The $a b c$-inequality and the generalized Fermat equation in function fields

by
Julia Mueller (Bronx, N.Y.)

1. Introduction. Let $K=k(t)$ be a rational function field of one variable with constant field k algebraically closed of characteristic 0 . It is a classical result that the Fermat equation

$$
z_{1}^{r}+z_{2}^{r}=z_{3}^{r}, \quad r \geq 3
$$

has no solution in non-constant polynomials in $k(t)$ with no common factors. Newman and Slater $[\mathrm{N}-\mathrm{S}]$ showed that this result also holds for the EulerFermat equation

$$
z_{1}^{r}+\ldots+z_{n}^{r}=z_{n+1}^{r}, \quad r \geq 8 n^{2}
$$

Let $K^{*}=K-\{0\}$ and let c_{1}, \ldots, c_{n} be elements in K^{*}. Bounds for the heights and for the number of solutions of the generalized Fermat equation

$$
\begin{equation*}
c_{1} z_{1}^{r}+\ldots+c_{n} z_{n}^{r}=0, \quad c_{i} \in K^{*} \tag{1.1}
\end{equation*}
$$

which depend on r and on the degrees of the coefficients c_{i} have been obtained by Silverman $[\mathrm{S}]$ and Voloch [V]. They showed that (1.1) has no non-trivial solutions when the degrees of the c_{i} 's are small relative to r. Recently, a result uniform with respect to the coefficients c_{i} was obtained by Bombieri and Mueller $[\mathrm{B}-\mathrm{M}]$. They showed that if $r>n!(n!-2)$ and $n \geq 3$, then solutions to (1.1) fall into at most $n!^{n!}$ families, each with explicitly given simple structure. In the case $n=3$ and $r>30$ the author [M] has shown that

$$
c_{1} z_{1}^{r}+c_{2} z_{2}^{r}=c_{3}, \quad c_{i} \in K^{*}, \quad 1 \leq i \leq 3
$$

has at most two distinct solutions in $K^{*} \times K^{*}$, provided either $c_{1} / c_{3} \notin\left(K^{*}\right)^{r}$ or $c_{2} / c_{3} \notin\left(K^{*}\right)^{r}$.

The main objective of this paper is to show that the bound $n!n!$ in [B-M] can be replaced by $2(n!)^{2 n-1}$. This result is stated in Theorem 1. The strategy of our proof, which relies on the $a b c$-inequality, follows the
lines in $[\mathrm{B}-\mathrm{M}]$, but we introduce a new idea which allows us a much more efficient counting of the number of classes of solutions. In Theorems 2 and 3 , we have singled out some special cases of our Theorem 1 which are of independent interest.

I would like to thank Professor Enrico Bombieri for his valuable advice concerning the final form of this paper, I also wish to thank the referee for his helpful suggestions.
2. Statement of results. Denote by

$$
\begin{equation*}
F(\boldsymbol{x})=c_{1} x_{1}+\ldots+c_{n} x_{n}=0, \quad c_{i} \in K^{*} \tag{2.1}
\end{equation*}
$$

the generalized Fermat equation. By a solution of (2.1) we mean a solution \boldsymbol{x} with every coordinate $x_{i} \in\left(K^{*}\right)^{r}$. Let \boldsymbol{X} be the set of such solutions of (2.1). Let $I=\{1, \ldots, n\}$ and let $\pi: I=\bigcup R$ be a partition of I. We say $\boldsymbol{x} \in \boldsymbol{X}$ is associated with π if

$$
F(\boldsymbol{x})=\sum_{R} \sum_{j \in R} c_{j} x_{j}=0
$$

where for each $R \in \pi$,

$$
\begin{equation*}
F_{R}\left(\boldsymbol{x}_{R}\right)=\sum_{j \in R} c_{j} x_{j}=0 \tag{2.2}
\end{equation*}
$$

Define

$$
\boldsymbol{X}(\pi)=\{\boldsymbol{x} \in \boldsymbol{X} \mid \boldsymbol{x} \text { is associated with } \pi\}
$$

and

$$
\boldsymbol{X}_{R}(\pi)=\left\{\boldsymbol{x}_{R} \mid \boldsymbol{x}_{R}=\left(x_{j}\right)_{j \in R} \text { is a solution of }(2.2)\right\}
$$

Then it is easily seen that

$$
\begin{equation*}
\boldsymbol{X}(\pi)=\bigcap_{R \in \pi} \boldsymbol{X}_{R}(\pi) \quad \text { and } \quad \boldsymbol{X}=\bigcup_{\pi} \boldsymbol{X}(\pi) \tag{2.3}
\end{equation*}
$$

Definition. Let \boldsymbol{e}_{R} be a vector with each $e_{j} \in\left(K^{*}\right)^{r}, j \in R$, and let $\boldsymbol{x}_{R} \in \boldsymbol{X}_{R}(\pi)$. We say \boldsymbol{x}_{R} is compatible with \boldsymbol{e}_{R} if there is $w \in\left(K^{*}\right)^{r}$ and $v_{j} \in k$ such that

$$
x_{j}=e_{j} v_{j} w, \quad \forall j \in R
$$

Let us write

$$
\boldsymbol{X}_{R}\left(\pi, \boldsymbol{e}_{R}\right)=\left\{\boldsymbol{x}_{R} \in \boldsymbol{X}_{R}(\pi) \mid \boldsymbol{x}_{R} \text { is compatible with } \boldsymbol{e}_{R}\right\}
$$

and

$$
\boldsymbol{X}(\pi, \boldsymbol{e})=\bigcap_{R \in \pi} \boldsymbol{X}_{R}\left(\pi, \boldsymbol{e}_{R}\right)
$$

We say $\boldsymbol{X}_{R}\left(\pi, \boldsymbol{e}_{R}\right)$ is a compatible class of solutions of (2.2), and $\boldsymbol{X}(\pi, \boldsymbol{e})$ is a compatible class of solutions of (2.1).

