\end{cases}
$$

since $y^{p} \equiv 1\left(\bmod p^{2}\right)$ if $y \equiv 1(\bmod p)$. From (1) we get

$$
\begin{equation*}
\left(1-p^{r}\right) y^{n}=1-p^{r m} \tag{20}
\end{equation*}
$$

Let $\mathbb{Q}_{p}, \mathbb{Z}_{p}$ be the p-adic number field and the p-adic integer ring respectively. For any $\alpha \in \mathbb{Q}_{p}$, let $v(\alpha)$ denote the p-adic valuation of α, and let $\|\alpha\|_{p}=p^{-v(\alpha)}$. Since $y \equiv 1(\bmod x)$, from (20) we get

$$
\left(1-p^{r}\right)^{1 / n} y= \begin{cases}1+p^{r m} \theta & \text { if } n \neq p \tag{21}\\ 1+p^{r m-1} \theta & \text { if } n=p\end{cases}
$$

where $\theta \in \mathbb{Z}_{p}$. Let $t=m-1$, and let $t_{1}, t_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
t_{1}+t_{2}=m-1, \quad(m-1) / 2 \geq t_{1} \geq(m-3) / 2 \tag{22}
\end{equation*}
$$

Put $z=p^{r}$. By Lemma 1, from (21) we get

$$
\begin{align*}
& \left\|y\binom{t}{t_{1}} p^{r m} G(1) E\left(p^{r}\right)\right\|_{p}=\left\|y\binom{t}{t_{1}} G\left(p^{r}\right)-\left(1-p^{r}\right)^{1 / n} y\binom{t}{t_{1}} H\left(p^{r}\right)\right\|_{p} \tag{23}\\
& =\left\{\begin{array}{l}
\left\|y\binom{t}{t_{1}} G\left(p^{r}\right)-\binom{t}{t_{1}} H\left(p^{r}\right)-p^{r m} \theta\binom{t}{t_{1}} H\left(p^{r}\right)\right\|_{p} \quad \text { if } n \neq p \\
\left\|y\binom{t}{t_{1}} G\left(p^{r}\right)-\binom{t}{t_{1}} H\left(p^{r}\right)-p^{r m-1} \theta\binom{t}{t_{1}} H\left(p^{r}\right)\right\|_{p} \quad \text { if } n=p
\end{array}\right.
\end{align*}
$$

By Lemma 4, we see from (3) and (4) that the power series expansions of $\binom{t}{t_{1}} G\left(n^{2} z\right),\binom{t}{t_{1}} H\left(n^{2} z\right)$ and $\left(1-n^{2} z\right)^{1 / n}$ in z have integer coefficients. Therefore, the power series of $\binom{t}{t_{1}} G(1) E(z)$ in z has rational coefficients with denominators being powers of n. Moreover, the denominator of the coefficient of $z^{i}(i \geq 0)$ does not exceed $n^{3 i / 2}$. This implies that if z satisfies (19) then the power series of $\binom{t}{t_{1}} G(1) E(z)$ converges in \mathbb{Q}_{p} and

$$
\left\|\binom{t}{t_{1}} G(1) E(z)\right\|_{p} \leq 1
$$

On using (23), we get

$$
\begin{equation*}
\left\|y\binom{t}{t_{1}} G\left(p^{r}\right)-\binom{t}{t_{1}} H\left(p^{r}\right)\right\|_{p} \leq p^{-r m+1} . \tag{24}
\end{equation*}
$$

Let

$$
N=n^{t_{2}+\left[t_{2} /(n-1)\right]}\left(y\binom{t}{t_{1}} G\left(p^{r}\right)-\binom{t}{t_{1}} H\left(p^{r}\right)\right) .
$$

Then $N \in \mathbb{Z}$ by Lemma 4. Further, by Lemma 2, there exists at least one pair (t_{1}, t_{2}) for which $N \neq 0$. It follows from (24) that

$$
\begin{equation*}
n^{t_{2}+\left[t_{2} /(n-1)\right]}\left(y\left|\binom{t}{t_{1}} G(x)\right|+\left|\binom{t}{t_{1}} H(x)\right|\right) \geq|N| \geq p^{r m-1} \geq x^{m-1} . \tag{25}
\end{equation*}
$$

On applying Lemma 5 to (25), we get

$$
\begin{equation*}
2^{m-1} n^{\frac{m+3}{2} \cdot \frac{n}{n-1}}\left(\left(\frac{m+3}{2}\right) x^{\frac{m}{n}+\frac{m-1}{2}}+x^{\frac{m+3}{2}}\right) \geq x^{m-1} . \tag{26}
\end{equation*}
$$

If $n>C_{1}$, we deduce (17) from (26).
Assertion 2. Let (x, y, m, n) be a solution of equation (1) which satisfies (17). If $n>C_{2}$, then $\log y>n^{10}$.

Proof. From (1) we get

$$
\begin{align*}
0<\Lambda & =m \log x-\log (x-1)-n \log y \tag{27}\\
& =\frac{2}{2 x^{m}-1} \sum_{i=0}^{\infty} \frac{1}{2 i+1}\left(\frac{1}{2 x^{m}-1}\right)^{2 i}<\frac{2}{x^{m}}<\frac{2}{y^{n}} .
\end{align*}
$$

On the other hand, according to Lemma 9 we obtain

$$
\begin{aligned}
& \Lambda>\exp \left(-48^{600}(\log x)(\log (x-1))(\log y)(\log \log x\right.+\log \log (x-1)) \\
&\times(\log \max (m, n))) .
\end{aligned}
$$

On combining this with (27) we get

$$
\begin{equation*}
1+2 \cdot 48^{600}(\log x)(\log (x-1))(\log \log x)(\log \max (m, n))>n . \tag{28}
\end{equation*}
$$

Substituting (17) into (28) gives
(29) $\quad 1+2 \cdot 48^{600}\left(\log n^{10 / 9}\right)^{2}\left(\log \log n^{10 / 9}\right)(\log \max (m, n))>n$.

If $m \leq n$, then (29) is impossible for $n>C_{2}$. Hence $m>n$, and $\log m>n^{1 / 2}$ by (29). From (1), $y^{n}=x^{m-1}+\ldots+x+1>x^{m-1}$. Therefore we obtain $\log y>(m-1) \log x / n>n^{10}$.

Assertion 3. If (x, y, m, n) is a solution of (1) with x being a square, then (1) has a solution (x_{1}, y_{1}, m, n) such that

$$
\begin{equation*}
x=x_{1}^{2^{2}}, \quad r \in \mathbb{N}, x_{1} \in \mathbb{N}, x_{1} \text { is non-square. } \tag{30}
\end{equation*}
$$

Proof. Since $x>1$, there exists x_{1} which satisfies (30). Since $2 \nmid m$, we have

$$
\frac{x^{m}-1}{x-1}=\frac{x_{1}^{m}-1}{x_{1}-1} \prod_{j=0}^{r-1} \frac{x_{1}^{2^{j} m}+1}{x_{1}^{2^{j}}+1}
$$

where $\left(x_{1}^{m}-1\right) /\left(x_{1}-1\right),\left(x_{1}^{2^{j} m}+1\right) /\left(x_{1}^{2^{j}}+1\right)(j=0, \ldots, r-1)$ are coprime positive integers. The result follows at once.

Assertion 4. Let (x, y, m, n) be a solution of equation (1) which satisfies (17). If x is non-square, then $n<C_{3}$.