Our main result is the following
Theorem 1. Suppose $r>n!(n!-2)$. Then there are partitions π of I and vectors $\boldsymbol{e} \in\left(K^{* r}\right)^{n}$ such that \boldsymbol{X} is the union of at most $2(n!)^{2 n-1}$ compatible classes $\boldsymbol{X}(\pi, \boldsymbol{e})$.

The next theorem is a version of Theorem 1 in a special case where the coefficients c_{i} in (2.1) are restricted to be sums of r th power elements in K^{*}.

Theorem 2. Let $l_{i}, 1 \leq i \leq n$, be positive integers and let the coefficients c_{i} in (2.1) be given by

$$
\begin{equation*}
c_{i}=\sum_{j=1}^{l_{i}} a_{i j}, \quad i=1, \ldots, n \tag{2.4}
\end{equation*}
$$

where $a_{i j} \in\left(K^{*}\right)^{r}, 1 \leq i \leq n, 1 \leq j \leq l_{i}$. Suppose $r>l(l-2)$ where

$$
\begin{equation*}
l=\sum_{i=1}^{n} l_{i} . \tag{2.5}
\end{equation*}
$$

Then \boldsymbol{X} is the union of at most $2(n!) l^{2 n-2}$ compatible classes $\boldsymbol{X}(\pi, \boldsymbol{e})$.
Our final result is the following theorem which improves the condition $r>30$ in the Main Theorem in [M] to $r>24$.

Theorem 3. Let $c_{i} \in K^{*}, 1 \leq i \leq 3$, such that either $c_{1} / c_{3} \notin\left(K^{*}\right)^{r}$ or $c_{2} / c_{3} \notin\left(K^{*}\right)^{r}$, and let $r>24$. Then the binomial equation

$$
c_{1} x_{1}+c_{2} x_{2}=c_{3}
$$

has at most two distinct solutions in $\left(K^{*}\right)^{r} \times\left(K^{*}\right)^{r}$.
3. Proof of Theorem 1. The main tool of our method is the $a b c$ inequality (Theorem B of [Br-Ma]). In Lemma 1 we state a version of that inequality which works especially well for homogeneous equations and which follows from the proof of Lemma 2 of $[\mathrm{B}-\mathrm{M}]$.

Lemma 1. Let k and K be as before. Suppose

$$
\begin{equation*}
p_{1}^{r}+\ldots+p_{d}^{r}=0, \quad p_{i} \in K^{*}, \tag{3.1}
\end{equation*}
$$

and no proper subsum of (3.1) vanishes. If $r>d(d-2)$, then $p_{i} / p_{j} \in k$.
For a proof of Lemma 1, see the proof of Lemma 2 of $[B-M]$.
Our first step towards proving Theorem 1 is to construct a system of " r th power" equations. That is, equations whose monomials are r th power elements in K^{*}. We start by ordering the elements in \boldsymbol{X} so that the first m elements $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}$ in \boldsymbol{X} are linearly independent over K where $m<n$
is the rank of the matrix $\left(\boldsymbol{x}^{(i)}\right)_{i=1,2, \ldots}$. Let J be any subset of I of Card $J=$ $m+1$, and let S be the set of all such subsets of I. If $\boldsymbol{x} \in \boldsymbol{X}$, then

$$
\operatorname{rank}\binom{\boldsymbol{x}}{\boldsymbol{x}^{(i)}}_{i=1, \ldots, m}=m .
$$

Hence for every $J \in S$,

$$
\begin{equation*}
\operatorname{det}\binom{\boldsymbol{x}_{J}}{\boldsymbol{x}_{J}^{(i)}}_{i=1, \ldots, m}=\sum \varepsilon(\sigma) x_{\sigma_{1}}^{(1)} \ldots x_{\sigma_{m}}^{(m)} x_{\sigma_{m+1}}=0 \tag{3.2}
\end{equation*}
$$

where the sum is over the set $\mathcal{M}(J)$ of permutations σ of J and $\varepsilon(\sigma)= \pm 1$ according to the parity of σ. Write

$$
\begin{equation*}
m_{\sigma}\left(\boldsymbol{x}_{J}\right)=\varepsilon(\sigma) x_{\sigma_{1}}^{(1)} \ldots x_{\sigma_{m}}^{(m)} x_{\sigma_{m+1}} \tag{3.3}
\end{equation*}
$$

and

$$
L_{J}\left(\boldsymbol{x}_{J}\right)=\operatorname{det}\binom{\boldsymbol{x}_{J}}{\boldsymbol{x}_{J}^{(i)}}_{i=1, \ldots, m}
$$

Then (3.3) gives a system of linear forms in x_{1}, \ldots, x_{n},

$$
\begin{equation*}
L_{J}\left(\boldsymbol{x}_{J}\right)=\sum_{\sigma \in \mathcal{M}(J)} m_{\sigma}\left(\boldsymbol{x}_{J}\right)=0, \quad \forall J \in S \tag{3.4}
\end{equation*}
$$

Let $\boldsymbol{x} \in \boldsymbol{X}$. We say $L_{J}\left(\boldsymbol{x}_{J}\right)$ decomposes into components \mathcal{N} if

$$
\begin{equation*}
L_{J}\left(\boldsymbol{x}_{J}\right)=\sum_{\mathcal{N}} \sum_{\sigma \in \mathcal{N}} m_{\sigma}\left(\boldsymbol{x}_{J}\right)=0 \tag{3.5}
\end{equation*}
$$

where $\mathcal{M}(J)=\bigcup \mathcal{N}$ is a partition and where

$$
\begin{equation*}
\sum_{\sigma \in \mathcal{N}} m_{\sigma}\left(\boldsymbol{x}_{J}\right)=0 \tag{3.6}
\end{equation*}
$$

is a vanishing subsum for every component \mathcal{N} of $\mathcal{M}(J)$, but no proper subsum of it vanishes.

Definition. Let $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \boldsymbol{X}$. We say \boldsymbol{x} and \boldsymbol{x}^{\prime} are proportional (i.e. $\left.\boldsymbol{x} \sim \boldsymbol{x}^{\prime}\right)$ if $x_{j} / x_{j}^{\prime} \in k$ for each j.

Definition. Let $\boldsymbol{x} \in \boldsymbol{X}$. We say \boldsymbol{x} is a singular solution if for every $J \in S$ and for every decomposition of $L_{J}\left(\boldsymbol{x}_{J}\right)=0$, each component \mathcal{N} of $\mathcal{M}(J)$ has the property that if $\sigma, \sigma^{\prime} \in \mathcal{N}$, then $m_{\sigma} / m_{\sigma^{\prime}} \in k$, where m_{σ} and $m_{\sigma^{\prime}}$ are given by (3.3). We say m_{σ} and $m_{\sigma^{\prime}}$ are proportional, and we write $m_{\sigma} \sim m_{\sigma^{\prime}}$.

Lemma 2. Suppose $r>n!(n!-2)$. Then every $\boldsymbol{x} \in \boldsymbol{X}$ is a singular solution.

Proof. Suppose $\boldsymbol{x} \in \boldsymbol{X}$ is not a singular solution. Then there is a $J \in S$, a decomposition of $L_{J}\left(\boldsymbol{x}_{J}\right)=0$ and a component \mathcal{N} of $\mathcal{M}(J)$ such that for some $\sigma, \sigma^{\prime} \in \mathcal{N}, m_{\sigma} / m_{\sigma^{\prime}} \notin k$.

From Lemma 1 and the fact that $\operatorname{Card} \mathcal{N} \leq(m+1)$! $\leq n$!, we obtain $r \leq n!(n!-2)$. This proves Lemma 2 .

Our immediate object is to show that each $\boldsymbol{x} \in \boldsymbol{X}$ is associated with a partition π_{0} which arises in a natural way. First, we define a projection map p from \mathbb{Z}^{m+1} to \mathbb{Z} by

$$
p(\sigma)=p\left(\sigma_{1}, \ldots, \sigma_{m+1}\right)=\sigma_{m+1}, \quad \forall \sigma \in \mathcal{M}^{*},
$$

where

$$
\mathcal{M}^{*}=\bigcup_{J} \mathcal{M}(J)=\bigcup_{J} \bigcup \mathcal{N} .
$$

Next, for each $J \in S$, let G_{J} be the incidence graph of the sets $p(\mathcal{N}) \subset \mathbb{Z}$. Thus the vertices of G_{J} are the sets $p(\mathcal{N})$ with \mathcal{N} running over all the components of the decomposition (3.5), and there is an edge connecting $p(\mathcal{N})$ to $p\left(\mathcal{N}^{\prime}\right)$ precisely if $p(\mathcal{N}) \cap p\left(\mathcal{N}^{\prime}\right) \neq \emptyset$. The graph G_{J} splits into the disjoint union of connected components $G_{J, \nu}$ and we define

$$
\begin{equation*}
\pi_{0}: \quad I=\bigcup_{\nu=1}^{s} R_{\nu} \tag{3.7}
\end{equation*}
$$

where $R_{\nu}=\bigcup p(\mathcal{N})$ with $p(\mathcal{N}) \in G_{J, \nu}$. Since $\boldsymbol{x} \in \boldsymbol{X}$, we have

$$
F(\boldsymbol{x})=\sum_{j \in I} c_{j} x_{j}=\sum_{R_{\nu} \in I} \sum_{j \in R_{\nu}} c_{j} x_{j}=0 .
$$

We claim that for $\nu=1, \ldots, s$,

$$
\begin{equation*}
F_{R_{\nu}}\left(\boldsymbol{x}_{R_{\nu}}\right)=\sum_{j \in R_{\nu}} c_{j} x_{j}=0 . \tag{3.8}
\end{equation*}
$$