Proof. Since x is non-square, we deduce from (18) and (1) that $2 \nmid r$ and

$$
\left(\frac{x^{(m+1) / 2}-1}{x-1}\right)^{2}-p\left(p^{(r-1) / 2} \frac{x^{(m-1) / 2}-1}{x-1}\right)^{2}=y^{n}
$$

This implies that $\left(\left(x^{(m+1) / 2}-1\right) /(x-1), p^{(r-1) / 2}\left(x^{(m-1) / 2}-1\right) /(x-1), n\right)$ is a solution of the equation

$$
X^{2}-p Y^{2}=y^{Z}, \quad \operatorname{gcd}(X, Y)=1, Z>0
$$

On applying Lemma 6, we have

$$
\begin{gather*}
n=Z_{1} t \tag{31}\\
\frac{x^{(m+1) / 2}-1}{x-1}+\frac{x^{(m-1) / 2}-1}{x-1} \sqrt{x}=\left(X_{1} \pm Y_{1} \sqrt{p}\right)^{t}(u+v \sqrt{p}), \tag{32}
\end{gather*}
$$

where $t, X_{1}, Y_{1}, Z_{1} \in \mathbb{N}$ satisfy

$$
\begin{gather*}
X_{1}^{2}-p Y_{1}^{2}=y^{Z_{1}}, \quad \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1 \tag{33}\\
1<\left|\frac{X_{1}+Y_{1} \sqrt{p}}{X_{1}-Y_{1} \sqrt{p}}\right|<\left(u_{1}+v_{1} \sqrt{p}\right)^{2} \tag{34}\\
3 h(p) \equiv 0\left(\bmod Z_{1}\right) \tag{35}
\end{gather*}
$$

(u, v) is a solution of the equation

$$
\begin{equation*}
u^{2}-p v^{2}=1 \tag{36}
\end{equation*}
$$

and $u_{1}+v_{1} \sqrt{p}$ is the fundamental solution of (36). Recall that n is an odd prime. By Lemma 7 , if x satisfies (17), then $n \nmid h(p)$. Hence $Z_{1}=1$ and $t=n$ by (31) and (35).

Let

$$
\begin{array}{cl}
\varepsilon=X_{1}+Y_{1} \sqrt{p}, & \bar{\varepsilon}=X_{1}-Y_{1} \sqrt{p} \\
\varrho=u_{1}+v_{1} \sqrt{p}, & \bar{\varrho}=u_{1}-v_{1} \sqrt{p} \tag{38}\\
A=\frac{x^{(m+1) / 2}-1}{x-1}, & B=\frac{x^{(m-1) / 2}-1}{x-1}
\end{array}
$$

Since

$$
\begin{aligned}
1<\frac{A+B \sqrt{x}}{A-B \sqrt{x}} & =\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{\sqrt{x^{m}}-1}{\sqrt{x^{m}}+1}\right)<\frac{\sqrt{x}+1}{\sqrt{x}-1} \\
& \leq\left\{\begin{array}{ll}
u_{1}+v_{1} \sqrt{p} & \text { if } x \leq 3 \\
2.7 & \text { if } x>3
\end{array}\right\} \leq \varrho,
\end{aligned}
$$

by (32) and (34), we get

$$
\begin{equation*}
A \pm B \sqrt{x}=\varepsilon^{n} \bar{\varrho}^{s} \tag{39}
\end{equation*}
$$

where $s \in \mathbb{Z}$ satisfies $0 \leq s \leq n$. Since $A=x B+1$, from (39) we get

$$
\begin{align*}
0<\Lambda & =\left|n \log \frac{\varepsilon}{\bar{\varepsilon}}-2 s \log \varrho \mp \log \frac{\sqrt{x}+1}{\sqrt{x}-1}\right| \tag{40}\\
& =\frac{2}{x^{m / 2}} \sum_{i=0}^{\infty} \frac{1}{2 i+1}\left(\frac{1}{x^{m}}\right)^{i}<\frac{4}{x^{m / 2}}<\frac{4}{y^{n / 2}} .
\end{align*}
$$