To see this, we remark that in Lemma 1 of $[\mathrm{B}-\mathrm{M}]$ it has been shown that $F(\boldsymbol{x})$ is a linear combination of the $L_{J}(\boldsymbol{x})$; that is, there exist $\lambda_{J} \in k$ such that

$$
F(\boldsymbol{x})=\sum_{J} \lambda_{J} L_{J}\left(\boldsymbol{x}_{J}\right)=\sum_{J} \lambda_{J} \sum_{\mathcal{N}} \sum_{\sigma \in \mathcal{N}} m_{\sigma}\left(\boldsymbol{x}_{J}\right) .
$$

Therefore

$$
c_{j}=\sum_{J} \lambda_{J} \sum_{\substack{\mathcal{N} \subset \mathcal{M}(J) \\ j \in p(\mathcal{N})}} \sum_{\substack{\sigma \in \mathcal{N} \\ p(\sigma)=j}} \varepsilon(\sigma) x_{\sigma_{1}}^{(1)} \ldots x_{\sigma_{m}}^{(m)} .
$$

Since the $p(\mathcal{N})$'s involved in the middle sum all belong to the same component, say $G_{J, \nu}$, we then have

$$
\begin{equation*}
F_{R_{\nu}}\left(\boldsymbol{x}_{R_{\nu}}\right)=\sum_{J} \lambda_{J} \sum_{\substack{\mathcal{N} \subset \mathcal{M}(J) \\ p(\mathcal{N}) \in G_{J, \nu}}} \sum_{\sigma \in \mathcal{N}} m_{J}\left(\boldsymbol{x}_{J}\right) . \tag{3.9}
\end{equation*}
$$

Now (3.9) in conjunction with (3.6) yield (3.8) and our claim is proved. We remark that \boldsymbol{x} is a singular solution if and only if $\boldsymbol{x}_{R_{\nu}}$ is a singular solution for each ν.

A crucial idea in the proof of Theorem 1 is to show that any singular solution is compatible with a finite number of vectors which are determined by the monomials $m_{\sigma}, \sigma \in \mathcal{M}^{*}$. Define, for each $\sigma \in \mathcal{M}^{*}$,

$$
\tau(\sigma)=\left(\sigma_{1}, \ldots, \sigma_{m}\right), \quad a_{\tau(\sigma)}=x_{\sigma_{1}}^{(1)} \ldots x_{\sigma_{m}}^{(m)}
$$

and

$$
\begin{equation*}
E=\left\{a_{\tau(\sigma)} / a_{\tau\left(\sigma^{\prime}\right)} \mid \sigma, \sigma^{\prime} \in \mathcal{M}^{*}\right\} . \tag{3.10}
\end{equation*}
$$

Then $m_{\sigma}=a_{\tau(\sigma)} x_{p(\sigma)}$, and the set E is what we want. One sees easily that

$$
\operatorname{Card} E \leq\left(m!\binom{n}{m}\right)^{2} \leq n!^{2}
$$

Proof of Theorem 1. Let π_{0} and R_{ν} be given by (3.7) and let $b_{\nu}=$ Card R_{ν}. Our first object is to show that $\boldsymbol{X}_{R_{\nu}}\left(\pi_{0}\right)$ is the union of at most

$$
\begin{equation*}
\left(b_{\nu}-1\right)!\left(b_{\nu}!\right)^{2\left(b_{\nu}-1\right)} \tag{3.11}
\end{equation*}
$$

compatible classes $\boldsymbol{X}_{R_{\nu}}\left(\pi_{0}, \boldsymbol{e}_{R_{\nu}}\right)$.
For simplicity we shall set $R_{\nu}=I$ and adjust our notations accordingly in what follows. For example, we write $I=\bigcup p\left(\mathcal{N}_{\alpha}\right)$, where the $p\left(\mathcal{N}_{\alpha}\right)$'s are given by (3.7), and we let $\boldsymbol{X}\left(\pi_{0}\right)$ stand for $\boldsymbol{X}_{R_{\nu}}\left(\pi_{0}\right)$ and $\boldsymbol{X}\left(\pi_{0}, \boldsymbol{e}\right)$ stand for $\boldsymbol{X}_{R_{\nu}}\left(\pi_{0}, \boldsymbol{e}_{R_{\nu}}\right)$.

We remark that one may pick $\boldsymbol{x} \in \boldsymbol{X}\left(\pi_{0}\right)$ such that $x_{1}=1$. To see this, we write $\boldsymbol{x}=x_{1} x_{1}^{-1} \boldsymbol{x}=x_{1}\left(1, \ldots, x_{1}^{-1} x_{n}\right), x_{1} \in\left(K^{*}\right)^{r}$. Then \boldsymbol{x} is compatible with $\left(1, \ldots, x_{1}^{-1} x_{n}\right)$. We will now construct a sequence of subsets $T_{\alpha} \subset p\left(\mathcal{N}_{\alpha}\right)$ with the properties
(i) every T_{α} is connected with some $T_{\alpha^{\prime}}, \alpha^{\prime}<\alpha$,
(ii) suppose T_{α} and $T_{\alpha^{\prime}}, \alpha^{\prime}<\alpha$, are connected; then they have exactly one element in common,
(iii) $I=\bigcup T_{\alpha}$.

We start by setting $T_{1}=p\left(\mathcal{N}_{1}\right)$ where \mathcal{N}_{1} may be chosen so that $\delta(1)=$ $1 \in p\left(\mathcal{N}_{1}\right)$. To define T_{2}, we pick $p\left(\mathcal{N}_{2}\right) \not \subset T_{1}$ and $p\left(\mathcal{N}_{1}\right) \cap p\left(\mathcal{N}_{2}\right) \neq \emptyset$. Let $\delta(2)$ be the least integer in the set $\left\{\beta \mid \beta \in p\left(\mathcal{N}_{2}\right) \cap p\left(\mathcal{N}_{1}\right) \neq \emptyset\right\}$, and let

$$
T_{2}=\{\delta(2)\} \cup\left\{\beta \in p\left(\mathcal{N}_{2}\right) \mid \beta \notin T_{1}\right\}
$$

Now suppose for some integer $q \geq 3, T_{1}, \ldots, T_{q-1}$ have been defined by this procedure, where $T_{\alpha+1} \not \subset T_{\alpha}$ and $\bigcup_{\alpha=1}^{q-1} T_{\alpha} \nsubseteq I$. To construct T_{q}, we first
pick $p\left(\mathcal{N}_{q}\right) \not \subset \bigcup_{\alpha=1}^{q-1} T_{\alpha}$ such that

$$
\begin{equation*}
p\left(\mathcal{N}_{q}\right) \cap \bigcup_{\alpha=1}^{q-1} T_{\alpha} \neq \emptyset \tag{3.12}
\end{equation*}
$$

and let $\delta(q)$ be the least integer in the non-empty set (3.12). Set

$$
T_{q}=\{\delta(q)\} \cup\left\{\beta \in p\left(\mathcal{N}_{q}\right) \mid \beta \notin \bigcup_{\alpha=1}^{q-1} T_{\alpha}\right\}
$$

Then there is a positive integer k such that

$$
\begin{equation*}
I=\bigcup_{\alpha=1}^{k} T_{\alpha} \tag{3.13}
\end{equation*}
$$

Clearly the sets T_{α} in (3.13) satisfy the above stated properties (i)-(iii).
Next, let $1 \leq j \leq n$ be such that $j \in T_{1}$. Since $1 \in T_{1}$, there are permutations $\sigma^{(1, j)}$ and $\sigma^{(\delta(1))}$ in \mathcal{N}_{1} such that

$$
p\left(\sigma^{(1, j)}\right)=j \quad \text { and } \quad p\left(\sigma^{(\delta(1))}\right)=1
$$

Moreover, since \boldsymbol{x} is singular, we have

$$
m_{\sigma^{(1, j)}} \sim m_{\sigma^{(\delta(1))}}
$$

Let $\tau(\cdot)$ stand for $\tau\left(\sigma^{(\cdot)}\right)$, and let

$$
m_{\sigma^{(1, j)}}=a_{\tau(1, j)} x_{j} \quad \text { and } \quad m_{\sigma^{(\delta(1))}}=a_{\tau(\delta(1))} x_{1}
$$

Then we get, since $x_{1}=1$,

$$
\begin{equation*}
x_{j} \sim e(1, j) x_{1}=e(1, j) \tag{3.14}
\end{equation*}
$$

where

$$
e(1, j)=a_{\tau(\delta(1))} / a_{\tau(1, j)} \in E \quad \text { and } \quad j \in T_{1}
$$

From (3.14) and the fact that the cardinality of E is at most $n!^{2}$, we see that the number of proportional classes of $x_{j}, j \in T_{1}$, is at most $n!^{2}$. Next, suppose that the proportional classes of $x_{j}, j \in T_{\alpha}, 1 \leq \alpha \leq k-1$, have been determined and suppose $j \in T_{k}$. Then since $\delta(k) \in T_{k}$, there are permutations $\sigma^{(k, j)}$ and $\sigma^{(\delta(k))}$ in \mathcal{N}_{k} such that

$$
p\left(\sigma^{(k, j)}\right)=j, \quad p\left(\sigma^{(\delta(k))}\right)=\delta(k), \quad j \in T_{k}
$$

Writing

$$
m_{\sigma^{(k, j)}}=a_{\tau(k, j)} x_{j} \quad \text { and } \quad m_{\sigma^{(\delta(k))}}=a_{\tau(\delta(k))} x_{\delta(k)}
$$

from $m_{\sigma^{(k, j)}} \sim m_{\sigma^{(\delta(k))}}$ we get

$$
\begin{equation*}
x_{j} \sim e(\delta(k), j) x_{\delta(k)} \tag{3.15}
\end{equation*}
$$

where

$$
e(\delta(k), j)=a_{\tau(\delta(k))} / a_{\tau(k, j)} \in E, \quad j \in T_{k}
$$

and where $\delta(k) \in T_{k} \cap T_{j}$ for some $1 \leq j \leq k-1$. Since by the hypothesis, the proportional classes of $x_{\delta(k)}$ have already been determined, each $e(\delta(k), j)$ in (3.15) then determines a proportional class of $x_{j}, j \in T_{k}$. The number of such proportional classes is at most $n!^{2}$. It follows that there is a permutation σ of $\{1, \ldots, n\}$ such that $\sigma(1)=1$ and such that $x^{(\sigma)}=\left(1, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$ may fall into not more than $(n!)^{2(n-1)}$ proportional classes determined by vectors \boldsymbol{e} with each coordinate $e_{i} \in E$. Since the number of permutations σ is at $\operatorname{most}(n-1)$!, we get at most $(n-1)!n!^{2(n-1)}$ proportional classes for any $\boldsymbol{x} \in \boldsymbol{X}\left(\pi_{0}\right)$ such that $x_{1}=1$. Hence we have shown that $\boldsymbol{X}\left(\pi_{0}\right)$ is the union of at most $(n-1)!n!^{2(n-1)}$ compatible classes $\boldsymbol{X}\left(\pi_{0}, \boldsymbol{e}\right)$. Since we have set $R_{\nu}=I$ in the above arguments, it is now clear that we have proved (3.11).