Put $\alpha_{1}=(\sqrt{x}+1) /(\sqrt{x}-1), \alpha_{2}=\varrho, \alpha_{3}=\varepsilon / \bar{\varepsilon}$. Then by (33), (37) and (38), α_{1}, α_{2} and α_{3} satisfy $(x-1) \alpha_{1}^{2}-2(x+1) \alpha_{1}+(x-1)=0, \alpha_{2}^{2}-2 u_{1} \alpha_{2}+1=0$ and $y \alpha_{3}^{2}-2\left(X_{1}^{2}+p Y_{1}^{2}\right) \alpha_{3}+y=0$ respectively. This implies that $H_{1}=$ $2(x+1), H_{2}=2 u_{1}$ and $H_{3}=2\left(X_{1}^{2}+p Y_{1}^{2}\right)<2\left(X_{1}+Y_{1} \sqrt{p}\right)^{2}<2 y \varrho^{2}$ by (34). Notice that the degree of $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\mathbb{Q}(\sqrt{p})$ is equal to 2 . By Lemma 9,

$$
\begin{aligned}
\Lambda>\exp \left(-192^{600}(\log 2 n)(\log 2(x+1)\right. & \left(\log 2 u_{1}\right)\left(\log 2 y \varrho^{2}\right) \\
& \left.\times\left(\log \log 2(x+1)+\log \log 2 u_{1}\right)\right) .
\end{aligned}
$$

On combining this with (40) we get

$$
\begin{align*}
& 1+192^{600}(\log 2 n)(\log 2(x+1))\left(\log 2 u_{1}\right)\left(1+\frac{\log 2 \varrho^{2}}{\log y}\right) \tag{41}\\
& \times\left(\log \log 2(x+1)+\log \log 2 u_{1}\right)>\frac{n}{2}
\end{align*}
$$

By Lemma 8, if x satisfies (17), then $\log 2 u_{1}<\log 2 \varrho<\log 2+n^{5 / 9}\left(\log 4 n^{10 / 9}\right.$ $+2)$. Hence, by Assertion 2, we have $\log 2 \varrho^{2}<\log y$ for $n>C_{3}$. Thus, by (41), we obtain

$$
200^{600}(\log n)^{4}>n^{4 / 9}
$$

This is impossible for $n>C_{3}$, which proves the assertion.
Proof of Theorem. Let (x, y, m, n) be a solution of equation (1) such that $x \in \mathbb{P}$ and $y \equiv 1(\bmod x)$. By Assertions 3 and 4, we obtain $n<C_{3}$. Further, by Assertion 1, $x<C_{4}$. Furthermore, by Lemma 10, $m<C_{5}$. To sum up, we get $x^{m}<C$.

Acknowledgements. The author would like to thank the referee for his valuable suggestions.

References

[1] A. Baker, The theory of linear forms in logarithms, in: Transcendence Theory: Advances and Applications, Academic Press, London 1977, 1-27.
[2] D. Estes, R. Guralnick, M. Schacher and E. Straus, Equations in prime powers, Pacific J. Math. 118 (1985), 359-367.
[3] W. Feit, Some consequences of classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181.
[4] R. Guralnick, Subgroups including the same permutation representation, J. Algebra 81 (1983), 312-319.
[5] L.-K. Hua, Introduction to Number Theory, Springer, Berlin 1982.
[6] W. Ljunggren, Noen setninger om ubestemte likninger av formen $\left(x^{n}-1\right) /(x-1)$ $=y^{q}$, Norsk Mat. Tidsskr. 25 (1943), 17-20.
[7] R. Perlis, On the class number of arithmetically equivalent fields, J. Number Theory 10 (1978), 489-509.
[8] T. Shorey and R. Tijdeman, New applications of diophantine approximations to diophantine equations, Math. Scand. 39 (1976), 5-18.
[9] C. L. Siegel, Einige Erläuterungen zu Thues Untersuchungen über Annäherungswerte algebraischer Zahlen und diophantische Gleichungen, Nachr. Göttingen Math.-Phys. Kl. II 1970 (8), 169-195.
[10] J. Turk, On the difference between perfect powers, Acta Arith. 45 (1986), 289-307.
RESEARCH DEPARTMENT
CHANGSHA RAILWAY INSTITUTE
CHANGSHA, HUNAN
P. R. CHINA

Received on 13.9.1991
and in revised form on 28.10.1992

[^0]: Supported by the National Natural Science Foundation of China.
 $\left(^{1}\right)$ Throughout this paper, "solution" and "positive solution" are abbreviations for "integer solution" and "positive integer solution" respectively.