Finally, from (2.3) and (3.11) we deduce that \boldsymbol{X} is a union of at most μ compatible classes, where

$$
\begin{align*}
\mu & \leq \sum_{s=1}^{n} \sum_{\substack{b_{1}+\ldots+b_{s}=n \\
b_{\nu} \geq 1}}\left(\prod_{\nu=1}^{s} n!^{2 b_{\nu}-2}\left(b_{\nu}-1\right)!\right) \frac{n!}{\prod_{\nu=1}^{s} b_{\nu}!} \tag{3.16}\\
& <\sum_{s=1}^{n} \sum_{\substack{b_{1}+\ldots+b_{s}=n \\
b_{\nu} \geq 1}}(n!)^{2 n-2 s+1}<(n!)^{2 n-1} \sum_{s=0}^{n-1}\binom{n-1}{s-1}(n!)^{-2 s} \\
& <(n!)^{2 n-1}\left[1+\sum_{s=1}^{n-1} n^{s-1}(n!)^{-2 s}\right] \\
& <2(n!)^{2 n-1}, \quad n \geq 3 .
\end{align*}
$$

This completes the proof of Theorem 1.
4. Proof of Theorem 2. Let $a_{i j}$ and l_{i} be given by (2.4) and (2.5), and let

$$
\mathcal{M}_{0}=\left\{(i, j) \mid 1 \leq j \leq l_{i}\right\}
$$

Define $p: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ by $p(i, j)=i$, and

$$
m_{(i, j)}=a_{i j} x_{i}, \quad \forall(i, j) \in \mathcal{M}_{0}
$$

Then (2.1) is a r th power equation

$$
\begin{equation*}
F(\boldsymbol{x})=\sum_{i=1}^{n}\left(\sum_{j=1}^{l_{i}} a_{i j}\right) x_{i}=\sum_{\mathcal{M}_{0}} m_{(i, j)}=\sum_{\mathcal{N} \subset \mathcal{M}_{0}} \sum_{(i, j) \in \mathcal{N}} m_{(i, j)}=0, \tag{4.1}
\end{equation*}
$$

where $\mathcal{M}_{0}=\bigcup \mathcal{N}$. Since Theorem 2 is a version of Theorem 1 in a special case we shall use the results in Section 3 to prove Theorem 2 with minor
changes. First, we replace E in (3.10) by

$$
\begin{equation*}
E_{0}=\left\{a_{i j} / a_{i^{\prime} j^{\prime}} \mid a_{i j}, a_{i^{\prime} j^{\prime}} \text { are given by }(2.4)\right\} \tag{4.2}
\end{equation*}
$$

Then it is easily seen that the cardinality of E_{0} is at most l^{2}. Next, we replace the bound in (3.16) by

$$
\begin{equation*}
\sum_{s=1}^{n} \sum_{\substack{b_{1}+\ldots+b_{s}=n \\ b_{\nu} \geq 1}}\left(\prod_{\nu=1}^{s} l^{2 b_{\nu}-2}\left(b_{\nu}-1\right)!\right) \frac{n!}{\prod_{\nu=1}^{s} b_{\nu}!} \tag{4.3}
\end{equation*}
$$

But (4.3) is

$$
\begin{aligned}
& <(n!) l^{2 n-2} \sum_{s=0}^{n-1}\binom{n-1}{s-1}(l!)^{-2 s} \\
& <(n!) l^{2 n-2}\left[1+\sum_{s=1}^{n-1} n^{s-1}(n!)^{-2 s}\right] \leq 2(n!) l^{2 n-2},
\end{aligned}
$$

where $l \geq n \geq 3$. This proves Theorem 2 .
We remark that for the Euler-Fermat equation

$$
\begin{equation*}
x_{1}+\ldots+x_{n}=0 \tag{4.4}
\end{equation*}
$$

where $r>n(n-2)$, the number of compatible classes of solutions of (4.4) is bounded by the number of partitions of I and the latter is at most n^{n}.
5. Proof of Theorem 3. Theorem 3 is included here mainly as an example of how the technique of proof of Theorem 1 can be used in practice. Although our proof of Theorem 3 follows the general lines in $[\mathrm{M}]$, the arguments have been simplified a great deal. In fact, it is easily seen that Theorem 3 is an immediate consequence of the following lemmas.

Lemma 3. Suppose $c_{i} \in K^{*}, 1 \leq i \leq 3$, such that either $c_{1} / c_{3} \notin\left(K^{*}\right)^{r}$ or $c_{2} / c_{3} \notin\left(K^{*}\right)^{r}$. Let $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$ be two distinct solutions of

$$
\begin{equation*}
c_{1} x+c_{2} y+c_{3}=0 \tag{5.1}
\end{equation*}
$$

Then $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$ are non-proportional (i.e. either $x_{1} / x_{2} \notin k$ or $y_{1} / y_{2} \notin k$).
Lemma 4. Suppose $r>24$. Then any three distinct solutions of (5.1) are mutually proportional.

It follows from Lemmas 3 and 4 that (5.1) cannot have three distinct solutions. Therefore Theorem 3 is proved.

Proof of Lemma 3 . Suppose $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$ are distinct solutions of (5.1) such that $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$ are proportional (i.e. $\boldsymbol{x}^{(1)} \sim \boldsymbol{x}^{(2)}$). Writing
$\boldsymbol{x}^{(i)}=\left(x_{i}, y_{i}, 1\right)$ with $x_{i}, y_{i} \in\left(K^{*}\right)^{r}$, there are constants α and β in k such that

$$
\begin{equation*}
x_{2}=\alpha x_{1} \quad \text { and } \quad y_{2}=\beta y_{1} . \tag{5.2}
\end{equation*}
$$

From (5.1) and (5.2) we get $c_{1}(1-\alpha) x_{1}+c_{2}(1-\beta) y_{1}=0$, which gives

$$
\frac{c_{1}}{c_{2}}=\frac{\beta-1}{1-\alpha} \frac{y_{1}}{x_{1}} \in\left(K^{*}\right)^{r} .
$$

Also from (5.1) and (5.2) we get

$$
c_{1}\left(1-\frac{\alpha}{\beta}\right) \frac{x_{1}}{y_{1}}+c_{3}\left(1-\frac{1}{\beta}\right) \frac{1}{y_{1}}=0,
$$

which gives

$$
\frac{c_{1}}{c_{3}}=\left(\frac{\beta^{-1}-1}{1-\alpha \beta^{-1}}\right) \frac{1}{x_{1}} \in\left(K^{*}\right)^{r} .
$$

But this contradicts the hypothesis of Lemma 3. Thus Lemma 3 is proved.
Proof of Lemma 4. We remark first that the hypothesis $r>24$ implies that every solution of (5.1) is singular (see Lemma 2). Let $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}$ and $\boldsymbol{x}^{(3)}$ be three distinct solutions of (5.1). Since the rank of the matrix $\left(\boldsymbol{x}^{(i)}\right)_{i=1,2,3}$ is at most 2, we have

$$
\operatorname{det}\left(\boldsymbol{x}^{(i)}\right)_{i=1,2,3}=\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0 .
$$

By expanding the determinant in full, we get

$$
L=x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}-x_{1} y_{3}-x_{2} y_{1}-x_{3} y_{2}=0 .
$$

In what follows, we will proceed to show that each of the following cases is either impossible or it leads to three mutually proportional solutions.

Case (i): L has no proper subsum that vanishes. Then, since every solution of (5.1) is singular, the monomials in L are mutually proportional. From the following proportional monomials:

$$
x_{1} y_{2} \sim x_{3} y_{2}, x_{2} y_{3} \sim x_{1} y_{3}, x_{2} y_{3} \sim x_{2} y_{1} \quad \text { and } \quad x_{3} y_{2} \sim x_{3} y_{1}
$$

we get

$$
\begin{equation*}
\boldsymbol{x}^{(1)} \sim \boldsymbol{x}^{(2)} \sim \boldsymbol{x}^{(3)} . \tag{5.3}
\end{equation*}
$$

Case (ii): L decomposes into three components $c_{i}, 1 \leq i \leq 3$, of two monomials each. Writing $c_{i}=u+v=0$, we claim that u and v must be monomials with the same sign. Suppose $u=x_{1} y_{2}$ and $v=-x_{1} y_{3}$ or $v=-x_{3} y_{2}$. Then from $u+v=0$ we get $y_{2}=y_{3}$ or $x_{1}=x_{3}$, which together with (5.1) gives two equal solutions. If $v=-x_{2} y_{1}$, then $x_{1} / y_{1}=x_{2} / y_{2}$, which together with (5.1) again yields two equal solutions. Thus our claim is
proved. But this implies that the number of positive and negative monomials in (5.1) must be even, which is not the case. Therefore, case (ii) is impossible.

Case (iii): L decomposes into two components c_{1} and c_{2} of four and two monomials respectively. Then one sees from case (ii) that the two monomials in c_{2} must have the same sign. Up to sign we may represent c_{1} and c_{2} by

$$
\begin{align*}
& c_{1}=x_{i} y_{j}+x_{j} y_{k}+x_{k} y_{i}-x_{i} y_{k}=0 \\
& c_{2}=-x_{j} y_{i}-x_{k} y_{j}=0 \tag{5.4}
\end{align*}
$$

where (i, j, k) is a permutation of $(1,2,3)$. From both equations in (5.4) we get

$$
y_{j} \sim y_{k}, \quad x_{j} \sim x_{i}, \quad \frac{x_{j}}{x_{k}} \sim \frac{y_{i}}{y_{k}} \quad \text { and } \quad \frac{x_{j}}{x_{k}}=-\frac{y_{j}}{y_{i}}
$$

which yields $x_{i} \sim x_{j}, y_{i}^{2} \sim y_{j}^{2}$ and hence

$$
\begin{equation*}
x_{i} \sim x_{j} \quad \text { and } \quad y_{i} \sim y_{j} \tag{5.5}
\end{equation*}
$$

The proportionality relation $y_{i} \sim y_{j}$ is obtained from $y_{i}^{2} \sim y_{j}^{2}$ and the fact that the constant field k is algebraically closed. Combining (5.4) and (5.5) we get $x_{i} \sim x_{j} \sim x_{k}$ and $y_{i} \sim y_{j} \sim y_{k}$, which again gives (5.3).

Case (iv): L decomposes into two components c_{1} and c_{2} of three monomials each. This is the last and also the most complex of the four cases. Since each monomial x_{i} or y_{i} may appear at most twice in a component, it suffices for us to consider components such that in one of them, say c_{1}, one of the following four cases holds: (a) both x_{i} and y_{j} appear twice, (b1) x_{i} appears twice but no y_{i} appears twice, (b2) y_{i} appears twice but no x_{i} appears twice, (c) both x_{i} and y_{i} appear exactly once. To be more explicit, we have:

$$
\begin{align*}
& c_{1}=x_{i} y_{j}-x_{i} y_{k}-x_{k} y_{j}=0 \tag{5.6}\\
& c_{2}=x_{j} y_{k}-x_{j} y_{i}+x_{k} y_{i}=0 \\
& c_{1}=x_{i} y_{j}-x_{i} y_{k}+x_{k} y_{i}=0 \\
& c_{2}=x_{j} y_{k}-x_{j} y_{i}-x_{k} y_{j}=0 \tag{5.7}\\
& c_{1}=x_{i} y_{j}-x_{j} y_{i}-x_{k} y_{i}=0 \\
& c_{2}=-x_{i} y_{k}+x_{j} y_{k}+x_{k} y_{i}=0 \\
& c_{1}=x_{i} y_{j}+x_{j} y_{k}+x_{k} y_{i}=0 \\
& c_{2}=-x_{i} y_{k}-x_{j} y_{i}-x_{k} y_{j}=0
\end{align*}
$$

From both the first and the second equations in (5.6) we get $y_{j} \sim y_{k}$, $x_{i} \sim x_{k}, y_{k} \sim y_{i}$, and $x_{j} \sim x_{k}$, which clearly yields (5.3). From both the first and the second equations in (5.7) we get $y_{j} \sim y_{k} \sim y_{i}$, which then gives
$x_{i} \sim x_{k} \sim x_{j}$ and hence (5.3). Similarly, we may obtain (5.3) from (5.8). Finally, from the first equation in (5.9) we get

$$
\begin{equation*}
y_{k} \sim \frac{x_{i} y_{j}}{x_{j}} \quad \text { and } \quad \frac{y_{i}}{y_{j}} \sim \frac{x_{i}}{x_{k}}, \tag{5.10}
\end{equation*}
$$

and from the second equation in (5.9) we get

$$
\begin{equation*}
y_{k} \sim \frac{x_{j} y_{i}}{x_{i}} \quad \text { and } \quad \frac{y_{i}}{y_{j}} \sim \frac{x_{k}}{x_{j}} . \tag{5.11}
\end{equation*}
$$

It is easily seen that (5.10) and (5.11) together give

$$
\frac{y_{i}}{y_{j}} \sim \frac{x_{i}^{2}}{x_{j}^{2}} \quad \text { and } \quad \frac{y_{i}^{2}}{y_{j}^{2}} \sim \frac{x_{i}}{x_{j}}
$$

which yields $x_{i}^{3} \sim x_{j}^{3}$ and $y_{i}^{3} \sim y_{j}^{3}$. Since k is algebraically closed, we get

$$
\begin{equation*}
x_{i} \sim x_{j} \quad \text { and } \quad y_{i} \sim y_{j} . \tag{5.12}
\end{equation*}
$$

Now, (5.3) follows from (5.9) and (5.12).
This completes the proof of Lemma 4. Thus Theorem 3 is proved.
The idea of the proof of Lemma 4 was inspired by the article [E-G-S-T].

References

[B-M] E. Bombieri and J. Mueller, The generalised Fermat equation in function fields, J. Number Theory 39 (1991), 339-350.
[Br-Ma] W. D. Brownawell and D. W. Masser, Vanishing sums in function fields, Math. Proc. Cambridge Philos. Soc. 100 (1986), 427-434.
[E-G-S-T] J.-H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, On S-unit equations in two unknowns, Invent. Math. 92 (1988), 461-477.
[M] J. Mueller, Binomial Thue's equation over function fields, Compositio Math. 73 (1990), 189-197.
[N-S] D. J. Newman and M. Slater, Waring's problem for the ring of polynomials, J. Number Theory 11 (1979), 477-487.
[S] J. H. Silverman, The Catalan equation over function fields, Trans. Amer. Math. Soc. 273 (1982), 201-205.
[V] J. F. Voloch, Diagonal equations over function fields, Bol. Soc. Brasil. Mat. 16 (1985), 29-39.

DEPARTMENT OF MATHEMATICS
FORDHAM UNIVERSITY
BRONX, NEW YORK 10458
U.S.A.

